JPH04100532A - Fluidizing compression granulator - Google Patents

Fluidizing compression granulator

Info

Publication number
JPH04100532A
JPH04100532A JP21502490A JP21502490A JPH04100532A JP H04100532 A JPH04100532 A JP H04100532A JP 21502490 A JP21502490 A JP 21502490A JP 21502490 A JP21502490 A JP 21502490A JP H04100532 A JPH04100532 A JP H04100532A
Authority
JP
Japan
Prior art keywords
valve
granulation
tank
granulation tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21502490A
Other languages
Japanese (ja)
Other versions
JP3019953B2 (en
Inventor
Kazuo Nishii
和夫 西井
Yoshihiro Ito
義弘 伊藤
Noboru Kawakami
川上 登
Shinji Moriya
守屋 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP2215024A priority Critical patent/JP3019953B2/en
Priority to DE90120963T priority patent/DE69004217T2/en
Priority to EP90120963A priority patent/EP0429881B1/en
Priority to US07/610,355 priority patent/US5124100A/en
Publication of JPH04100532A publication Critical patent/JPH04100532A/en
Application granted granted Critical
Publication of JP3019953B2 publication Critical patent/JP3019953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PURPOSE:To increase bonding strength to a large extent by compaction and to form a compacted granule while holding a spherical shape by providing the blower connected to the lower part of a granulation tank through the first valve, the suction apparatus connected to the lower part of a granulation bed through the second valve and the exhaust port formed to the upper part of the granulation tank. CONSTITUTION:When the first valve 4 is opened in such a state that the second valve 7 is closed, air flows as shown by an arrow A. The powder raw material 8 in the tank 1 is fluidized by said air and flocculated by the adhesion of the raw material itself and the adhesion imparted by the slight humidity or org. solvent vapor due to a temp. and humidity control apparatus 3. When the first valve 4 is closed and the second valve 7 is opened, air flows as shown by an arrow B. That is, the air in a granulation tank 1 is sucked in a tank 10 and compression granulation is carried out by this sucked air. By this method, the flocculated raw material is compacted to obtain a granule. In this granulation apparatus, the granulation tank 1 is held to positive pressure at the time of fluidization and the tank 10 is evacuated by a vacuum pump 11 and the granulation tank 1 is held to negative pressure at the time of compression.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、球形で微小粒径の粒体の造粒が可能な新規な
造粒方法を実施するための造粒装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a granulation device for carrying out a novel granulation method capable of granulating spherical particles with a minute particle size.

[従来の技術] 従来、球形粒子の得られる造粒方法はいくつか知られて
いる。
[Prior Art] Conventionally, several granulation methods for obtaining spherical particles are known.

その一つとして、回軸する多孔板上に原料粉体を投入し
、バインダーを加えなから粉粒体を転動させて造粒する
ものである。この造粒方法によれば球形の造粒物は得ら
れるが粒径は数ミリ、数十ミリであって、数ミリ以下の
粒径のものを得ることはむずかしい、又粒径の制御がむ
ずかしく、粒径にばらつきがある点も問題である。又水
分のコントロールが面倒である。
One method is to place raw material powder onto a rotating perforated plate, add a binder, and then roll the powder into granules. According to this granulation method, spherical granules can be obtained, but the particle size is several millimeters to several tens of millimeters, and it is difficult to obtain particles with a particle diameter of several millimeters or less, and it is difficult to control the particle size. Another problem is that the particle size varies. Also, controlling moisture is troublesome.

球形の造粒物が得られる他の造粒方法として噴霧造粒方
法が知られている。この造粒方法は、原料粉体を液体に
とかし更にバインダーを加えた上で噴霧する。これに熱
風を送ることによって噴霧状物を瞬時に液体を蒸発させ
て噴霧液の蒸発により残された粉体が球形の造粒物とし
て得られる。
A spray granulation method is known as another granulation method that produces spherical granules. In this granulation method, raw material powder is dissolved into a liquid, a binder is added thereto, and then the mixture is sprayed. By blowing hot air through this, the liquid in the sprayed material is instantaneously evaporated, and the powder left behind by the evaporation of the sprayed liquid is obtained as spherical granules.

この造粒方法によれば、数十ミクロンから、数百ミクロ
ンの球形粒子が得られるが、そのほとんどが中空のもの
である。又スラリーの調整が必要であり、装置が大型で
あり、少量、多品種生産には向かない。
According to this granulation method, spherical particles from several tens of microns to several hundred microns are obtained, but most of them are hollow. In addition, the slurry needs to be adjusted and the equipment is large, making it unsuitable for small-lot, high-mix production.

以上のほかに流動層造粒方法、撹拌造粒方法等各種の造
粒方法が知られているが、球形粒子を得ることか難しい
In addition to the above, various granulation methods such as fluidized bed granulation and agitation granulation are known, but it is difficult to obtain spherical particles.

また球形の造粒物を形成する方法として押出造粒機によ
って円柱状の造粒物を形成し、これを球形整粒機にかけ
ることによっても球形粒子を得ることが出来る。しかし
微小粒径の造粒物が得られない等の転勤造粒と同様の問
題点を有している。
Further, as a method for forming spherical granules, spherical particles can also be obtained by forming cylindrical granules using an extrusion granulator and subjecting the cylindrical granules to a spherical granulator. However, it has the same problems as transfer granulation, such as the inability to obtain granules with minute particle sizes.

以上述べたように、従来の造粒方法では、いずれの方法
によっても粒径が0.1 ミリ−1ミリの範囲の球形の
造粒物は得られなかった。しかも粒径のばらつきが多く
ほぼ一定の粒径のものを造粒することが比較的困難であ
り、したがって粒径の揃った粒子を得ようとする場合は
、収率が低い等の問題点を有していた。
As described above, in all conventional granulation methods, spherical granules with particle diameters in the range of 0.1 mm to 1 mm cannot be obtained. Moreover, there are many variations in particle size, making it relatively difficult to granulate particles with a nearly constant size. Therefore, when trying to obtain particles with uniform particle sizes, problems such as low yields occur. had.

本発明の発明者は、従来のいずれの造粒方法にても得ら
れなかった球形でしかも粒径が0.1 ミリ−1ミリの
範囲を含む広い範囲の粒子の造粒が可能で更に粒径のば
らつきの少ない造粒方法を開発した。
The inventor of the present invention has discovered that it is possible to granulate particles with a wide range of spherical shapes and particle diameters ranging from 0.1 mm to 1 mm, which could not be obtained by any conventional granulation method. We have developed a granulation method with less variation in diameter.

その造粒方法は、原料粉体に圧力を加えることによって
凝集エネルギーを与え、付着強度の強い凝集物とし、例
えば流動層法、撹拌流動法、振動流動法を用いて球形で
微小粒径の造粒物を形成するようにしたものである。即
ち流動層造粒方法等の従来の造粒方法の基本に圧縮造粒
方法をプラスした造粒方法で流動圧縮造粒方法と言うべ
きものである。
The granulation method applies cohesive energy to the raw material powder by applying pressure to form aggregates with strong adhesive strength, and uses, for example, the fluidized bed method, agitated flow method, or oscillating flow method to produce spherical and minute particles. It is designed to form granules. That is, it is a granulation method that adds a compression granulation method to the basics of conventional granulation methods such as a fluidized bed granulation method, and can be called a fluidized compression granulation method.

この造粒方法においては、はぼ乾燥状態にての造粒が可
能であって、例えば原材料が付着力を有するものの場合
、乾燥状態において、圧縮を行なって凝集物を形成し、
流動層法等によって球形で圧密度の高い造粒物を形成し
得る。又付着力が弱いか又は付着力のない原材料を用い
る場合、かすかに湿気又は有機溶剤蒸気(例えばアルコ
ール蒸気)を与えた状態にて同様に造粒物を形成し得る
In this granulation method, granulation is possible in a dry state; for example, if the raw material has adhesive strength, compression is performed in a dry state to form an aggregate,
Spherical and highly compacted granules can be formed by a fluidized bed method or the like. Furthermore, when using raw materials with weak or non-adhesive strength, granules can be similarly formed in the presence of a slight amount of moisture or organic solvent vapor (for example, alcohol vapor).

この造粒方法は、例えば流動層装置内において装置内の
ガス圧を上昇せしめて原材料に圧力を加えて圧縮を行な
うことによる凝集物の形成と所定時間後に気流の方向を
逆転せしめることにより流動化を行ない、球形造粒物の
形成を同一装置内にて同時に行なうものである。又この
方法によって圧縮による凝集物の形成と流動による造粒
を繰り返し行なう場合にも便利である。つまり本発明に
おいては圧縮による凝集物の形成と流動による造粒の組
合せを別の装置により行なう手段と同一装置にて気流の
方向の切換えなどによる方法とが可能である。そして前
者では、圧縮作用をより効果的に行なう利点を有し、逆
に後者においては、装置の共通化、時間の短縮等のメリ
ットを有しており、流動層法等と圧縮を繰返し行なう場
合は、特に効果的である。
This granulation method involves, for example, forming aggregates in a fluidized bed device by increasing the gas pressure in the device and applying pressure to the raw material to compress it, and then fluidizing it by reversing the direction of the air flow after a predetermined period of time. This method simultaneously forms spherical granules in the same device. This method is also convenient when the formation of aggregates by compression and granulation by flow are repeated. That is, in the present invention, it is possible to combine the formation of aggregates by compression and granulation by flow using separate devices, or by changing the direction of air flow in the same device. The former has the advantage of performing the compression action more effectively, while the latter has the advantage of sharing equipment and shortening the time. is particularly effective.

この造粒方法で使用するガスとしては、空気のほか窒素
等の不活性ガスが好ましい。
The gas used in this granulation method is preferably air or an inert gas such as nitrogen.

更にこの方法の原理について理論的に説明する。Furthermore, the principle of this method will be explained theoretically.

自足造粒過程において、造粒物は、凝集エネルギーと分
散エネルギーがバランスした粒径に凝集と分散を繰り返
しながら形成されて行く。
In the self-sufficient granulation process, granules are formed by repeating agglomeration and dispersion to a particle size with a balance between cohesive energy and dispersion energy.

ここでルンブの式を用いると次のように表わせる。Here, using Lumbu's equation, it can be expressed as follows.

O=(]−ε)/π ・ K ・Had2この式で、a
は等球粒子をランダムに充填した粉体層の引張応力、ε
は空隙率、Kは配位数、Hは接触7点における平均付着
力、dは原料の粒径である。分散エネルギーが0以上で
あれば凝集はこわれ、O以下であればさらに凝集する。
O=(]-ε)/π ・K ・Had2 In this formula, a
is the tensile stress of a powder bed randomly packed with equal spherical particles, ε
is the porosity, K is the coordination number, H is the average adhesion force at seven points of contact, and d is the particle size of the raw material. If the dispersion energy is 0 or more, the aggregation will be broken, and if the dispersion energy is 0 or less, the aggregation will continue.

今、容器に原料粉体を投入し、下部より流動化空気を供
給すれば、周知のように流動層が形成される。この時適
当な流動化状態を保つと流動転動作用によって付着力の
大きい粉体の場合、造粒が行なわれる。この造粒物(凝
集物)は、流動化状態を停止しても粉体と分離されてい
て、付着力が働かないため収率が悪い、又造粒物の強度
は弱く崩れやすい。
Now, if raw material powder is put into a container and fluidizing air is supplied from the bottom, a fluidized bed will be formed as is well known. At this time, if a suitable fluidized state is maintained, granulation is carried out in the case of powder with strong adhesive force due to the fluid rolling action. The granules (agglomerates) remain separated from the powder even after the fluidization state is stopped, and the yield is poor because no adhesive force is exerted, and the strength of the granules is weak and easily crumbles.

ここで逆圧をかけることによって、流量化状態が停止さ
れ、凝集物に圧力が加わり、凝集物を圧密化する。また
これによって粉体が凝集物に付着し、均一化が行なわれ
る。
By applying a counter pressure here, the flow state is stopped and pressure is applied to the agglomerates, thereby consolidating the agglomerates. This also causes the powder to adhere to the aggregates and homogenize them.

即ち粉体原料の流動によって分散エネルギー及び球形化
エネルギーが与えられ、原料自身の付着力又付着力のな
い原料の場合僅かに湿気又は有機溶剤蒸気を与えること
による付着力によって球形の凝集物が形成され、更に圧
力を加えることにより凝集エネルギーが付加されて圧密
化された粉体が得られる。しかも従来の造粒方法では得
られなかった、Olミリから1ミリの粒径のものを含め
て広い範囲の粒径の造粒物が高い収率で得られることを
特徴とするものである。
In other words, dispersion energy and spheroidization energy are imparted by the flow of the powder raw material, and spherical aggregates are formed by the adhesive force of the raw material itself or, in the case of raw materials without adhesive force, by the adhesive force due to the application of a slight amount of moisture or organic solvent vapor. By applying further pressure, cohesive energy is added and a compacted powder is obtained. Moreover, it is characterized in that granules having a wide range of particle sizes, including particle sizes from 1 mm to 1 mm, which cannot be obtained by conventional granulation methods, can be obtained at a high yield.

一般に流動層造粒方法等においては、バインダーが用い
られ、粒子表面上のバインダーに粉体が付着することに
よって凝集物が形成される。そのために粉体が球状に均
一に付着して行くことがなくしたがって不定形で嵩密度
の低い流体しか得られない。
Generally, in a fluidized bed granulation method, etc., a binder is used, and aggregates are formed by adhering the powder to the binder on the particle surface. Therefore, the powder does not adhere uniformly in a spherical shape, and therefore only a fluid with an amorphous shape and a low bulk density is obtained.

この方法では、前述のように乾燥状態又は僅かに水分又
は有機溶剤蒸気を含む雰囲気中で凝集物が形成されるた
め出来る凝集物はほぼ球形である。しかし形成される凝
集物はほぼ原料粉体自身のもつ付着力にて付着している
ため、このままでは破壊されやすい、前述のようにこれ
に圧力を加えることによって圧密化され付着強度を大幅
に増大せしめ、球形を保ったまま圧密の粒体を形成する
ようにしたものである。
In this method, as described above, the aggregates are formed in a dry state or in an atmosphere containing a small amount of moisture or organic solvent vapor, so that the resulting aggregates are approximately spherical. However, since the formed aggregates are mostly attached by the adhesive force of the raw material powder itself, they are easily destroyed if left as is.As mentioned above, applying pressure to the aggregates consolidates them, greatly increasing the adhesive strength. It is made to form compacted particles while maintaining its spherical shape.

し発明が解決しようとする課題] 本発明は前記のような流動圧縮造粒方法を実現するため
の装置であって構造が簡単でありその特性を十分発揮し
得る造粒装置を提供するものである。
[Problems to be Solved by the Invention] The present invention provides a device for realizing the fluidized compression granulation method as described above, which has a simple structure and can fully demonstrate its characteristics. be.

1課題を解決するための手段] 本発明の流動圧縮造粒装置は、造粒槽下部に第1の弁を
介して接続する送風機と、造粒層下部に第2の弁を介し
て接続する吸引装置と、造粒槽上記に設けた排気口とを
備えたもので、前記第1の弁を開き又第2の弁を閉じる
ことにより送風機よりのエアーにより流動化し、次の第
1の弁を閉じ第2の弁を開くことによって吸引して槽内
の粉粒体に圧力を加えることによって造粒する。
1. Means for Solving the Problem] The fluidized compression granulation device of the present invention includes a blower connected to the lower part of the granulation tank via a first valve, and a blower connected to the lower part of the granulation layer via a second valve. It is equipped with a suction device and an exhaust port provided above the granulation tank, and when the first valve is opened and the second valve is closed, the air from the blower is used to fluidize the granulation tank. By closing the tank and opening the second valve, suction is applied to the powder and granules in the tank to granulate them.

又前記吸引装置の代りに第2の弁を介して槽上部に接続
する送風機を設け、下部よりの吸引に加えて上部よりの
送風により粉粒体に圧力を加えて流動化と加圧による造
粒を行なうようにする等の変形例がある。
Moreover, instead of the suction device, a blower connected to the top of the tank via a second valve is installed, and in addition to suction from the bottom, air is blown from the top to apply pressure to the powder and granules, resulting in fluidization and formation by pressurization. There are other variations, such as using grains.

[実施例] 次に本発明の乾式流動圧縮造粒装置の各実施例を示す。[Example] Next, examples of the dry fluidized compression granulation apparatus of the present invention will be shown.

第1図は本発明の第1の実施例の構成を示す図で、lは
造粒槽、2は送風機、3は調温調湿装置、4は第1の弁
、5はタンク、6は真空ポンプ、7は第2の弁、8は網
9上に投入されている原料である。
FIG. 1 is a diagram showing the configuration of the first embodiment of the present invention, where l is a granulation tank, 2 is a blower, 3 is a temperature and humidity control device, 4 is a first valve, 5 is a tank, and 6 is a A vacuum pump, 7 a second valve, and 8 a raw material fed onto a net 9.

この構成で第2の弁7は閉じたまま第1の弁を開くこと
によってエアーは矢印Aのように流れる。これによって
槽内の粉体原料7は流動化され前述のように原料自身の
付着力によって又は調度調温装置による僅かに湿気又は
有機瀉剤蒸気が与えられての付着による凝集物の形成が
行なわれる1次に第1の弁4を閉め第2の弁7を開くと
矢印Bのように流れる。つまり造粒槽l内の気体はタン
ク10内に吸引されこれによって前述の圧縮造粒が行な
われる。これによって凝集物が圧密化され粒体が得られ
る。又この操作は繰返し行なってもよい。
With this configuration, air flows in the direction of arrow A by opening the first valve while keeping the second valve 7 closed. As a result, the powder raw material 7 in the tank is fluidized, and as mentioned above, aggregates are formed by the adhesive force of the raw material itself or by the adhesion of a slight amount of moisture or organic diaphragm vapor provided by the temperature control device. First, when the first valve 4 is closed and the second valve 7 is opened, the fluid flows as shown by arrow B. That is, the gas in the granulation tank 1 is sucked into the tank 10, thereby performing the compression granulation described above. This compacts the agglomerates and yields granules. Also, this operation may be repeated.

この実施例の造粒装置では、造粒槽l内は流動時プラス
圧に保たれ、又真空ポンプ11によりタンク10内は真
空になっており、圧縮時造粒槽内はマイナス圧となる。
In the granulating apparatus of this embodiment, the inside of the granulating tank 1 is maintained at a positive pressure during fluidization, and the inside of the tank 10 is made vacuum by the vacuum pump 11, and the inside of the granulating tank 1 is under negative pressure during compression.

この実施例において破線にて示す流路を設はクローズに
しN、ガス等を用いるようにしてもよい。
In this embodiment, the flow path indicated by the broken line may be closed and N, gas, etc. may be used.

第2図は、第2の実施例を示す図で、造粒槽l、送風e
!2、調温調温装置3、第1の弁4゜10、第2の弁7
.11より構成されている。この実施例では造粒槽1内
は常時プラス圧である。
FIG. 2 is a diagram showing the second embodiment, in which the granulation tank l, the air blower e
! 2, temperature control temperature control device 3, first valve 4゜10, second valve 7
.. It is composed of 11. In this embodiment, the inside of the granulation tank 1 is always under positive pressure.

この実施例では、第1の弁4.lOを開くことにより、
気体は矢印Aの通り流れ造粒槽l内の粉体原料は流動化
され実施例1と同様に凝集物が形成される。続いて第1
の弁4.10を閉じ第2の弁7.11を開くと気体は矢
印Bの方向に流れ圧縮造粒が行なわれる。この実施例も
破線のように流路を接続すればクローズドにすることが
出来る。
In this embodiment, the first valve 4. By opening lO,
The gas flows in the direction of arrow A, and the powder raw material in the granulation tank 1 is fluidized to form aggregates in the same manner as in Example 1. Then the first
When the second valve 4.10 is closed and the second valve 7.11 is opened, the gas flows in the direction of arrow B and compression granulation is performed. This embodiment can also be made closed by connecting the channels as shown by broken lines.

第3図は第3の実施例を示す図である。この実施例は、
造粒槽l内は常時マイナス圧で、第1の弁4.10を開
くと気体は矢印Aのように流れ造粒槽l内の粉体原料は
流動化され凝集物が形成され、この第1の弁4.10を
閉じ第2の弁7゜11を開き気体は矢印Bのように流し
圧縮造粒が行なわれる。
FIG. 3 is a diagram showing a third embodiment. This example is
The inside of the granulation tank 1 is always under negative pressure, and when the first valve 4.10 is opened, the gas flows as shown by arrow A, and the powder raw material in the granulation tank 1 is fluidized and aggregates are formed. The first valve 4.10 is closed and the second valve 7.11 is opened to allow gas to flow in the direction of arrow B, thereby performing compression granulation.

この実施例も図面に破線にて示すように流路を接続する
ことによってクローズにすることが出来る。
This embodiment can also be closed by connecting the channels as shown by broken lines in the drawings.

第4区は、本発明の造粒装置の第4の実施例を示すもの
で、構成を極めて簡単なものにした実施例である。
The fourth section shows a fourth embodiment of the granulation device of the present invention, and is an embodiment in which the configuration is extremely simple.

この第4図において、■は造粒槽、3は調温調湿装置、
12は排風機、14はコンプレッサー15は比較的容量
の大きいタンク、16は切換え弁である。
In this Figure 4, ■ is a granulation tank, 3 is a temperature and humidity control device,
12 is an exhaust fan, 14 is a compressor 15, which is a relatively large capacity tank, and 16 is a switching valve.

このような装置において、弁16を閉じ排風機12を働
かせると、排風機12により造粒槽1内の空気は槽外に
排出され槽内の圧力はマイナスになる、これによって大
気が調温調温装M3を通り所望の温度、湿度に調整され
た上で槽1の下部より槽内へ送り込まれる。このエアー
によって槽内に投入されている原料粉体8は流動化され
る。
In such a device, when the valve 16 is closed and the exhaust fan 12 is operated, the air inside the granulation tank 1 is discharged to the outside of the tank by the exhaust fan 12, and the pressure inside the tank becomes negative, thereby controlling the temperature of the atmosphere. After passing through the heating device M3 and adjusting the desired temperature and humidity, it is sent into the tank from the lower part of the tank 1. The raw material powder 8 put into the tank is fluidized by this air.

定時間例えば数秒間流動化の複弁16を開けば、タンク
15のエアーは槽内へ送り込まれる。ここでタンク15
は比較的大容量であるので一度に大容量のエアーが送り
込まれるため槽1内は圧力がプラスになり、しかも一定
の高い圧力になり、原料7には圧力が加えられる。
When the multiple fluidization valve 16 is opened for a fixed period of time, for example, several seconds, the air in the tank 15 is sent into the tank. tank 15 here
Since the tank 1 has a relatively large capacity, a large volume of air is sent in at once, so that the pressure inside the tank 1 becomes positive and becomes a constant high pressure, and pressure is applied to the raw material 7.

このようにして流動化と圧縮とが行なわれ、前述の流動
圧縮造粒が行なわれる。必要に応じ又必要回数前記の操
作を繰返すことにより流動化と圧縮とが繰返され、所望
の造粒物が得られる。
Fluidization and compression are performed in this manner, and the aforementioned fluidized compression granulation is performed. By repeating the above-mentioned operation as many times as necessary, fluidization and compression are repeated to obtain a desired granulated product.

ここでタンク15の容量は、一定の圧力を加えるために
比較的大容量にする必要があり、造粒槽lの大きさ、投
入される原料の量等によって決められる。又第4図には
バグフィルタ−17が示しであるが、バグフィルタ−は
用いなくともよい。
Here, the capacity of the tank 15 needs to be relatively large in order to apply a constant pressure, and is determined by the size of the granulation tank 1, the amount of raw material to be input, etc. Although a bag filter 17 is shown in FIG. 4, the bag filter may not be used.

特に造粒層の高さを大にすればバグフィルタ−を用いな
くとも全く支障がない、又バグフィルタ−の代りにサイ
クロンを用いてもよい、このように、バグフィルタ−を
用いない場合、エアーが直接原料に加えられるので圧縮
の効率が良くなる。
In particular, if the height of the granulation layer is increased, there is no problem even without using a bag filter, and a cyclone may be used instead of a bag filter.In this way, when a bag filter is not used, Compression efficiency is improved because air is added directly to the raw material.

第5図は本発明の第5の実施例を示す図である。この第
5図においで、■は造粒槽、18はブロア、3は調温調
湿装置、4は第1の弁、14はコンプレッサー、15は
大容量のタンク、16は第2の弁である。又19は弁、
20はバイブグリ・リドで例えばこれを上方よりみた第
6図のようなバイブの配置になっている。21はサイク
ロンである。
FIG. 5 is a diagram showing a fifth embodiment of the present invention. In this Figure 5, ■ is a granulation tank, 18 is a blower, 3 is a temperature and humidity control device, 4 is a first valve, 14 is a compressor, 15 is a large capacity tank, and 16 is a second valve. be. Also, 19 is a valve,
20 is a vibrator/lid whose vibrator is arranged as shown in FIG. 6 when viewed from above. 21 is a cyclone.

この実施例では、フロア18よりのエアーは調温調湿装
置を通りパイプグリッド20へ供給されこれより下方に
向は送り出される。このパイプグリッド20よりのエア
ーは、下方への流れと共に曲面上の槽1の底1aにより
反射して上方へ流れる。これらの流れにより投入されて
いる原料粉体8は流動化され凝集物を形成する。又第1
の弁4を閉じ第2の弁16を開けばタンク15より大量
のエアーが槽内へ送り込まれ槽内の圧力は高められ圧縮
造粒が行なわれる。
In this embodiment, air from the floor 18 passes through a temperature and humidity control device and is supplied to a pipe grid 20 from which it is sent downward. The air from the pipe grid 20 flows downward, is reflected by the curved bottom 1a of the tank 1, and flows upward. The raw material powder 8 being introduced is fluidized by these flows and forms an aggregate. Also the first
When the second valve 4 is closed and the second valve 16 is opened, a large amount of air is sent into the tank from the tank 15, the pressure inside the tank is increased, and compression granulation is performed.

この第5の実施例は、他の実施例のように網9を用いる
ことがな(、文種lの底よりエアーを送り込んだり又吸
引したりする必要がないため底laが極めて単純な形状
になし得るので底1aの強度を大にすることが出来る。
This fifth embodiment does not use the net 9 as in the other embodiments (and because it is not necessary to feed or suction air from the bottom of the pattern l, the bottom la has an extremely simple shape). Therefore, the strength of the sole 1a can be increased.

しがたって原料により大きな圧力を加えることが出来る
。そのため自己吸着力の極めて弱い原料の造粒も可能に
なる。このように圧力を高くすることが可能であるため
、タンク5は一層大容量であることが望ましい。
Therefore, greater pressure can be applied to the raw material. Therefore, it becomes possible to granulate raw materials with extremely weak self-adsorption power. Since it is possible to increase the pressure in this way, it is desirable that the tank 5 has a larger capacity.

尚パイプグリッドは、原料が投入された時にその内部に
位置するような場所に置かれるので、原料の流動化や加
圧にあまり邪魔にならない構造にすることが好ましい、
又槽底面の形状と合わせて流動化が行なわれやすい構造
とすることが良い。
In addition, since the pipe grid is placed in a place where it will be located inside the pipe grid when the raw material is introduced, it is preferable to have a structure that does not interfere with the fluidization and pressurization of the raw material.
In addition, it is preferable to have a structure that facilitates fluidization in conjunction with the shape of the bottom of the tank.

以上述べた各実施例において更に第7図に示すように造
粒槽中に解砕羽根を設けることも可能である。これによ
って流動圧縮造粒中に大きな塊状物を生した際にこれを
破砕i−で所望の径の1応粒物にすることが可能になる
In each of the embodiments described above, it is also possible to further provide a crushing blade in the granulation tank as shown in FIG. As a result, when large lumps are produced during fluidized compression granulation, it becomes possible to crush them into single-size granules with a desired diameter.

又第8図のような振動装置を加えることにより、振動に
よる流動化やその他の作用を付カロすることが可能にな
る。
Furthermore, by adding a vibrating device as shown in FIG. 8, it becomes possible to add fluidization and other effects due to vibration.

[発明の効果1 本発明の装置は、極めて簡筆な構成で流動化と圧縮とを
行なうことが出来、それによって明細書にて説明したよ
うな新規な造粒方法を実現出来、球形で微小粒径の造粒
物を形成することが出来る。
[Effect of the invention 1] The device of the present invention can perform fluidization and compression with an extremely simple configuration, thereby realizing a novel granulation method as explained in the specification, and making it possible to produce spherical and fine particles. It is possible to form granules with a particle size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は夫々本発明の第1乃至第5の実施例
の構成を示す図、第6図(A+、(B)は夫々第5の実
施例で用いるパイプグリッドの平面図及チューブの断面
図、第7図は本発明装置に解砕羽根を設けた構成を示す
概略図、第8区は本発明装置に振動装置を付加した構成
の概略図であるI・・・造粒槽、2・・−送風機、3・
・・調温調心装置、4 。 ■ 0・・・第1の弁 5・・・タンク、 6・・・真空ポン プ、 1・・・第2の弁。 8・・・原料
1 to 5 are diagrams showing the configurations of the first to fifth embodiments of the present invention, respectively, and FIGS. A cross-sectional view of the tube, FIG. 7 is a schematic diagram showing a configuration in which the device of the present invention is provided with crushing blades, and Section 8 is a schematic diagram of a configuration in which a vibration device is added to the device of the present invention. Tank, 2...-Blower, 3.
...Temperature control device, 4. ■ 0...First valve 5...Tank, 6...Vacuum pump, 1...Second valve. 8...Raw materials

Claims (9)

【特許請求の範囲】[Claims] (1)造粒槽と、造粒槽上部に設けられた排気口と、調
温調湿装置および第1の弁を介して造粒槽下部に接続さ
れる送風機と、調温調湿装置と第1の弁の間に分岐する
第2の弁を介しての排気口と、前記第2の弁とは異なる
他の第2の弁を介して造粒槽下部に接続する真空ポンプ
およびタンクとを備え、第1の弁を開くことにより送風
機による造粒槽下部よりエアーを流入して原料を流動化
し、又第1の弁を閉じ二つの第2の弁を開くことによっ
て前記タンクへの吸引による上部よりの逆流により原料
に加圧するようにした流動圧縮造粒装置。
(1) A granulation tank, an exhaust port provided at the top of the granulation tank, a temperature and humidity control device, a blower connected to the bottom of the granulation tank via a first valve, and a temperature and humidity control device. an exhaust port through a second valve that branches between the first valves, and a vacuum pump and tank connected to the lower part of the granulation tank through a second valve different from the second valve; By opening the first valve, air is introduced from the bottom of the granulation tank by a blower to fluidize the raw material, and by closing the first valve and opening the two second valves, air is sucked into the tank. This is a fluidized compression granulation device that pressurizes the raw material through reverse flow from the top.
(2)造粒槽と、造粒槽上部に接続する第1の弁を介し
て設けられた排気口と、調温調湿装置および他の第1の
弁を介して造粒槽下部に接続される送風機と、第2の弁
を介して前記送風機と造粒槽上部とを接続する流路と、
造粒槽下部より他の第2の弁を介して排気する排気口と
を備え二つの第1の弁を開くことにより送風機よりのエ
アーを造粒槽へ送ることにより原料を流動化し、二つの
第1の弁を閉じ二つの第2の弁を開くことによって前記
送風機によるエアーを前記流路を通し造粒槽上部より逆
流して原料を加圧するようにした流動圧縮造粒装置。
(2) A granulation tank, an exhaust port provided through a first valve connected to the upper part of the granulation tank, and connected to the lower part of the granulation tank through a temperature and humidity control device and another first valve. a flow path connecting the blower and the upper part of the granulation tank via a second valve;
The granulation tank is equipped with an exhaust port that exhausts air from the bottom of the granulation tank via another second valve, and by opening the two first valves, the air from the blower is sent to the granulation tank to fluidize the raw material. A fluid compression granulation device in which the air from the blower flows back through the flow path from the upper part of the granulation tank to pressurize the raw material by closing a first valve and opening two second valves.
(3)造粒槽と、造粒槽上部より第1の弁を通して排気
する排風機と、他の第1の弁を通して造粒槽下部よりエ
アーを流入する流入口と、造粒槽下部と前記排風機とを
第2の弁を介して接続する流路と、造粒槽上部に他の第
2の弁を介して接続する流入口とを備え、二つの第1の
弁を開くことにより排風機により排気して造粒槽下部よ
りエアーを流入して原料を流動化し、第1の弁を閉じ二
つの第2の弁を開いて前記排風機により前記流路を通し
て造粒槽下部より吸引し上部よりエアーを逆流して原料
を圧縮するようにした流動圧縮造粒装置。
(3) A granulation tank, an exhaust fan that exhausts air from the top of the granulation tank through a first valve, an inlet that lets air flow in from the bottom of the granulation tank through another first valve, a bottom part of the granulation tank and the It is equipped with a flow path that connects to the exhaust fan through a second valve, and an inlet that connects to the upper part of the granulation tank through another second valve. The raw material is evacuated by a wind fan and air is introduced from the bottom of the granulation tank to fluidize the raw material.The first valve is closed, the two second valves are opened, and the exhaust fan is used to suck air from the bottom of the granulation tank through the flow path. A fluidized compression granulation device that compresses raw materials by flowing air backwards from the top.
(4)造粒槽と、造粒槽の下部に接続する調温調湿装置
を通してエアーを流入する流入口と、造粒槽の上部に接
続する排風機と、造粒槽上部に弁を介して接続されたコ
ンプレッサーを有する比較的大容量のタンクを備え、前
記排風機により排気吸引することにより前記調温調湿装
置を通してのエアーにより原料を流動化し、次に前記弁
を開いて前記の大容量のタンクより造粒槽へエアーを逆
流させ原料に圧力を加えることを特徴とする流動圧縮造
粒装置。
(4) A granulation tank, an inlet for introducing air through a temperature and humidity control device connected to the bottom of the granulation tank, an exhaust fan connected to the top of the granulation tank, and a valve connected to the top of the granulation tank. The raw material is fluidized by the air passing through the temperature and humidity control device by suctioning the exhaust air by the exhaust fan, and then the valve is opened to A fluidized compression granulation device characterized by applying pressure to the raw material by backflowing air from a large capacity tank to a granulation tank.
(5)送風機と真空ポンプと第1、第2の流入口とを流
路により接続して閉じた系を構成するようにした請求項
(1)の流動圧縮造粒装置。
(5) The fluid compression granulation apparatus according to claim (1), wherein the blower, the vacuum pump, and the first and second inlets are connected by a flow path to form a closed system.
(6)送風機と第1、第2の排気口と流入口とを接続し
て閉じた系とした請求項(2)の流動圧縮造粒装置。
(6) The fluid compression granulation apparatus according to claim (2), wherein the blower, the first and second exhaust ports, and the inlet are connected to form a closed system.
(7)排風機と流入口および排気口とを接続して閉じた
系とした請求項(3)の流動圧縮造粒装置。
(7) The fluidized compression granulation apparatus according to claim (3), wherein the exhaust fan is connected to the inflow port and the exhaust port to form a closed system.
(8)造粒槽と、造粒槽の側壁より挿入配置されたパイ
プグリッドと、前記パイプグリッドに第1の弁を介して
接続されるブロアと、造粒槽上部に第2の弁を介して接
続されるコンプレッサーおよび大容量のタンクとを備え
、第1の弁を開くことによりブロアよりのエアーをパイ
プグリッドより流出することにより原料を流動化させ、
第1の弁を閉じ第2の弁を開いてタンクよりエアーを造
粒槽内に送り込んで原料を圧縮するようにした流動圧縮
造粒装置。
(8) A granulation tank, a pipe grid inserted from the side wall of the granulation tank, a blower connected to the pipe grid via a first valve, and a second valve connected to the top of the granulation tank. The first valve is equipped with a compressor and a large-capacity tank connected to the pipe grid, and when the first valve is opened, the air from the blower flows out from the pipe grid, thereby fluidizing the raw material.
A fluidized compression granulation device in which a first valve is closed and a second valve is opened to send air from a tank into a granulation tank to compress raw materials.
(9)前記造粒槽内の粉粒体に振動を与えるための振動
装置を備えた特許請求の範囲(1)、(2)、(3)、
(4)、(5)、(6)、(7)又は(8)の流動圧縮
造粒装置。
(9) Claims (1), (2), (3) comprising a vibration device for applying vibration to the powder and granular material in the granulation tank,
(4), (5), (6), (7) or (8) fluid compression granulation device.
JP2215024A 1989-11-17 1990-08-16 Fluid compression granulator Expired - Lifetime JP3019953B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2215024A JP3019953B2 (en) 1990-08-16 1990-08-16 Fluid compression granulator
DE90120963T DE69004217T2 (en) 1989-11-17 1990-11-01 Dry granulation method and apparatus.
EP90120963A EP0429881B1 (en) 1989-11-17 1990-11-01 Dry granulating method and apparatus
US07/610,355 US5124100A (en) 1989-11-17 1990-11-07 Dry granulating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215024A JP3019953B2 (en) 1990-08-16 1990-08-16 Fluid compression granulator

Publications (2)

Publication Number Publication Date
JPH04100532A true JPH04100532A (en) 1992-04-02
JP3019953B2 JP3019953B2 (en) 2000-03-15

Family

ID=16665480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215024A Expired - Lifetime JP3019953B2 (en) 1989-11-17 1990-08-16 Fluid compression granulator

Country Status (1)

Country Link
JP (1) JP3019953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622010B2 (en) 2001-11-28 2009-11-24 Hitachi Metals, Ltd. Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089212B2 (en) * 2001-11-28 2008-05-28 日立金属株式会社 Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622010B2 (en) 2001-11-28 2009-11-24 Hitachi Metals, Ltd. Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact
US7931756B2 (en) 2001-11-28 2011-04-26 Hitachi Metals, Ltd. Method and machine of making rare-earth alloy granulated powder and method of making rare-earth alloy sintered body

Also Published As

Publication number Publication date
JP3019953B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
EP0855232B1 (en) Process for classifying particulate hydrophilic polymer and sieving device
CN100509100C (en) Spray drying & granulating method and apparatus
US5124100A (en) Dry granulating method and apparatus
JPH0124532B2 (en)
US4561192A (en) Spray drying apparatus and method
JP3096666B2 (en) Method and apparatus for granulating powder
JPH04100532A (en) Fluidizing compression granulator
EP0570218A1 (en) Processes and apparatuses for granulating and drying particulate materials
JPH10329136A (en) Method and apparatus for producing granules
JPH0719728A (en) Method and apparatus for granulating and drying powder particles by operating air vibration wave
JP3326624B2 (en) Pressure swing granulator
JP2003126680A (en) Fluidizing apparatus for powder and granular material
JPH0699057A (en) Device for making contact between powdery substance and liquid
Watano et al. Computer simulation of agitation fluidized bed granulation by a two-dimensional random addition model
JPS63190629A (en) Spray drying fluidization granulator
US3396477A (en) Agglomerating apparatus
JP3477581B2 (en) Granulation method
JPH03154629A (en) Granulation of spherical particle
JP3032895B2 (en) Fluid granulation method and its apparatus
JP4048465B2 (en) Powder processing equipment
JP2619876B2 (en) Spray drying agitation granulator
JP2001137684A (en) Granulating system without using binder
JPS6365943A (en) Granulation method
CN201997404U (en) Wet method comminutor nozzle device with conical nozzle channel
JPS60175534A (en) Granulation of fine ceramic powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11