JPS6030248B2 - Granulation method of ceramic raw material powder - Google Patents

Granulation method of ceramic raw material powder

Info

Publication number
JPS6030248B2
JPS6030248B2 JP55068298A JP6829880A JPS6030248B2 JP S6030248 B2 JPS6030248 B2 JP S6030248B2 JP 55068298 A JP55068298 A JP 55068298A JP 6829880 A JP6829880 A JP 6829880A JP S6030248 B2 JPS6030248 B2 JP S6030248B2
Authority
JP
Japan
Prior art keywords
raw material
material powder
ceramic raw
binder
granulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55068298A
Other languages
Japanese (ja)
Other versions
JPS56164812A (en
Inventor
謙次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP55068298A priority Critical patent/JPS6030248B2/en
Publication of JPS56164812A publication Critical patent/JPS56164812A/en
Publication of JPS6030248B2 publication Critical patent/JPS6030248B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Glanulating (AREA)

Description

【発明の詳細な説明】 この発明はセラミック原料粉末の造粒法に関し、プレス
成形に適した造粒済みの仮焼セラミック材料を提供せん
とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for granulating ceramic raw material powder, and aims to provide a granulated calcined ceramic material suitable for press molding.

プレス成形により一定形状のセラミック成形体を得るに
は、セラミック原料粉末を前もって造粒しておく。
In order to obtain a ceramic molded body of a certain shape by press molding, the ceramic raw material powder is granulated in advance.

この造粒工程が必要な理由としては、セラミックの造粒
粉体の高比重を高め、プレスの圧縮比を低下させて成形
性を高めるとともに、プレス機に供する際の造粒粉体の
流動性を高めるためによるものである。従来、セラミッ
ク原料粉末の造粒法としては、転動法、圧縮成形法、ス
プレードライャ法、晶折法、噴射法などがある。
This granulation process is necessary because it increases the specific gravity of the ceramic granulated powder, lowers the compression ratio of the press to improve formability, and improves the fluidity of the granulated powder when it is fed to the press. This is to increase the Conventionally, methods for granulating ceramic raw material powder include a rolling method, a compression molding method, a spray dryer method, a crystallization method, and an injection method.

このうち、スプレードラィャ法が最も適しているといわ
れている。この方法は、水溶性バインダを均一に混合し
た仮競セラミック原料粉末のスラリを上部から頃務状に
噴射し、液滴が落下する間に乾燥と造粒を行うというも
のであり、大量生産によく用いられ、球状で流動性のよ
い団粒が得られやすいという利点があるとされている。
Among these, the spray dryer method is said to be the most suitable. In this method, a slurry of ceramic raw material powder uniformly mixed with a water-soluble binder is sprayed from above in a continuous manner, and the droplets are dried and granulated as they fall, making it suitable for mass production. It is often used and is said to have the advantage of easily producing spherical aggregates with good fluidity.

しかし、この方法にも、次のような弱点があると指摘さ
れている。
However, it has been pointed out that this method also has the following weaknesses.

1 瞬時乾燥に近いため、中空状の造粒粒子となってし
まい、高比重の高いものを得にくい。
1.Drying is almost instantaneous, resulting in hollow granulated particles, making it difficult to obtain particles with high specific gravity.

2 乾燥中の水分移動に伴ない、各粒子内の微粒子も水
分蒸発面へ移動し、粒子に偏析が発生する。
2. As moisture moves during drying, the fine particles within each particle also move toward the moisture evaporation surface, causing segregation in the particles.

3 スラリの水分乾燥には大きな熱エネルギーを要する
が、その割に処理能力が低い。
3. Drying the water in slurry requires a large amount of thermal energy, but the processing capacity is relatively low.

またスラリを蝿拝していても、乾燥原料の時系列が発生
しやすいo4 収率も悪く、また他の原料の造粒には不
純物などの混入という問題が生じるため、他のセラミッ
ク原料粉末の造粒に制約をうける。
In addition, even if slurry is used, the o4 yield is likely to be poor due to the chronology of dry raw materials, and the problem of contamination of impurities occurs when granulating other raw materials. Granulation is restricted.

したがって、この発明は上記した諸欠点を改善できる粉
末プレス成形用のセラミック原料粉末の造粒法を提供す
ることを目的とする。
Therefore, an object of the present invention is to provide a method for granulating ceramic raw material powder for powder press molding, which can improve the above-mentioned drawbacks.

また、この発明は中実で球状の粒子が得られるセラミッ
ク原料粉末の造粒法を提供することを目的とする。
Another object of the present invention is to provide a method for granulating ceramic raw material powder that yields solid, spherical particles.

また、この発明は乾式によるセラミック原料粉末の造粒
法を提供することを目的とする。
Another object of the present invention is to provide a dry method for granulating ceramic raw material powder.

すなわち、この発明の要旨とするところは、仮焼セラミ
ック原料粉末と、常温では結合力を持たず温度上昇によ
り溶融状態となるバィンダとを準備する工程と、仮競セ
ラミック原料を櫨拝することによって仮焼セラミック原
料粉末を発熱させる工程と、仮焼セラミック原料粉末と
バィンダを混合する工程と、発熱状態となっている仮焼
セラミック原料粉末とバィンダを接触させることにより
、バィンダを熔融させ、溶融しているバィンダにより仮
競セラミック原料粉末を造粒する工程とからなることを
特徴とするものである。
That is, the gist of the present invention is to prepare a calcined ceramic raw material powder and a binder that has no bonding force at room temperature and becomes molten when the temperature rises, and to prepare a calcined ceramic raw material powder by A step of generating heat in the calcined ceramic raw material powder, a step of mixing the calcined ceramic raw material powder and a binder, and a step of bringing the calcined ceramic raw material powder in a heat-generating state into contact with the binder melts the binder. This method is characterized by comprising a step of granulating a temporary ceramic raw material powder using a binder containing a powder.

仮競セラミック原料粉末としては、チタン酸バリウム系
、チタン酸ストロンチウム系などの譲霞体セラミック原
料粉末、チタン酸バリウム系半導体、チタン酸ストロン
チウム系半導体などの半導体セラミック原料粉料、ある
いはチタン酸ジルコン酸金6系などの圧電体セラミック
原料粉末などがある。
Examples of preliminary ceramic raw material powders include concessionary ceramic raw material powders such as barium titanate-based and strontium titanate-based powders, semiconductor ceramic raw material powders such as barium titanate-based semiconductors and strontium titanate-based semiconductors, or zirconate titanate-based powders. There are piezoelectric ceramic raw material powders such as gold 6 series.

また常温では結合力を持たず、温度上昇により溶融状態
となるバィンダとしては、ポリエチレン、ポリプロピレ
ン、パラフインワツクス、マイクロワックス、ビニル系
樹脂などがあり、これらの添加量としては10〜15重
量%が造粒に必要な量である。
In addition, binders that do not have binding strength at room temperature and become molten when the temperature rises include polyethylene, polypropylene, paraffin wax, microwax, and vinyl resins, and the amount of these added is 10 to 15% by weight. This is the amount necessary for granulation.

特に、この発明において重要な点は、仮焼セラミック原
料粉末とバインダを混合して造粒セラミック材料を得る
にあたって、バインダを加熱溶融させて溶融状態とし、
この状態でセラミック原料粉末を混合することにより、
均一な形状と大きさの造粒粒子を得るのである。
Particularly important in this invention is that when mixing the calcined ceramic raw material powder and the binder to obtain the granulated ceramic material, the binder is heated and melted to a molten state;
By mixing the ceramic raw material powder in this state,
Granulated particles with uniform shape and size are obtained.

具体的にはセラミック原料粉末を発熱させ、バインダと
接触させることにより、この発熱による熱を媒体として
バィンダを溶融状態とするのである。セラミック原料粉
末の発熱手段としては、セラミック原料粉末を高速で損
拝させ、このとき生じる摩擦熱により発熱させる。バイ
ンダを溶融させるには、あらかじめ仮暁セラミック原料
粉末と一緒に加えておき、縄梓混合を同時に進行させな
がら、セラミック原料粉末の発熱を促すことによって溶
融させるようにするか、あらかじめ蝿拝によってセラミ
ック原料粉末を発熱させておき、そののちにバィンダを
加えて混合するようにしてもよい。仮暁セラミック原料
粉末を造粒する手段としては、ミキサやプレンダなどの
混合機を用いるが、この混合機内部に回転軸を有し、こ
の軸に縄梓羽根を取り付けたもので、仮暁セラミック原
料粉末を発熱させるには蝿梓羽根の高速回転が必要とな
る。
Specifically, by causing the ceramic raw material powder to generate heat and bringing it into contact with the binder, the binder is melted using the heat generated as a medium. As a heating means for the ceramic raw material powder, the ceramic raw material powder is agitated at high speed, and the frictional heat generated at this time is used to generate heat. To melt the binder, you can add it in advance together with the ceramic raw material powder and melt it by promoting the heat generation of the ceramic raw material powder while simultaneously proceeding with rope mixing, or The raw material powder may be heated and then the binder may be added and mixed. A mixing machine such as a mixer or a blender is used as a means to granulate the raw material powder of Kakeiyo Ceramic.This mixer has a rotating shaft inside and a rope blade is attached to this shaft. In order to generate heat from the raw material powder, the fly azusa blades need to rotate at high speed.

このとき濃浮羽根の速度は周速20〜40m/secが
適当な値である。
At this time, a suitable value for the speed of the thick floating blade is a circumferential speed of 20 to 40 m/sec.

以下この発明を実施例にもとづいて詳細に説明する。The present invention will be described in detail below based on examples.

仮焼セラミック原料粉末として、チタン酸バリウム系の
誘電体磁器用のセラミック原料粉末を準備した。
A barium titanate-based ceramic raw material powder for dielectric ceramics was prepared as a calcined ceramic raw material powder.

このとき原料粉末の平均粒径は1.80山であった。次
いで、この原料粉末1.5【9を混合機に投入し、蝿洋
を行って原料粉末をバィンダの溶融温度まで発熱させた
。さらに、混合機の槽内に第1表に示す各種の粉末状ま
たは粒状のバィンダを添加し、縄梓混合を行って造粒ご
せた。得られた造粒粒子を冷却し、各粒子の粉体特性を
測定した。粉体特性としては、嵩比重、流下速度、平均
粒度、および粒子形状を測定した。第1表には高比重と
流下速度の測定結果も合わせて示した。なお、流下速度
は、口径9仇帆で投入口から吐出口までの全長が8仇奴
のロート管を用いて、試料30夕がこのロート管を通過
する時間を示したものである。この流下速度は粉末プレ
ス機に造粒セラミック原料粉末を供給する際の流動性を
判断する目安となり、流動性が良好であれば原料粉末の
供給がスムーズとなり、作業性の向上が図れることにな
る。なお、参考例としてスプレードラィャ法を用いて造
粒したセラミック原料粉末について、同様に粉体特性を
測定し、第1表にその測定結果を示した。
At this time, the average particle size of the raw material powder was 1.80 grains. Next, 1.5 [9] of this raw material powder was put into a mixer and heated to heat the raw material powder to the melting temperature of the binder. Furthermore, various powdered or granular binders shown in Table 1 were added to the tank of the mixer, and granulated by rope mixing. The obtained granulated particles were cooled, and the powder characteristics of each particle were measured. As powder characteristics, bulk specific gravity, flow rate, average particle size, and particle shape were measured. Table 1 also shows the measurement results of high specific gravity and flow rate. Note that the flow rate indicates the time it takes for 30 samples to pass through a funnel tube with a diameter of 9 mm and a total length of 8 mm from the input port to the discharge port. This flow rate is a guideline for determining the fluidity when feeding the granulated ceramic raw powder to the powder press machine.If the fluidity is good, the raw powder can be fed smoothly and workability can be improved. . As a reference example, the powder properties of ceramic raw material powder granulated using the spray dryer method were similarly measured, and the measurement results are shown in Table 1.

第1表 また、この発明方法により得られた造粒粒子の平均粒度
は150〜300メッシュであり、さらに粒子形状は中
実で球状に近いことが確認された。
Table 1 It was also confirmed that the average particle size of the granulated particles obtained by the method of this invention was 150 to 300 mesh, and that the particle shape was solid and nearly spherical.

上記したことから、この発明によるものはスプレー法に
くらべて高比重の値の大きなものが得られ、流下速度も
早いなど、各特性においてすぐれた結果を示している。
次いで得られた造粒済み仮焼セラミック原料粉末を用い
、成形、焼成を行い、各工程における状況を観察した。
From the above, the method according to the present invention shows superior results in various properties, such as higher specific gravity and faster flow rate than the spray method.
Next, the obtained granulated calcined ceramic raw material powder was molded and fired, and the conditions at each step were observed.

成形工程においては、5トンプレス機で成形比重を高め
られるところまで加圧し、その成形比重を測定した。そ
の結果、従来のスプレードラィヤ品では成形比重が3.
4で最高値を示したが、この発明によるものについては
(試料番号1〜4)、3.7にまで上げることができた
。また金型にはセラミック原料粉末の付着は生じなかっ
た。ここで、成形比重が従来のものに比べて高められた
のは、造粒により粒子表面に均一に被覆されたバインダ
が減摩剤の役割を果たし、加圧時に各粒子の移動を助け
ていることによると考えられる。
In the molding process, pressure was applied using a 5-ton press to a point where the molding specific gravity could be increased, and the molding specific gravity was measured. As a result, conventional spray dryer products have a molding specific gravity of 3.
The maximum value was 4, but for the products according to the present invention (sample numbers 1 to 4), it was possible to increase the value to 3.7. Furthermore, no ceramic raw powder was observed to adhere to the mold. The reason why the molding specific gravity is higher than that of conventional products is that the binder uniformly coated on the particle surface by granulation plays the role of an anti-friction agent, helping the movement of each particle when pressurized. This is thought to be possible.

これはバインダが熱可塑性樹脂やろう類などに基づくこ
と、バィンダ量がやや多いことが大いに関連性を有して
おり、従来の杉溶性/ゞィンダとは異なった挙動を示し
ている。さらに、成形体を空気中で1300oo、1時
間の条件で焼成し、暁結体の表面、および内部の空孔を
調べたところ、従来にくらべて減少させることができる
という結果を示した。
This is largely related to the fact that the binder is based on a thermoplastic resin or wax, and the amount of binder is somewhat large, and exhibits a behavior different from that of conventional cedar-soluble/binder. Furthermore, the molded body was fired in air at 1300 oo for 1 hour, and the surface and internal pores of the Akatsuki compact were examined, and the results showed that the number of pores could be reduced compared to the conventional method.

以上この発明の造粒法によれば、水を使用しないため、
工程が簡略化でき、またスプレードライャ法を用いたと
きのように、水分を除去するための加熱エネルギーも不
要になることから、省エネルギーにも寄与する。
As described above, according to the granulation method of the present invention, since water is not used,
The process can be simplified, and heating energy for removing moisture, unlike when using a spray dryer method, is not required, contributing to energy savings.

Claims (1)

【特許請求の範囲】 1 仮焼セラミツク原料粉末と、常温では結合力を持た
ず温度上昇により溶融状態となるバインダとを準備する
工程と、 仮焼セラミツク原料粉末を撹拌することによ
つて仮焼セラミツク原料粉末を発熱させる工程と、 仮
焼セラミツク原料粉末とバインダを混合する工程と、
発熱状態となつている仮焼セラミツク原料粉末とバイン
ダを接触させることにより、バインダを溶融させ、溶融
しているバインダにより仮焼セラミツク原料粉末を造粒
する工程と、 からなるセラミツク原料粉末の造粒法。 2 仮焼セラミツク原料粉末を発熱させる工程を経たの
ち混合工程を行うことを特徴とする特許請求の範囲第1
項記載のセラミツク原料粉末の造粒法。 3 仮焼セラミツク原料粉末を発熱させる工程と混合工
程を同時に進行させながら造粒する工程を行うことを特
徴とする特許請求の範囲第1項のセラミツク原料粉末の
造粒法。
[Claims] 1. A step of preparing calcined ceramic raw material powder and a binder that has no bonding strength at room temperature and becomes molten when the temperature rises, and calcination by stirring the calcined ceramic raw material powder. a step of generating heat in the ceramic raw material powder; a step of mixing the calcined ceramic raw material powder and a binder;
Granulation of ceramic raw material powder comprising the steps of: bringing the calcined ceramic raw material powder in an exothermic state into contact with the binder to melt the binder, and granulating the calcined ceramic raw material powder with the molten binder; Law. 2. Claim 1, characterized in that the mixing step is performed after the step of generating heat for the calcined ceramic raw material powder.
A method for granulating ceramic raw material powder as described in Section 1. 3. A method for granulating ceramic raw material powder according to claim 1, characterized in that the step of granulating the calcined ceramic raw material powder is carried out while the step of generating heat and the mixing step are performed simultaneously.
JP55068298A 1980-05-21 1980-05-21 Granulation method of ceramic raw material powder Expired JPS6030248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55068298A JPS6030248B2 (en) 1980-05-21 1980-05-21 Granulation method of ceramic raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55068298A JPS6030248B2 (en) 1980-05-21 1980-05-21 Granulation method of ceramic raw material powder

Publications (2)

Publication Number Publication Date
JPS56164812A JPS56164812A (en) 1981-12-18
JPS6030248B2 true JPS6030248B2 (en) 1985-07-15

Family

ID=13369729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55068298A Expired JPS6030248B2 (en) 1980-05-21 1980-05-21 Granulation method of ceramic raw material powder

Country Status (1)

Country Link
JP (1) JPS6030248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437464U (en) * 1990-07-24 1992-03-30

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223267A (en) * 1983-05-27 1984-12-15 ハリマセラミック株式会社 Nozzle refractories for molten metal vessel
JPH068201B2 (en) * 1986-03-29 1994-02-02 日本軽金属株式会社 Manufacturing method of raw material for ceramics molded body
JPH05208126A (en) * 1992-01-30 1993-08-20 Mitsui Eng & Shipbuild Co Ltd Production of piezoelectric ceramics fine spheres for piezoelectric elastomer
EP0699709B1 (en) * 1993-04-19 1999-06-16 Kabushiki Kaisha Meiji Gomu Kasei Method for manufacturing ultra-fine piezoelectric ceramic particles for piezoelectric elastomers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437464U (en) * 1990-07-24 1992-03-30

Also Published As

Publication number Publication date
JPS56164812A (en) 1981-12-18

Similar Documents

Publication Publication Date Title
KR101729054B1 (en) Alumina graula by spray-drying and manufacturing method thereof
CN87101837A (en) The method and apparatus of granulating and one-tenth granule product thereof
US4526734A (en) Process for the production of silicon carbide sintered bodies
US2976574A (en) Chemical process and product
CN101745972B (en) Manufacturing method of straight-bore ceramic filter and manufacturing system thereof
JPS6030248B2 (en) Granulation method of ceramic raw material powder
JPS6350311B2 (en)
JPH0159995B2 (en)
JP3182648B2 (en) Ceramic granules for molding a ceramic molded body, method for producing or treating the same, ceramic molded body and method for producing the same
JPS6367108A (en) Method and device for manufacturing fine ceramic material having high homogeneity and high fineness
JPH09278534A (en) Production of ceramic granule
JP4047956B2 (en) Method for forming silicon carbide powder
JP3839626B2 (en) Resin-containing wax spherical granules and method for producing the same, and ceramic molded body and method for producing the same
CN117965003B (en) 3D printing polylactic acid resin material and preparation process thereof
JP2002153941A (en) Resin coated sand composition for mold
JPH0364182B2 (en)
JPS6350313B2 (en)
JP3266204B2 (en) Manufacturing method of ceramic sphere
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation
JP2002128570A (en) Manufacture of granules for forming ceramics and equipment thereof, and granules, shaped compact and sintered compact
SU735608A1 (en) Method of producing mouldable materials
RU2496605C1 (en) Method of plasticiser feed and device to this end
KR20230081601A (en) Device for manufacturing magnesium oxide
JPS60151271A (en) Manufacture of ceramic product
JP2021030111A (en) Method for producing granule