JP3109972B2 - Granulation of raw materials for ceramics - Google Patents

Granulation of raw materials for ceramics

Info

Publication number
JP3109972B2
JP3109972B2 JP07065726A JP6572695A JP3109972B2 JP 3109972 B2 JP3109972 B2 JP 3109972B2 JP 07065726 A JP07065726 A JP 07065726A JP 6572695 A JP6572695 A JP 6572695A JP 3109972 B2 JP3109972 B2 JP 3109972B2
Authority
JP
Japan
Prior art keywords
granulation
powder
raw material
slurry
granulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07065726A
Other languages
Japanese (ja)
Other versions
JPH08259304A (en
Inventor
真 近藤
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP07065726A priority Critical patent/JP3109972B2/en
Publication of JPH08259304A publication Critical patent/JPH08259304A/en
Application granted granted Critical
Publication of JP3109972B2 publication Critical patent/JP3109972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、陶磁器用原料を造粒す
るための造粒方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granulating method for granulating raw materials for ceramics.

【0002】[0002]

【従来の技術】粉末状の陶磁器原料を造粒した造粒物は
プレス成形用の原料として、またセラミックサンド等と
して適宜の分野で使用されており、またかかる原料を造
粒する手段としては各種の造粒方法が採られている。一
般に採用されている造粒方法としては、陶磁器用原料の
粉体に有機バインダーを添加して造粒する方法、粘土含
有の陶磁器用原料をスプレードライヤで噴霧造粒する方
法がある。
2. Description of the Related Art Granulated materials obtained by granulating powdery ceramic raw materials are used in appropriate fields as raw materials for press molding and as ceramic sands. Various means for granulating such raw materials are available. Granulation method is adopted. As a generally employed granulation method, there is a method in which an organic binder is added to a powder of a ceramic raw material to perform granulation, and a method in which a clay-containing ceramic raw material is spray-granulated by a spray dryer.

【0003】[0003]

【発明が解決しようとする課題】ところで、これらの造
粒方法のうち、前者の方法は有機バインダーの使用が不
可欠であるとともに造粒後に有機バインダーを除去する
ための脱脂工程を必要とし、コストが増大するとともに
造粒時間が長くなるという問題がある。また、後者の方
法は一定の粒度範囲の粒子を安定的に造粒することは困
難であるとともに、得られる造粒体は粒子径が小さくか
つ中空(気泡)になり易いため、プレス成形時に気泡に
起因して成形品に欠陥を発生し易く、またセラミックサ
ンドとして使用する場合には強度上の問題がある。従っ
て、本発明の目的は、これらの問題を解消し得る造粒体
を製造する造粒方法を提供することにある。
However, among these granulation methods, the former method requires the use of an organic binder, and requires a degreasing step for removing the organic binder after granulation, which is costly. There is a problem that the granulation time increases with the increase. In the latter method, it is difficult to granulate particles in a certain particle size range stably, and the obtained granules have a small particle diameter and tend to be hollow (bubbles). Therefore, the molded article is liable to cause defects, and when used as a ceramic sand, there is a problem in strength. Therefore, an object of the present invention is to provide a granulation method for producing a granulated body capable of solving these problems.

【0004】[0004]

【課題を解決するための手段】本発明は、陶磁器用原料
を用いて転動造粒法により造粒する陶磁器用原料の造粒
方法であり、前記陶磁器用原料として粉体を採用すると
ともに、造粒時前記粉体に泥漿を噴霧状態で供給するこ
とを特徴とするものである。
SUMMARY OF THE INVENTION The present invention is a method of granulating a ceramic raw material by using a ceramic raw material by a rolling granulation method, wherein powder is used as the ceramic raw material. It is characterized in that a slurry is supplied to the powder at the time of granulation in a spray state.

【0005】本発明の陶磁器用原料の造粒方法において
は、前記陶磁器用原料として乾燥粘土を5重量%以上含
む原料を採用すること、前記泥漿として前記陶磁器用原
料の粉体を固形分とする泥漿を採用すること、前記泥漿
として固形分が60重量%〜90重量%の濃度の泥漿を
採用すること、前記陶磁器用原料として平均粒子径が4
0μm以下の粉体を採用すること等の態様を採ることが
できる。
In the method for granulating a ceramic raw material according to the present invention, a raw material containing 5% by weight or more of dry clay is used as the ceramic raw material, and the powder of the ceramic raw material is solidified as the slurry. Adopting a slurry, using a slurry having a solid content of 60% by weight to 90% by weight as the slurry, and having an average particle diameter of 4% as the ceramic material.
It is possible to adopt a mode such as employing a powder having a size of 0 μm or less.

【0006】[0006]

【発明の作用・効果】本発明の造粒方法においては、造
粒原料である陶磁器用原料の粉体は、造粒時に粉体に付
与される水分により凝集されて造粒核を形成し、転動造
粒により、この造粒核が転動しつつその外周に粉体を付
着させて径を増大させ、造粒体に粒子径の大小による偏
析作用が生じて所定の範囲の大きさの粒子径の造粒体が
分別して得られる。かかる造粒方法において、造粒体は
小さな造粒核から漸次成長して所定の大きさの粒子径と
なることから、内部が緻密で気泡が少なく、高い圧縮強
度のものとなる。特に、原料に粘土を含む場合には、粘
土の接着作用により、より高い圧縮強度のものが得られ
る。
In the granulation method of the present invention, the powder of the ceramic raw material, which is the granulation raw material, is agglomerated by the moisture given to the powder during granulation to form a granulation nucleus, By tumbling granulation, this granulation nucleus rolls and attaches powder to the outer periphery of the nucleus to increase the diameter. Granules having a particle size can be obtained by separation. In such a granulation method, the granules gradually grow from small granulation nuclei and have a predetermined particle size, so that the inside is dense, there are few bubbles, and high compressive strength is obtained. In particular, when clay is included in the raw material, a material having higher compressive strength can be obtained due to the adhesive action of the clay.

【0007】かかる造粒方法において、造粒時に水分を
滴下状態で粉体に供給する場合には、気泡がなく、単位
粒子径当りの圧縮強度が比較的高い造粒体となるが、粒
子形状が球形をなさず形状の定まらない不定形な形態と
なる。このため、陶磁器用原料としては、使用上に大き
な問題がある。また、造粒時に水分を噴霧状態で粉体に
供給する場合には、ほぼ球形に近い形態の造粒体になる
とともに、粉体として平均粒子径が10μm以下の粉体
を採用する場合には、気泡が極めて小さく、単位粒子径
当りの圧縮荷重が高い造粒体となる。しかしながら、粉
体として平均粒子径が10μm以上の粉体を採用した場
合には、粉体の粒子径に比例して造粒体内に大気泡が漸
次増大する。
In such a granulation method, when water is supplied to the powder in a granulated state during granulation, the granules have no bubbles and a relatively high compressive strength per unit particle size. Has an irregular shape whose shape is not determined without forming a spherical shape. For this reason, there is a major problem in use as a raw material for ceramics. Also, when supplying water to the powder in a spray state at the time of granulation, it becomes a granule having a nearly spherical form, and when a powder having an average particle diameter of 10 μm or less is used as the powder. The resulting granules have extremely small bubbles and a high compression load per unit particle diameter. However, when a powder having an average particle diameter of 10 μm or more is used as the powder, large bubbles gradually increase in the granulated body in proportion to the particle diameter of the powder.

【0008】これに対して、本発明の造粒方法のごと
く、造粒時に水分を泥漿の状態で粉体に供給する場合に
は、粉体は泥漿中の水分と固形分により凝集されて造粒
核を形成し、転動造粒により、この造粒核が転動しつつ
その外周に泥漿を介して粉体を付着させて径を増大させ
る。このため、造粒時に造粒体内に閉じ込められる水分
量が少ないとともに、水分が局部的に多量に遍在して閉
じ込められることがないため、平均粒子径が10μm以
上の比較的大きな粉体を採用しても、気泡が殆ど皆無で
球形の形態を呈し、かつ圧縮強度の高い造粒体が得られ
る。
On the other hand, when water is supplied to the powder in a slurry state during granulation as in the granulation method of the present invention, the powder is agglomerated by the water and solids in the slurry. A grain nucleus is formed, and by rolling granulation, the granule nucleus is rolled and powder is adhered to the outer periphery thereof through a slurry to increase the diameter. Therefore, a relatively large powder having an average particle diameter of 10 μm or more is employed because the amount of water trapped in the granule during granulation is small, and the water is not locally ubiquitously trapped. However, granules having a spherical shape with almost no air bubbles and high compressive strength can be obtained.

【0009】本発明の造粒方法においては、泥漿として
陶磁器用原料の粉体を固形分とする泥漿を採用し、泥漿
として固形分が60重量%〜90重量%の濃度の泥漿を
採用し、および/または陶磁器用原料として平均粒子径
が40μm以下の粉体を採用すれば、気泡がほとんど無
く、かつ圧縮強度が高い1000〜3000μmという
大きな粒子径の造粒体を得ることができる。
In the granulation method of the present invention, a slurry having a solid content of a powder of a ceramic raw material is employed as the slurry, and a slurry having a solid content of 60% to 90% by weight is employed as the slurry. If a powder having an average particle diameter of 40 μm or less is used as a raw material for ceramics, a granule having a large particle diameter of 1000 to 3000 μm, which has almost no bubbles and high compressive strength, can be obtained.

【0010】[0010]

【実施例】【Example】

(造粒原料である造粒用粉体、および泥漿の調製)造粒
用粉体としては、粉砕された粘土、珪砂、長石、アルミ
ナ等を混合、解砕して粉体に調製する。粘土の混合量は
5〜30重量%であることが好ましく、粉砕手段、混合
手段としては湿式粉砕、乾式粉砕等、また湿式混合、乾
式混合等適宜の粉砕手段および混合手段を採用すること
ができ、湿式粉砕、湿式混合を採用する場合には乾燥工
程が必要である。造粒原料である粉体の粒子径は1μm
〜500μmの範囲の各粒子径のものを調製した。ま
た、泥漿の調製には、造粒原料として使用する粉体を固
形分として採用し、固形分が10〜90重量%の濃度の
泥漿を調製した。
(Preparation of Granulation Powder and Slurry as Granulation Raw Materials) As the granulation powder, pulverized clay, silica sand, feldspar, alumina and the like are mixed and crushed to prepare a powder. The mixing amount of the clay is preferably 5 to 30% by weight, and as the pulverizing means and mixing means, appropriate pulverizing means and mixing means such as wet pulverization, dry pulverization and the like, and wet mixing and dry mixing can be employed. When wet pulverization or wet mixing is employed, a drying step is required. The particle size of the powder as the granulation raw material is 1 μm
Particles having respective particle diameters in the range of 500500 μm were prepared. Further, in preparing the slurry, powder used as a granulation raw material was employed as a solid content, and a slurry having a solid content of 10 to 90% by weight was prepared.

【0011】(造粒手段)転動造粒法では、図1に示す
微細造粒装置が採用される。当該造粒装置は微細造粒機
GRC型(新東工業株式会社製の微細造粒機)を基礎と
するともので、当該造粒機に噴霧機構を付加して構成し
たものである。図1は当該造粒装置を概略的に示し、図
2は当該造粒装置の原理を模式的に示すもので、当該造
粒装置は円錐ドラム11、造粒原料である造粒用粉体A
を供給する第1振動フィーダ12、噴霧機構13、造粒
体をBを排出する第2振動フィーダ14、および遠赤外
線ヒータ15を備えているもので、円錐ドラム11はモ
ータ16の駆動により回転する。また、円錐ドラム11
内は造粒ゾーンおよび整粒ゾーンに区分けされていて、
造粒用粉体Aは円錐ドラム11の小径口11a側からそ
の内部へ第1振動フィーダ12を介して定量供給される
とともに、円錐ドラム11内の造粒用粉体Aには噴霧機
構13から水分が滴下状態もしくは噴霧状態で、または
泥漿が噴霧状態で定量供給され、この状態で円錐ドラム
11が回転することにより、円錐ドラム11内では造粒
用粉体Aが造粒核を形成するとともに、造粒用粉体Aが
造粒核の外周に漸次付着して粒径を増大させる。
(Granulation means) In the rolling granulation method, a fine granulation apparatus shown in FIG. 1 is employed. The granulator is based on a fine granulator GRC (fine granulator manufactured by Shinto Kogyo Co., Ltd.), and is configured by adding a spray mechanism to the granulator. FIG. 1 schematically shows the granulation apparatus, and FIG. 2 schematically shows the principle of the granulation apparatus. The granulation apparatus includes a conical drum 11 and a granulation powder A as a granulation raw material.
A conical drum 11 is driven by a motor 16, comprising a first vibrating feeder 12 for supplying the water, a spraying mechanism 13, a second vibrating feeder 14 for discharging the granules B, and a far-infrared heater 15. . Also, the conical drum 11
The inside is divided into granulation zone and sizing zone,
The powder A for granulation is supplied to the inside of the conical drum 11 from the small-diameter port 11a side via the first vibrating feeder 12 in a fixed amount, and the powder A for granulation in the conical drum 11 is supplied from the spray mechanism 13 to the inside. A constant amount of water is supplied in a dripped state or a spray state or a slurry is sprayed, and in this state, the conical drum 11 rotates, so that the granulating powder A forms granulation nuclei in the conical drum 11. The granulation powder A gradually adheres to the outer periphery of the granulation nucleus to increase the particle size.

【0012】円錐ドラム11内においてはその偏析作用
により、大径の造粒物が円錐ドラム11の大径口11b
側へ流れるとともに小径の造粒物が円錐ドラム11の小
径口11a側へ流れ、この間細粒物は連続的に転動を繰
り返して球状になって大口径11b側に押し出され、第
2振動フィーダ14を介して連続的に排出される。この
排出の間、造粒体Bは第2振動フィーダ14上で遠赤外
線ヒータ15により水分調整される。
In the conical drum 11, large-diameter granules are formed by the segregation action of the conical drum 11.
And the small-diameter granules flow toward the small-diameter port 11a side of the conical drum 11, during which the fine particles continuously roll and become spherical, and are pushed out to the large-diameter side 11b side. It is continuously discharged through the outlet 14. During this discharge, the moisture of the granulated body B is adjusted by the far-infrared heater 15 on the second vibrating feeder 14.

【0013】図2には回転する円錐ドラム11内での造
粒体Bの軌跡が矢印で示されており、円錐ドラム11の
大口径11b側と小口径11a側の遠心力の相違および
造粒用粉体Aの層の傾斜角の相違により、円錐ドラム1
1内の造粒物が大口径側11bから小口径11a側へ流
れる粉体Aの層面が形成される。造粒体Bは造粒用粉体
Aの層内部を通り矢印方向へ繰り返し転動される。大き
な造粒体Bは造粒用粉体Aの層内部に巻き込まれること
なく遠心力により大口径11b側に戻され、最後に大口
径11b側から排出される。
In FIG. 2, the trajectory of the granulated material B in the rotating conical drum 11 is indicated by an arrow, and the difference in centrifugal force between the large-diameter 11b side and the small-diameter 11a side of the conical drum 11 and the granulation are shown. Of the conical drum 1
The layer surface of the powder A in which the granulated material in 1 flows from the large-diameter side 11b to the small-diameter side 11a is formed. The granules B are repeatedly rolled in the direction of the arrow through the inside of the layer of the powder A for granulation. The large granules B are returned to the large diameter 11b side by centrifugal force without being caught in the layer of the granulation powder A, and finally discharged from the large diameter 11b side.

【0014】(造粒実験1)本実験では、造粒工程にお
ける水分供給の相違と、調製された造粒体の特性との関
係を検討した。本実験では、造粒用粉体として、乾燥粘
土10重量%(粘土乾燥温度180℃)を含む珪砂、長
石およびアルミナからなる平均粒子径15μmの粉体を
採用した。また、造粒装置としては図1に示す微細造粒
装置を採用し、造粒工程における水分供給手段として
は、噴霧機構13を使用して固形分濃度が75重量%の
泥漿を噴霧する手段(泥漿噴霧法)を採用し、粉体に対
する供給水分を外配で10wt%とした。得られた造粒
体を1250℃で焼成した。また、比較例として、水分
の供給手段として水分滴下法、および水分噴霧法を採用
した以外は上記と同様の手段により粉体を造粒し、得ら
れた造粒体を1250℃で焼成した。泥漿噴霧法、水分
滴下法、および水分噴霧法にて得られた焼成後の各造粒
体(A),(B),(C)において、粒子径2000μ
m±100μmの範囲のものを選定して圧縮強度を測定
するとともに、造粒体の断面形状を顕微鏡で観察した。
各造粒体の顕微鏡による断面形状を図3に示す。また、
各造粒体の圧縮強度(kg/cm2)は33.4
(A)、19.4(B)、12.1(C)であった。
(Granulation Experiment 1) In this experiment, the relationship between the difference in water supply in the granulation step and the characteristics of the prepared granules was examined. In this experiment, a powder having an average particle diameter of 15 μm comprising silica sand containing 10% by weight of dry clay (clay drying temperature: 180 ° C.), feldspar and alumina was used as the powder for granulation. As the granulating device, the fine granulating device shown in FIG. 1 is employed, and as the water supply means in the granulating step, means for spraying a slurry having a solid content concentration of 75% by weight using the spray mechanism 13 ( Slurry spraying method) was employed, and the water supply to the powder was set to 10 wt% on the outside. The obtained granules were fired at 1250 ° C. Further, as a comparative example, powder was granulated by the same means as described above except that a water dropping method and a water spraying method were employed as a water supply means, and the obtained granules were fired at 1250 ° C. In each of the fired granules (A), (B), and (C) obtained by the slurry spraying method, the water dropping method, and the water spraying method, the particle diameter is 2000 μm.
The compressive strength was measured by selecting one having a range of m ± 100 μm, and the cross-sectional shape of the granulated product was observed with a microscope.
FIG. 3 shows a cross-sectional shape of each granule using a microscope. Also,
The compressive strength (kg / cm 2 ) of each granule is 33.4
(A), 19.4 (B) and 12.1 (C).

【0015】本実験の結果を参照すると、泥漿噴霧法を
採用して形成した造粒体(A)はほぼ球形に近い状態で
気泡の存在がほとんど確認されない。これに対して、水
分滴下法を採用して形成した造粒体(B)は気泡の存在
はほとんど確認されないが、形状は非球形状でかつ非定
形状態であり、また水分噴霧法を採用して形成した造粒
体(C)はほぼ球形に近い状態であるが、大きな気泡の
存在が確認される。一方、これらの造粒体(A),
(B),(C)の圧縮強度は(A)>(B)>(C)の
順序である。従って、これらの結果を総合すると、泥漿
噴霧法を採用して形成された造粒体は特性として最も優
れているものと理解される。
Referring to the results of this experiment, the granules (A) formed by using the slurry spraying method are almost spherical, and the presence of air bubbles is hardly confirmed. On the other hand, the granules (B) formed by using the water dropping method have almost no presence of air bubbles, but have a non-spherical shape and an atypical shape. The granules (C) thus formed are almost spherical, but the presence of large bubbles is confirmed. On the other hand, these granules (A),
The compressive strengths of (B) and (C) are in the order of (A)>(B)> (C). Therefore, when these results are combined, it is understood that the granules formed by using the slurry spraying method have the best properties.

【0016】(造粒実験2)本実験では、泥漿噴霧法を
採用して粉体を造粒する造粒方法において、採用する泥
漿の固形分濃度と得られた造粒体の焼成後の圧縮強度と
の関係を検討した。本実験では、造粒用粉体として、乾
燥粘土10重量%(粘土乾燥温度180℃)を含む珪
砂、長石およびアルミナからなる平均粒子径15μmの
粉体を採用した。また、造粒装置としては図1に示す微
細造粒装置を採用し、泥漿としては固形分が0重量%〜
90重量%の範囲の各種固形分濃度の泥漿を採用した。
得られた造粒体を1250℃で焼成して、圧縮強度を測
定した。得られた結果を図4のグラフに示す。
(Granulation Experiment 2) In this experiment, in the granulation method in which the powder is granulated by using the slurry spraying method, the solid concentration of the slurry to be used and the compression of the obtained granules after sintering. The relationship with strength was examined. In this experiment, a powder having an average particle diameter of 15 μm comprising silica sand containing 10% by weight of dry clay (clay drying temperature: 180 ° C.), feldspar and alumina was used as the powder for granulation. As the granulating apparatus, the fine granulating apparatus shown in FIG. 1 is employed, and the slurry has a solid content of 0% by weight or less.
Slurries of various solids concentrations in the range of 90% by weight were employed.
The obtained granules were fired at 1250 ° C. and the compressive strength was measured. The results obtained are shown in the graph of FIG.

【0017】同グラフを参照すると、焼成後の造粒体の
圧縮強度は、固形分濃度が0重量%〜30重量%の範囲
の泥漿ではほぼ一定の低い値であるのに対して、固形分
濃度が30重量%を越えると漸次増大し、固形分濃度が
50重量%をこえると急激に増大して固形分濃度が80
重量%近傍にて最大となり、その後急激に低下する。か
かる結果から、泥漿の固形分濃度を造粒体の圧縮強度の
点から評価すれば、粉体の転動造粒には固形分濃度が6
0重量%〜90重量%の範囲の泥漿を採用することが好
ましい。
Referring to the graph, the compressive strength of the granulated body after calcination is almost constant and low in a slurry having a solid concentration of 0% by weight to 30% by weight, while the solid content is 0% to 30% by weight. When the concentration exceeds 30% by weight, the concentration gradually increases, and when the solid concentration exceeds 50% by weight, the concentration sharply increases and the solid concentration becomes 80%.
It reaches a maximum near the weight%, and then drops sharply. From these results, when the solid content concentration of the slurry was evaluated from the viewpoint of the compressive strength of the granulated product, the solid content concentration was 6% in the tumbling granulation of the powder.
It is preferred to employ a slurry in the range of 0% to 90% by weight.

【0018】(造粒実験3)本実験では、泥漿噴霧法を
採用して粉体を造粒する造粒方法において、採用する造
粒用粉体の粒子径と得られた造粒体の焼成後の気孔率と
の関係を検討した。本実験では、造粒用粉体として、乾
燥粘土10重量%(粘土乾燥温度180℃)を含む珪
砂、長石およびアルミナからなる平均粒子径200μm
までの各平均粒子径の粉体を採用した。また、造粒装置
としては図1に示す微細造粒装置を採用し、泥漿として
は固形分が70重量%の泥漿を採用した。得られた造粒
体を1250℃で焼成して、その断面形状を顕微鏡で観
察するとともに、各造粒体の気孔率をアルキメデス法
(煮沸法)で測定した。得られた結果を図5のグラフに
示す。
(Granulation Experiment 3) In this experiment, in the granulation method of granulating the powder by using the slurry spraying method, the particle diameter of the granulation powder to be adopted and the calcination of the obtained granulated body The relationship with the subsequent porosity was examined. In this experiment, the average particle diameter of silica powder containing 10% by weight of dry clay (clay drying temperature: 180 ° C.), feldspar and alumina was 200 μm as the powder for granulation.
Powders of each average particle size up to were used. Further, a fine granulation apparatus shown in FIG. 1 was employed as a granulation apparatus, and a slurry having a solid content of 70% by weight was employed as a slurry. The obtained granules were fired at 1250 ° C., and the cross-sectional shape was observed with a microscope, and the porosity of each granule was measured by the Archimedes method (boiling method). The results obtained are shown in the graph of FIG.

【0019】同グラフを参照すると、焼成後の造粒体の
気孔率は造粒用粉体が10μm以下の微小な粒子径であ
る場合には気孔率は極めて小さいが、粒子径が10μm
を越えると気孔率が漸次増大し、粒子径が40μmを越
えると急激に増大する。かかる結果から、造粒用粉体の
粒子径を造粒体の気孔率の点から評価すれば、造粒用粉
体としては平均粒子径が40μm以下の範囲の粉体を採
用することが好ましい。また、造粒方法として本実験の
ごとく泥漿噴霧法を採用すれば、平均粒子径が10μm
以下という微小な粒子径の粉体だけではなく、10μm
〜40μmという比較的大きな粒子径の粉体を採用して
も気孔率の小さい、従って圧縮強度の大きい造粒体を得
ることができる。
Referring to the graph, the porosity of the granules after firing is very small when the granulation powder has a very small particle size of 10 μm or less, but the porosity is 10 μm.
When the particle size exceeds 40 μm, the porosity gradually increases, and when the particle size exceeds 40 μm, the porosity sharply increases. From these results, if the particle diameter of the granulation powder is evaluated from the viewpoint of the porosity of the granulated body, it is preferable to employ a powder having an average particle diameter of 40 μm or less as the granulation powder. . If the slurry spraying method is adopted as the granulation method as in this experiment, the average particle diameter is 10 μm.
Not only powder with a small particle size of 10 μm
Even if a powder having a relatively large particle diameter of up to 40 μm is employed, a granule having a small porosity and therefore a high compressive strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の造粒方法を実施するための微細造粒装
置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a fine granulation apparatus for performing a granulation method of the present invention.

【図2】同造粒装置における造粒原理を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a granulation principle in the granulation apparatus.

【図3】水分の異なる供給手段を採用した場合に得られ
る造粒体の焼成後の顕微鏡で観察した断面の概略図であ
る。
FIG. 3 is a schematic cross-sectional view of a granule obtained by using a means for supplying water having different contents, which is observed with a microscope after firing.

【図4】泥漿噴霧法を採用した場合の、採用する泥漿の
固形分濃度と得られた造粒体の焼成後の圧縮強度との関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the solid content concentration of the employed slurry and the compressive strength of the obtained granules after firing when the slurry spraying method is employed.

【図5】泥漿噴霧法を採用した場合の、採用する造粒用
粉体の粒子径と得られた造粒体の焼成後の気孔率との関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between the particle size of the granulating powder to be employed and the porosity of the obtained granulated body after firing when the slurry spraying method is employed.

【符号の説明】[Explanation of symbols]

11…円錐ドラム、12…第1振動フィーダ、13…噴
霧機構、14…第2振動フィーダ、15…遠赤外線ヒー
タ、16…駆動モータ、A…泥漿噴霧法を採用して得た
焼成後の造粒体、B…水分滴下法を採用して得た焼成後
の造粒体、C…水分噴霧法を採用して得た焼成後の造粒
体。
11: conical drum, 12: first vibratory feeder, 13: spray mechanism, 14: second vibratory feeder, 15: far-infrared heater, 16: drive motor, A: fired structure obtained by adopting the slurry spray method Granules, B: Granules after firing obtained by employing the water dropping method, C: Granules after firing obtained by employing the water spraying method.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陶磁器用原料を用いて転動造粒法により造
粒する陶磁器用原料の造粒方法であり、前記陶磁器用原
料として粉体を採用するとともに、造粒時に前記粉体に
泥漿を噴霧状態で供給することを特徴とする陶磁器用原
料の造粒方法。
The present invention relates to a method of granulating a ceramic raw material using a raw material for ceramic by a rolling granulation method, wherein a powder is employed as the raw material for ceramic and a slurry is added to the powder during granulation. A method for granulating raw materials for ceramics, characterized in that the raw material is supplied in a spray state.
【請求項2】請求項1に記載の陶磁器用原料の造粒方法
において、前記陶磁器用原料が乾燥粘土を5重量%以上
含むことを特徴とする陶磁器用原料の造粒方法。
2. A method for granulating a ceramic raw material according to claim 1, wherein said ceramic raw material contains 5% by weight or more of dry clay.
【請求項3】請求項1または2に記載の陶磁器用原料の
造粒方法において、前記泥漿として、前記陶磁器用原料
の粉体を固形分とする泥漿を採用することを特徴とする
陶磁器用原料の造粒方法。
3. The method for granulating a ceramic raw material according to claim 1, wherein a slurry containing a solid content of the ceramic raw material powder is used as the slurry. Granulation method.
【請求項4】請求項1、2または3に記載の陶磁器用原
料の造粒方法において、前記泥漿として固形分が60重
量%〜90重量%の濃度の泥漿を採用することを特徴と
する陶磁器用原料の造粒方法。
4. The method for granulating a raw material for ceramics according to claim 1, wherein the slurry has a solid content of 60% by weight to 90% by weight. Granulation method of raw materials for use.
【請求項5】請求項1、2、3または4に記載の陶磁器
用原料の造粒方法において、前記陶磁器用原料として、
平均粒子径が40μm以下の粉体を採用することを特徴
とする陶磁器用原料の造粒方法。
5. The method for granulating a ceramic raw material according to claim 1, wherein the ceramic raw material comprises:
A method for granulating a raw material for ceramics, wherein a powder having an average particle diameter of 40 μm or less is employed.
JP07065726A 1995-03-24 1995-03-24 Granulation of raw materials for ceramics Expired - Fee Related JP3109972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07065726A JP3109972B2 (en) 1995-03-24 1995-03-24 Granulation of raw materials for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07065726A JP3109972B2 (en) 1995-03-24 1995-03-24 Granulation of raw materials for ceramics

Publications (2)

Publication Number Publication Date
JPH08259304A JPH08259304A (en) 1996-10-08
JP3109972B2 true JP3109972B2 (en) 2000-11-20

Family

ID=13295322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07065726A Expired - Fee Related JP3109972B2 (en) 1995-03-24 1995-03-24 Granulation of raw materials for ceramics

Country Status (1)

Country Link
JP (1) JP3109972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20000441A2 (en) * 2000-06-30 2002-06-30 Basarić Iso Manufacture of construction materials and products
JP6183347B2 (en) * 2014-12-16 2017-08-23 株式会社村田製作所 Granulator

Also Published As

Publication number Publication date
JPH08259304A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
JP5048732B2 (en) Improved coated abrasive article
JP3468527B2 (en) Method for producing spherical ceramic molded body
JP2001327849A (en) Granule consisting of dispersible fine solids and their manufacturing method
JPS597745B2 (en) Free-flowing aggregate of hollow spheres
US3532473A (en) Process for producing a spherical granulated silica material
RU2129987C1 (en) Method of processing alumino-silicon crude
JP3109972B2 (en) Granulation of raw materials for ceramics
JP3182648B2 (en) Ceramic granules for molding a ceramic molded body, method for producing or treating the same, ceramic molded body and method for producing the same
JP3440489B2 (en) Fine spherical zeolite compact and method for producing the same
JPS6367108A (en) Method and device for manufacturing fine ceramic material having high homogeneity and high fineness
JP2898535B2 (en) Granulation of raw materials for ceramics
JP2017064670A (en) Rolling granulation apparatus and rolling granulation method
JPS6359735B2 (en)
US2534128A (en) Dry granular mix
RU2452759C1 (en) Method of producing ceramic proppants
KR100213466B1 (en) Process pelletizing for recycling lime sludge and dust and pellets manufactured thereby
JPS5921651B2 (en) Granulation method and equipment
US11673836B2 (en) Angular ceramic particles and methods of making and using same
JP2002128570A (en) Manufacture of granules for forming ceramics and equipment thereof, and granules, shaped compact and sintered compact
JPH10231152A (en) Artificial lightweight aggregate and production thereof
JPS6333900B2 (en)
JPH09268039A (en) Production of artificial lightweight aggregate
JPH0364182B2 (en)
JPH10296069A (en) Granulating device
KR100858867B1 (en) Abrasion-resistant agglomerate mineral substance granule, powder comprising such granules and production method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees