JPS61122151A - Manufacture of ceramic grain and apparatus therefor - Google Patents

Manufacture of ceramic grain and apparatus therefor

Info

Publication number
JPS61122151A
JPS61122151A JP59242909A JP24290984A JPS61122151A JP S61122151 A JPS61122151 A JP S61122151A JP 59242909 A JP59242909 A JP 59242909A JP 24290984 A JP24290984 A JP 24290984A JP S61122151 A JPS61122151 A JP S61122151A
Authority
JP
Japan
Prior art keywords
granulated powder
powder
moisture content
granulated
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59242909A
Other languages
Japanese (ja)
Other versions
JPH068199B2 (en
Inventor
高見 昭宏
橋爪 耐三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59242909A priority Critical patent/JPH068199B2/en
Publication of JPS61122151A publication Critical patent/JPS61122151A/en
Publication of JPH068199B2 publication Critical patent/JPH068199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセラミック部品の作製に用いるセラミック粉粒
体の製造方法およびその製造装置に関すbものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for producing ceramic powder used for producing ceramic parts.

従来例の構成とその問題点 通常、セラミック電子部品の製造工程は、主原料と微量
添加物原料を最適組成配分に秤量する配合工程、配合し
た原料を微粉に粉砕すると同時に主原料と添加物原料を
よく混合する粉砕混合工程がある。通常、粉砕混合工程
はボッH−用い、原料と水と有機バインダーと玉石を加
え、ポットを回転させることによって行う。次に、粉砕
混合工程を終えた原料はスラリー状態になっているが、
これをスプレードライヤーを用い、乾燥すると同時に成
形に適した球状の造粒粉にする造粒工程がある。次に、
造粒粉を金型に充填し、圧力金加えて所望の形状にする
成形工程、そして成形物を焼き固めると同時に化学反応
を起させ、所望の電気性能を有する焼結物を得る焼成工
程、さらに電気性能を引出すための電極付工程等がある
Structure of conventional examples and their problems Normally, the manufacturing process of ceramic electronic components involves a blending process in which the main raw material and minor additive raw materials are weighed in an optimal composition distribution, and the blended raw materials are ground into fine powder and the main raw materials and additive raw materials are simultaneously weighed. There is a grinding and mixing process that mixes the ingredients well. Usually, the grinding and mixing step is carried out using a pot, adding raw materials, water, an organic binder and cobblestones, and rotating the pot. Next, the raw materials after the grinding and mixing process are in a slurry state.
There is a granulation process in which this is dried using a spray dryer and simultaneously turned into spherical granulated powder suitable for molding. next,
A molding process in which granulated powder is filled into a mold and pressed into a desired shape, and a firing process in which a chemical reaction is caused at the same time as the molded product is baked and solidified to obtain a sintered product with the desired electrical performance. Furthermore, there is a process for attaching electrodes to bring out the electrical performance.

以上述べたようにセラミック電子部品の製造工程は概略
的に配合工程、粉砕混合工程、造粒工程。
As mentioned above, the manufacturing process for ceramic electronic components generally includes a blending process, a crushing and mixing process, and a granulation process.

成形工程、焼成工程、電極付工程からなる。これらの工
程の中で、所望の電気性能を出す上で最重要なのは配合
工程、焼成工程であるが所望の形状金作り出し、構造物
として強固であり、そのことが品質を向上させ、長期信
頼性を確保する上で重要な工程は造粒工程、成形工程で
ある。そして、成形性には造粒粉の性質が大きな影響を
及ぼし、特に造粒粉の含水率が適当でない場合、成形物
を焼成して得られた焼結物の収縮率がバラツキ、さらに
成形時に成形物の中に生じた圧力分布等により、焼結物
の内部にボイド等の内部欠陥を生じる。
It consists of a molding process, a firing process, and an electrode attachment process. Among these processes, the compounding process and firing process are the most important in achieving the desired electrical performance, creating the desired shape and making the structure strong, which improves quality and ensures long-term reliability. The important processes to ensure this are the granulation process and the molding process. The properties of the granulated powder have a great influence on the moldability, and especially if the moisture content of the granulated powder is not appropriate, the shrinkage rate of the sintered product obtained by firing the molded product will vary, and furthermore, during molding. Internal defects such as voids occur inside the sintered product due to the pressure distribution generated within the molded product.

このことがセラミック電子部品の品質、長期信頼性の面
で大きな悪影響を及ぼすことになっていた。
This had a major negative impact on the quality and long-term reliability of ceramic electronic components.

上述のように、通常造粒工程にはスプレードライヤーを
用いる。これはスラリー状の混合物をノズルを通じて、
熱風中にスプレー状にして吹き上げ、霧状になった混合
物が上昇、降下の過程で乾燥されると共に球状に造粒さ
れる。しかしながら、元来スプレードライヤーは洗剤、
調味料等の造粒粉それ自体が最終製品であるものを製造
するために用いられるものであり、造粒粉の含水率は通
常0.1%以下である。ところがセラミック電子部品を
つくる場合、造粒粉を金型に充填し、圧力を加えて成形
し、成形物をつくり、次の焼成工程で焼き固めると同時
に化学反応を起させ、所望の電気性能を有する焼結物に
仕上げる。この場合、成形物が適度な強度をもち、成形
体内部での圧力分布を小さくしておかないと、焼成工程
で収縮率のバラツキや焼結体内部にボイド等の内部欠陥
を発生させる。このように優れた成形物を作る上で、造
粒粉の粒度分布、含水率等が重要な役割を果たすが、特
に含水率が重要である。これは造粒粉中の水分が、成形
時に加えられる圧力を成形物の中心部まで伝える機能を
果たすと考えられるからである。このため含水率が少な
い時、圧力が成形物の中心部まで伝わらず、成形物の表
面部分に疋は集中し、大きな圧力分布を生じ、これが焼
成時に成形体の各部分での収縮率の違いを生じさせ、こ
れがボイド等の内部欠陥を生じることになる。逆に含水
率が高いと、成形時に成形物から水かにじみ出す等の問
題があり、成形後に成形物の乾燥工程が必要になったり
して、リードタイムが長くなる等の問題がある。このよ
うなことから、造粒粉の最適含水率は0.5〜1.0%
となるのである。
As mentioned above, a spray dryer is usually used in the granulation process. This passes the slurry-like mixture through a nozzle,
The mixture is blown up into hot air in the form of a spray, and as it rises and falls, it is dried and granulated into spheres. However, spray dryers originally used detergent,
Granulated powder itself is used to manufacture final products such as seasonings, and the moisture content of granulated powder is usually 0.1% or less. However, when making ceramic electronic components, granulated powder is filled into a mold and molded under pressure to create a molded product.The next firing process is to harden and cause a chemical reaction at the same time to achieve the desired electrical performance. Finished into a sintered product with In this case, unless the molded product has appropriate strength and the pressure distribution inside the molded product is kept small, variations in shrinkage rate and internal defects such as voids will occur in the sintered product during the firing process. In producing such an excellent molded product, the particle size distribution, moisture content, etc. of the granulated powder play an important role, and the moisture content is particularly important. This is because the moisture in the granulated powder is thought to function to transmit the pressure applied during molding to the center of the molded product. For this reason, when the moisture content is low, the pressure is not transmitted to the center of the molded product, and the gauze concentrates on the surface of the molded product, creating a large pressure distribution, which causes differences in the shrinkage rate in each part of the molded product during firing. This causes internal defects such as voids. On the other hand, if the water content is high, there will be problems such as water oozing out of the molded product during molding, and a drying process for the molded product will be required after molding, leading to problems such as a longer lead time. For this reason, the optimum moisture content of granulated powder is 0.5 to 1.0%.
It becomes.

上述したように、スプレードライヤーを用いた造粒粉は
含水率が0.1%程度であり、これを0,5〜i、o%
に含水率を調整するためには水を添加しなければならな
い。従来はこの含水率調整のために、■ブレンダーを用
いて造粒粉に適量の水を加え、■プレンダーを回転させ
ることによって造粒粉の含水率調整を行っていた。しか
しながら、この方式ではどうしても造粒粉中の水の混り
が不均一になり、造粒粉の中に水分の多い部分(塊りに
なっている)と水分の少ない部分ができ、実使用の上で
は再度篩によって篩分けし、粒度分布を揃える必要があ
り、大量生産の場合、リードタイムが長くなり、コスト
アップの大きな要因になっていた。
As mentioned above, the granulated powder using a spray dryer has a moisture content of about 0.1%, and this is reduced to 0.5 to i, o%.
Water must be added to adjust the moisture content. Conventionally, the moisture content of the granulated powder was adjusted by (1) adding an appropriate amount of water to the granulated powder using a blender, and (2) rotating the blender. However, with this method, the water in the granulated powder inevitably mixes unevenly, resulting in areas with high moisture (clumps) and areas with low moisture in the granulated powder, making it difficult to use in actual use. In the case of mass production, the lead time becomes long, which is a major factor in increasing costs.

発明の目的 本発明の目的は上記欠点に鑑み、セラミック粉粒体の造
粒粉の含水率の調整を容易にするセラミック粉粒体の製
造方法およびその製造装置を提供することにある。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, an object of the present invention is to provide a method for manufacturing ceramic powder and an apparatus for manufacturing the same, which facilitates adjustment of the moisture content of granulated powder of ceramic powder.

発明の構成 この目的を達成するために、本発明のセラミック粉粒体
の製造方法は、セラミック粉粒体の造粒粉に超音波霧化
装置から発生する液体微粒子を付着させることによって
含水率の調整をするものであり、またその製造装置とし
て、貫通する孔を側壁に有する上下に開いた中空容器と
、tL体機微粒子吹出し口を有する超音波霧化装置から
なり、吹出し口を中空容器の孔に差し込んだ構造の装置
になっている。
Structure of the Invention In order to achieve this object, the method for producing ceramic powder and granules of the present invention reduces the moisture content by attaching liquid particles generated from an ultrasonic atomizer to granulated powder of ceramic powder and granules. The manufacturing equipment consists of a vertically open hollow container with a penetrating hole in the side wall, and an ultrasonic atomizer with a tL particle outlet. It is a device that is inserted into a hole.

まず、スプレードライヤーで造粒された造粒粉が中空容
器を通過し、その時に中空容器の側壁面から液体微粒子
が吹き出され、通過中の造粒粉の表面に液体微粒子が付
着する。通常、スプレードライヤーで造粒された造粒粉
は平均粒径100〜160μmで69.一方超音波霧化
装置にょシ発生した液体微粒子の平均粒径は5〜10t
tmであり、造粒粉に均等に付着し、前述のVブレンダ
ーでの加湿方式のように水分の高い粘土状の塊りができ
るということはない。このため篩分けの必要もなく、リ
ードタイムの長時間化の恐れもない。
First, granulated powder granulated by a spray dryer passes through a hollow container, and at this time, liquid particles are blown out from the side wall surface of the hollow container, and the liquid particles adhere to the surface of the granulated powder that is passing through. Usually, granulated powder granulated with a spray dryer has an average particle size of 100 to 160 μm and 69. On the other hand, the average particle size of liquid particles generated by an ultrasonic atomizer is 5 to 10 tons.
tm, it adheres evenly to the granulated powder, and does not produce clay-like lumps with high moisture content as in the humidification method using the V-blender described above. Therefore, there is no need for sieving, and there is no fear of prolonging lead time.

そして、本発明の装置は現状のスプレードライヤーの造
粒粉取出口に設置するだけであり、簡便に構成できるも
のである。
The apparatus of the present invention can be simply installed at the granulated powder outlet of the existing spray dryer, and can be easily constructed.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明のセラミック粉粒体の製造装置をスプレ
ードライヤーに取付けた場合の模式図を示す。1はスプ
レードライヤー、2は造粒粉、3は貫通する孔4を側壁
に有し、上下に開いた中空容器、5は超音波霧化装置、
6は加湿部、7は加湿された造粒粉、8は造粒粉の収納
容器である。
FIG. 1 shows a schematic diagram of the ceramic powder manufacturing apparatus of the present invention attached to a spray dryer. 1 is a spray dryer, 2 is a granulated powder, 3 is a hollow container that has penetrating holes 4 in the side wall and opens up and down, 5 is an ultrasonic atomizer,
6 is a humidifying part, 7 is a humidified granulated powder, and 8 is a storage container for the granulated powder.

第2図は造粒粉の粒度分布で、人は加湿しないもの、B
はVブレンダーを用いて加湿したもの、Cは本発明の一
実施例で得た造粒粉の粒度分布である。
Figure 2 shows the particle size distribution of granulated powder.
C is the particle size distribution of the granulated powder obtained in one example of the present invention.

まず、ZnOの粉末2oOKfにBz203 、0o2
03゜MnO□、 5b20.等からなる添加物的2o
Kgを加え、純水、有機バインダーを加え、ディスパー
ミルを用い、混合した。次に、スラリー状の混合物を、
スプレードライヤー1を用い、乾燥、造粒を行った。こ
こで、スプレードライヤー1の熱風温度は260℃〜3
00℃、排風温度は140〜17Q°Cであった。この
時の造粒粉の含水率は。、2%であった。この粒度分布
は第2図の人に示す。次に、この造粒粉を第1図に示す
本発明の含水率調整装置によって加湿した。っまシ、ス
プレードライヤー1から造粒粉2か上下に開いた中空容
器3の中に注がれる。そして、中空容器3の壁面の貫通
孔4に超音波霧化装置5の液体微粒子を吹き出す口を差
し込み、中空容器3内に霧状の液体微粒子を注入し、造
粒粉2の表面に液体微粒子を付着させる加湿部6を作り
出す。そして、加湿された造粒粉7を収納容器8に入れ
た。処理量は造粒粉40〜に対し、霧化量は5oocc
であった。このようにして得られた造粒粉の含水率は。
First, add Bz203 and 0o2 to ZnO powder 2oOKf.
03°MnO□, 5b20. Additive 2o consisting of etc.
Kg, pure water and an organic binder were added, and mixed using a disper mill. Next, the slurry mixture is
Drying and granulation were performed using a spray dryer 1. Here, the hot air temperature of spray dryer 1 is 260℃~3
00°C, and the exhaust air temperature was 140-17Q°C. What is the moisture content of the granulated powder at this time? , 2%. This particle size distribution is shown in Figure 2. Next, this granulated powder was humidified using the moisture content adjusting device of the present invention shown in FIG. Granulated powder 2 is poured from a spray dryer 1 into a hollow container 3 that is open at the top and bottom. Then, insert the opening of the ultrasonic atomizer 5 for blowing out liquid particles into the through hole 4 on the wall of the hollow container 3, inject the atomized liquid particles into the hollow container 3, and apply the liquid particles to the surface of the granulated powder 2. A humidifying section 6 is created to which the water is deposited. Then, the humidified granulated powder 7 was put into the storage container 8. Processing amount is granulated powder 40 ~, atomization amount is 5 oocc
Met. What is the moisture content of the granulated powder thus obtained?

、8%であり粒度分布は第2図のGであり、加湿しなか
った場合よりも若干粒度が粗くなっている。
, 8%, and the particle size distribution is G in FIG. 2, which means that the particle size is slightly coarser than when no humidification is performed.

さらに、上記と同様の方法で造粒を行い、加湿方法とし
てVブレyダーを用い、まずsoKりの造粒粉に対して
5ooccの水を加え、3時間混合した。そして、大き
い塊りを取り去るため、32#のフルイ全通した。その
結果、得られた造粒粉の含水率は0.8%であり、粒度
分布は第2図のBに示すようになり、粒径は大きい方に
移動している。
Further, granulation was performed in the same manner as above, and using a V-blader as a humidification method, 50cc of water was first added to the soK granulated powder and mixed for 3 hours. Then, to remove large lumps, I passed it through a 32# sieve. As a result, the moisture content of the obtained granulated powder was 0.8%, and the particle size distribution was as shown in B in FIG. 2, with the particle size moving toward the larger side.

これらの造粒粉を油圧成形機を用い、400Kg/iの
圧力で直径4ONJI、長さ401ffに成形し、これ
を1200°C,5時間焼成した。こうして得られた焼
結体の形状は直径32N、長さ32朋である。
These granulated powders were molded into a diameter of 4 ONJI and a length of 401 ff using a hydraulic molding machine at a pressure of 400 kg/i, and this was baked at 1200° C. for 5 hours. The shape of the sintered body thus obtained was 32N in diameter and 32mm in length.

次に、X線透視装置によって焼結体(試料数釜6oケ)
のボイド等内部欠陥の発生率を調べた。
Next, the sintered body (several pots of 60 samples) was examined using an X-ray fluoroscope.
The incidence of internal defects such as voids was investigated.

このX線透視装置は直径1朋の検出能力がある。This X-ray fluoroscope has the ability to detect a diameter of 1 mm.

その結果は下表に示すように、本発明の方法によって加
湿したものは全数内部欠陥を生じていない。
As shown in the table below, all the samples humidified by the method of the present invention had no internal defects.

それに対して、従来通り加湿しなかったものにおいては
内部欠陥を生じたものが50ケ中13ケ、Vブレンダー
で加湿したものにおいては同じく50ケ中6ケとなり、
本発明の製造方法および製造装置を用いて得られた焼結
体は内部欠陥の少ない優れたものであることがわかる。
On the other hand, 13 out of 50 cases of items that were not humidified in the conventional manner had internal defects, and 6 out of 50 cases of items that were humidified with a V-blender.
It can be seen that the sintered body obtained using the manufacturing method and manufacturing apparatus of the present invention is excellent with few internal defects.

発明の効果 以上、詳細に述べたように本発明はセラεツクの造粒粉
に超音波霧化装置による液体微粒子を付着させることに
より、含水率を均等に上げることができ、内部欠陥のな
い焼結体を提供することができ、今後のセライック電子
部品の製造に当り、その実用的価値は大なるものがある
Effects of the Invention As described in detail, the present invention is capable of uniformly increasing the water content by attaching liquid fine particles to the granulated powder of ceramics using an ultrasonic atomizer, and producing a powder free of internal defects. It is possible to provide a sintered body, which has great practical value in the production of ceramic electronic components in the future.

尚、実施例としてZnOを用いたが、本発明が原料の種
類に影響されないことは言うまでもない。
Although ZnO was used as an example, it goes without saying that the present invention is not affected by the type of raw material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミック粉粒体の製造装置をスプレ
ードライヤーに取付けた場合の模式図、第2図は造粒粉
の粒度分布を示す図である。 1・・・・・・スプレードライヤー、2・・・・・・造
粒粉、3・・・・・・貫通する孔を有し上下知開いた中
空容器、4・・・・・・中空容器の側壁を貫通する孔、
5・・・・・・超音波霧化装置、6・・・・・・加湿部
、7・・・・・・加湿された造粒粉、8・・・・・・造
粒粉の収納容器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第21!! 乾性 (p町
FIG. 1 is a schematic diagram of the ceramic powder manufacturing apparatus of the present invention attached to a spray dryer, and FIG. 2 is a diagram showing the particle size distribution of granulated powder. 1... Spray dryer, 2... Granulated powder, 3... Hollow container with penetrating holes and open top and bottom, 4... Hollow container a hole penetrating the side wall of the
5... Ultrasonic atomization device, 6... Humidifying section, 7... Humidified granulated powder, 8... Storage container for granulated powder. . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 21! ! dryness (p town

Claims (2)

【特許請求の範囲】[Claims] (1)セラミック粉粒体に超音波霧化装置から発生した
液体微粒子を付着させることを特徴とするセラミック粉
粒体の製造方法。
(1) A method for producing ceramic powder, which comprises attaching liquid particles generated from an ultrasonic atomizer to ceramic powder.
(2)貫通する孔を側壁に有し、セラミック造粒粉を通
過させる上下に開いた中空容器と、液体微粒子の吹出し
口を有する超音波霧化装置からなり、前記吹出し口を前
記中空容器の孔に差し込んだことを特徴とするセラミッ
ク粉粒体の製造装置。
(2) Consisting of a vertically open hollow container that has a penetrating hole in the side wall and allows the ceramic granulated powder to pass through, and an ultrasonic atomizer that has a blowout port for liquid particles, and the blowout port is connected to the hollow container. A ceramic powder manufacturing device characterized by being inserted into a hole.
JP59242909A 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder Expired - Fee Related JPH068199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242909A JPH068199B2 (en) 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242909A JPH068199B2 (en) 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder

Publications (2)

Publication Number Publication Date
JPS61122151A true JPS61122151A (en) 1986-06-10
JPH068199B2 JPH068199B2 (en) 1994-02-02

Family

ID=17096014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242909A Expired - Fee Related JPH068199B2 (en) 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder

Country Status (1)

Country Link
JP (1) JPH068199B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022870A (en) * 2005-07-19 2007-02-01 Nippon Shokubai Co Ltd Mixture for manufacturing ceramic green molding
JP2011121251A (en) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd Method of controlling moisture content of ceramic granular powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022870A (en) * 2005-07-19 2007-02-01 Nippon Shokubai Co Ltd Mixture for manufacturing ceramic green molding
JP2011121251A (en) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd Method of controlling moisture content of ceramic granular powder

Also Published As

Publication number Publication date
JPH068199B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
CN115368122B (en) Modified diatomite porous ceramic slurry and ceramic powder
US3836618A (en) Process for the uniform distribution of a drug on a granulated base
EP0728519A1 (en) High speed agitated granulation method and high speed agitated granulating machine
JPS61122151A (en) Manufacture of ceramic grain and apparatus therefor
JPH06163055A (en) Manufacture of sintered electrode for battery
JPS5895617A (en) Method of increasing grain size of uranium oxide
JPH03193616A (en) Activated carbon by high strength molding
TW200407276A (en) Composition of sanitary ware substrate, the manufacturing method thereof, and the manufacturing method of sanitary ware using the composition of sanitary ware substrate
JPS6183005A (en) Method of mixing ceramic raw material for injection molding
Ghorra Wet vs dry processing: granulation of ceramic powders
RU2097348C1 (en) Method for producing glass-based moulding powders
JP3313427B2 (en) Method for producing ceramic granules
CZ293451B6 (en) Coloring pigment granulates and method for producing the same
JPH04260652A (en) Production of colored porcelain particle
JPH04357157A (en) Production of granulated ceramic powder for forming
JP2652105B2 (en) Tile raw material manufacturing method
SU850308A1 (en) Method of producing ferrite moulding powder
JPH04160101A (en) Production of molding material
JP3196475B2 (en) Pressure molding method of ceramic powder
JPH0413305B2 (en)
JPS61236643A (en) Glass shell covered particle and manufacture
SU1423613A1 (en) Method of preparing sintering mixture for sintering
JPH01153515A (en) Method for granulating magnesium oxide raw material for forming
SU1688979A1 (en) Method of preparing powder material charge
SU1659177A1 (en) Method of producing porous powder material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees