JPH03154629A - Granulation of spherical particle - Google Patents

Granulation of spherical particle

Info

Publication number
JPH03154629A
JPH03154629A JP29112189A JP29112189A JPH03154629A JP H03154629 A JPH03154629 A JP H03154629A JP 29112189 A JP29112189 A JP 29112189A JP 29112189 A JP29112189 A JP 29112189A JP H03154629 A JPH03154629 A JP H03154629A
Authority
JP
Japan
Prior art keywords
spherical
granulation
particles
aggregate
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29112189A
Other languages
Japanese (ja)
Inventor
Kazuo Nishii
和夫 西井
Yoshihiro Ito
義弘 伊藤
Noboru Kawakami
川上 登
Shinji Moriya
守屋 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP29112189A priority Critical patent/JPH03154629A/en
Publication of JPH03154629A publication Critical patent/JPH03154629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PURPOSE:To contrive the granulation of spherical and compacted particles by combining two operations, i.e., one step of applying gas pressure to a powdery material in order for the material to be compressed into an aggregate and the other step of granulating the aggregate into spherical particles in a dry condition or in a slightly damp atmosphere by fluid bed. CONSTITUTION:Particles are formed by combining the two operations of granulating procedure, i.e., one step of applying gas pressure to a powdery material in order for the material to be compressed into an aggregate and the other step of granulating the aggregate into spherical particles in a dry condition or in an atmosphere slightly damp or rather vaporous with org. solvent vapor by fluid bed or other means. The aforesaid two steps are repeated alternately. As a result, the spherical and compacted particles ranging in diameter from 0.1 to 1mm can be granulated at a high yield rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、球形で微小粒径の粒体の造粒が可能な造粒装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a granulation device that is capable of granulating spherical granules having a minute particle size.

[従来の技術] 従来、球形粒子の得られる造粒方法はいくつか知られて
いる。
[Prior Art] Conventionally, several granulation methods for obtaining spherical particles are known.

その一つとして、回軸する多孔板上に原料粉体を投入し
、バインダーを加えなから粉粒体を転動させて造粒する
ものである。この造粒方法によれば球形の造粒物は得ら
れるが粒径は数ミリ数十ミリであって、数ミリ以下の粒
径のものを得ることはむずかしい、又粒径の制御がむず
かしく1粒径にばらつきがある点も問題である。又水分
のコントロールが面倒である。
One method is to place raw material powder onto a rotating perforated plate, add a binder, and then roll the powder into granules. According to this granulation method, spherical granules can be obtained, but the particle size is several millimeters to several tens of millimeters, and it is difficult to obtain particles with a particle diameter of several millimeters or less, and it is difficult to control the particle size. Another problem is that the particle size varies. Also, controlling moisture is troublesome.

球形の造粒物が得られる他の造粒方法として噴霧造粒方
法が知られている。この造粒方法は、原料粉体を液体に
とかし更にバインダーを加えた上で噴霧する。これに熱
風を送ることによって噴霧状物を瞬時に液体を蒸発させ
て噴霧液の蒸発により残された粉体が球形の造粒物とし
て得られる。
A spray granulation method is known as another granulation method that produces spherical granules. In this granulation method, raw material powder is dissolved into a liquid, a binder is added thereto, and then the mixture is sprayed. By blowing hot air through this, the liquid in the sprayed material is instantaneously evaporated, and the powder left behind by the evaporation of the sprayed liquid is obtained as spherical granules.

この造粒方法によれば、数十ミクロンから、数百ミクロ
ンの球形粒子が得られるが、そのほとんどが中空のもの
である。又スラリーの調整が必要であり、装置が大型で
あり、少量、多品種生産には向かない。
According to this granulation method, spherical particles from several tens of microns to several hundred microns are obtained, but most of them are hollow. In addition, the slurry needs to be adjusted and the equipment is large, making it unsuitable for small-lot, high-mix production.

思上のほかに流動層造粒方法、撹拌造粒方法等各種の造
粒方法が知られているが、球形粒子を得ることか難しい
Various other granulation methods are known, such as fluidized bed granulation and agitation granulation, but it is difficult to obtain spherical particles.

また球形の造粒物を形成する方法として押出造粒機によ
って円柱状の造粒物を形成し、これを球形整粒機にかけ
ることによっても球形粒子を得ることが出来る。しかし
微小粒径の造粒物が得られない等の転勤造粒と同様の問
題点を有している。
Further, as a method for forming spherical granules, spherical particles can also be obtained by forming cylindrical granules using an extrusion granulator and subjecting the cylindrical granules to a spherical granulator. However, it has the same problems as transfer granulation, such as the inability to obtain granules with minute particle sizes.

[発明が解決しようとする課題] 以上述べたように、従来の造粒方法では、いずれの方法
によっても粒径が0.1ミリ〜1ミリの範囲の球形の造
粒物は得られなかった。しかも粒径のばらつきが多くほ
ぼ一定の粒径のものを造粒することが比較的困難であり
、したがって粒径の揃った粒子を得ようとする場合は、
収率が低い等の問題点を有していた。
[Problems to be Solved by the Invention] As stated above, with any conventional granulation method, spherical granules with a particle size in the range of 0.1 mm to 1 mm cannot be obtained. . Moreover, there are many variations in particle size, and it is relatively difficult to granulate particles with a uniform particle size. Therefore, when trying to obtain particles with uniform particle size,
It had problems such as low yield.

本発明は、従来のいずれの造粒方法にても得られなかっ
た球形でしかも粒径が0.1 ミリ−lミリの範囲を含
む広い範囲の粒子の造粒が可能で更に粒径のばらつきの
少ない造粒方法を提供することを目的とするものである
The present invention enables the granulation of spherical particles with a wide range of particle sizes, including the range of 0.1 mm to 1 mm, which could not be obtained by any conventional granulation method, and furthermore, the particle size can vary. The purpose of the present invention is to provide a granulation method with less granulation.

原材料を用いる場合、かすかに湿気、又は有機溶剤蒸気
(例えばアルコール蒸気)を与えた状態にて同様に造粒
物を形成し得る。
When using raw materials, granules can similarly be formed in the presence of slight moisture or organic solvent vapor (eg alcohol vapor).

更に本発明の造粒方法は1例えば流動層装置内において
装置内のガス圧を上昇せしめて原材料に圧力を加えて圧
縮を行なうことによる凝集物の形成と所定時間後に気流
の方向を逆転せしめることにより流動化を行ない1球形
造粒物の形成を同一装置内にて同時に行なうものである
。又この方法によって圧縮による凝集物の形成と流動に
よる造粒を繰り返し行なう場合にも便利である。つまり
本発明においては圧縮による凝集物の形成と流動による
造粒の組合せを別の装置により行なう手段と同一装置に
て気流の方向の切換えなどによる方法とが可能である。
Furthermore, the granulation method of the present invention includes 1, for example, in a fluidized bed apparatus, increasing the gas pressure in the apparatus to apply pressure to the raw material and compressing it to form aggregates, and after a predetermined time, reversing the direction of the air flow. In this method, fluidization is carried out to form one spherical granule at the same time in the same device. This method is also convenient when the formation of aggregates by compression and granulation by flow are repeated. That is, in the present invention, it is possible to combine the formation of aggregates by compression and granulation by flow using separate devices, or by changing the direction of air flow in the same device.

そして前者では、圧縮作用をより効果的に行なう利点を
有し、逆に後者においては、装置の共通化、時間の短縮
等のメリットを有しており、流動層法等と圧縮を繰返し
行なう場合は、特に効果的である。
The former has the advantage of performing the compression action more effectively, while the latter has the advantage of sharing equipment and shortening the time. is particularly effective.

本発明で使用するガスとしては、空気のばか窒素等の不
活性ガスが好ましい。
The gas used in the present invention is preferably an inert gas such as air or nitrogen.

次に本発明の原理0作用について更に詳細に説明する。Next, the principle 0 operation of the present invention will be explained in more detail.

まず本発明の原理について理論的に説明する。First, the principle of the present invention will be explained theoretically.

自足造粒過程において、造粒物は、凝集エネルギーと分
散エネルギーがバランスした粒径に凝集と分散を繰り返
しながら形成されて行く。
In the self-sufficient granulation process, granules are formed by repeating agglomeration and dispersion to a particle size with a balance between cohesive energy and dispersion energy.

ここでルンブの式を用いると次のように表わせる。Here, using Lumbu's equation, it can be expressed as follows.

a=il−c)/π ・ K−H/d”この式で、0は
等球粒子をランダムに充填した粉体層の引張応力、εは
空隙率、Kは配位数、Hは接触点における平均付着力、
dは原料の粒径である。
a=il-c)/π ・K-H/d" In this formula, 0 is the tensile stress of the powder bed randomly filled with equal spherical particles, ε is the porosity, K is the coordination number, and H is the contact average adhesion force at a point,
d is the particle size of the raw material.

今、第1図に示すように容器1に原料粉体2を投入し、
下部より流動化空気を供給すれば、周知のように流動層
が形成される。この時適当な流動化状態を保つと流動転
動作用によって付着力の大きい粉体の場合、造粒が行・
なわれる、この造粒物(凝集物)は、流動化状態を停止
しても粉体と分離されていて、付着力が働かないため収
率が悪い。又造粒物の強度は弱く崩れやすい。
Now, as shown in Fig. 1, raw material powder 2 is put into container 1,
If fluidizing air is supplied from the bottom, a fluidized bed is formed as is well known. At this time, if an appropriate fluidized state is maintained, granulation will be carried out in the case of powder with strong adhesive force due to the fluid rolling action.
These granules (agglomerates) remain separated from the powder even after the fluidization state is stopped, and the yield is poor because no adhesive force is exerted. Moreover, the strength of the granulated product is weak and easily crumbles.

ここで第2図に示すように逆圧をかけることによって、
流動化状態が停止され、凝集物に圧力が加わり、凝集物
を圧密化する。またこれによって粉体が凝集物に付着し
、均一化が行なわれる。
By applying counter pressure as shown in Figure 2,
The fluidization condition is stopped and pressure is applied to the agglomerates, compacting them. This also causes the powder to adhere to the aggregates and homogenize them.

即ち粉体原料の流動によって分散エネルギー及び球形化
エネルギーが与えられ、原料自身の付着力又付着力のな
い原料の場合僅かに湿気又は有機溶剤蒸気を与えること
による付着力によって不定形の凝集物が形成され、更に
圧力を加えることにより凝集エネルギーが付加されて圧
密化された杭体が得られる。しかも従来の造粒方法では
得られなかった。0.1ミリから1ミリの粒径のものを
含めて広い範囲の粒径の造粒物が高い収率で得られるこ
とを特徴とするものである。
In other words, dispersion energy and spheroidization energy are provided by the flow of the powder raw material, and amorphous aggregates are formed by the adhesive force of the raw material itself or, in the case of raw materials without adhesive force, by the adhesive force due to the application of a slight amount of moisture or organic solvent vapor. By applying pressure, cohesive energy is added and a consolidated pile body is obtained. Moreover, it could not be obtained using conventional granulation methods. It is characterized in that granules with a wide range of particle sizes, including those with particle sizes of 0.1 mm to 1 mm, can be obtained in high yield.

一般に流動層造粒方法等においては、バインダーが用い
られ、粒子表面上のバインダーに粉体が付着することに
よって凝集物が形成される。そのために粉体が球状に均
一に付着して行くことがなくしたがって不定形で嵩密度
の低い流体しか得られない。
Generally, in a fluidized bed granulation method, etc., a binder is used, and aggregates are formed by adhering the powder to the binder on the particle surface. Therefore, the powder does not adhere uniformly in a spherical shape, and therefore only a fluid with an amorphous shape and a low bulk density is obtained.

本発明の方法では、前述のように乾燥状態又は僅かに水
分又は有機溶剤蒸気を含む雰囲気中で凝集物が形成され
るため出来る凝集物はほぼ球形である。しかし形成され
る凝集物はほぼ原料粉体自身のもつ付着力にて付着して
いるため、このままでは破壊されやすい、前述のように
これに圧力を加えることによって圧密化され付着強度を
大幅に4増大せしめ、球形を保ったまま圧密の粒体を形
成するようにしたものである。
In the method of the present invention, as described above, the aggregates are formed in a dry state or in an atmosphere containing a small amount of moisture or organic solvent vapor, so that the resulting aggregates are approximately spherical. However, since the formed aggregates are attached mostly by the adhesive force of the raw material powder itself, it is easy to break if left as is.As mentioned above, by applying pressure to the aggregates, it is consolidated and the adhesive strength is significantly increased by 4. The particles are enlarged to form compacted particles while maintaining their spherical shape.

[実施例] 次に本発明の方法を実施するための装置の概要と、この
装置を用いての実施例を示す。
[Example] Next, an outline of an apparatus for carrying out the method of the present invention and an example using this apparatus will be shown.

第3図は従来知られている流動層装置に逆圧を加える機
構を設けた本発明の流動圧縮造粒方法を実現するための
装置を示す図である。この図においてlは送風用ブロア
、2は調温調湿器、3は流動層装置、4は切換弁、5は
排風用フロアである。
FIG. 3 is a diagram showing an apparatus for realizing the fluidized compression granulation method of the present invention, which is a conventionally known fluidized bed apparatus provided with a mechanism for applying a counter pressure. In this figure, 1 is a blower for blowing air, 2 is a temperature and humidity controller, 3 is a fluidized bed device, 4 is a switching valve, and 5 is a floor for exhaust ventilation.

この装置において、まず流動層装置3において、通常の
流動化が行なわれる。この場合、空気流は実線の矢印の
ように流れる0次に切換弁4を切換えて空気流を破線の
矢印のように流せば、排風用ブロアからの空気は、流動
層装置3の上方からも加えられ、送風用ブロア1からの
空気流とによって、流動層装置3内で圧力が与えられ圧
密化と球形化が加えられ目的とする造粒物が得られる。
In this apparatus, normal fluidization is first performed in the fluidized bed apparatus 3. In this case, if the air flow flows as shown by the solid line arrow and the switching valve 4 is switched to flow the air flow as shown by the broken line arrow, the air from the exhaust blower will flow from above the fluidized bed device 3. is added, pressure is applied in the fluidized bed device 3 by the air flow from the ventilation blower 1, and consolidation and spheroidization are applied to obtain the desired granulated material.

勿論、目的とする造粒物を得るためには、切換弁4の切
換えをくり返し行なうことが望ましい場合がある。
Of course, in order to obtain the desired granules, it may be desirable to repeatedly switch the switching valve 4.

以上述べた装置は、排風用フロアを逆圧用に利用し正圧
をかけるものであるが、第4図に示すように逆圧用ブロ
アを負圧用に設けた装置としてもよい、第4図に示す装
置においては、流動時には実線の矢印又逆圧時には破線
の矢印のように空気が流れ、第3図におけると同様の造
粒が可能である。
The device described above applies positive pressure by using the exhaust floor for counter pressure, but it may also be a device with a counter pressure blower for negative pressure as shown in Figure 4. In the apparatus shown, air flows as shown by the solid line arrow during flow and as shown by the broken line arrow when under pressure, and granulation similar to that shown in FIG. 3 is possible.

次に以上の装置を用いての実験例を示す。Next, an experimental example using the above apparatus will be shown.

実験fl)     実験(2) 原料名     フェライト糸混合物 アルミナ原料平
均粒径   0.9μ      0.5μ造粒物平均
粒径  0.35nm      O,55mm投入量
      450g       450g収率  
     8o%      90%空気量     
 ロ、 27n”/win   0.15m”/sin
逆圧              0.02にg/rs
”      0.02Kg/m”逆圧サイクル時間 
 15sec       15sec逆圧時間   
   1sec       1sec全造粒時間  
  300m1n      540m1n以上実験デ
ーターが示すように、実験(1)においては粒径0.3
5mm、実験(2)においては粒径o、55nv+の従
来の造粒方法にては得られない0.1〜1mmの範囲の
粒径の球形で圧密な造粒物が得られた。
Experiment fl) Experiment (2) Raw material name Ferrite thread mixture Alumina raw material average particle size 0.9μ 0.5μ Granule average particle size 0.35nm O, 55mm Input amount 450g 450g Yield
8o% 90% air amount
B, 27n”/win 0.15m”/sin
Back pressure 0.02g/rs
"0.02Kg/m" reverse pressure cycle time
15sec 15sec back pressure time
1sec 1sec total granulation time
300 m1n 540 m1n or more As the experimental data shows, in experiment (1), the particle size was 0.3
In experiment (2), spherical and compact granules with particle diameters o and 55 nv+, which could not be obtained by conventional granulation methods, were obtained in the range of 0.1 to 1 mm.

[発明の効果] 本発明の方法によれば、実施例に示すように0.1 ミ
リから1ミリの粒径範囲を含んだ粒径で、しかも球形で
圧密の粒子を高い収率で造粒することが出来る。
[Effects of the Invention] According to the method of the present invention, as shown in Examples, it is possible to granulate spherical and compacted particles with a particle size ranging from 0.1 mm to 1 mm at a high yield. You can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の方法の原理を示す図、第
3図、第4図は夫々本発明の方法を実施するための装置
の概略図である。 1・・・送風用ブロア、2・・・調温調湿器、3・・・
流動層装置、4・・・切換弁、5・・−排風用ブロア、
6・・・逆圧用ブロア
1 and 2 are diagrams showing the principle of the method of the present invention, and FIGS. 3 and 4 are schematic diagrams of an apparatus for carrying out the method of the present invention, respectively. 1...Air blower, 2...Temperature and humidity controller, 3...
Fluidized bed device, 4... switching valve, 5...-exhaust blower,
6...Back pressure blower

Claims (2)

【特許請求の範囲】[Claims] (1)原料粉体にガス圧を加えることにより圧縮して凝
集物を形成する操作と、乾燥状態にてあるいは僅かに湿
気又は有機溶剤蒸気をおびた雰囲気中にて流動層その他
の方法にて球形粒子を形成する操作との二つの操作を個
々加えることによって造粒物形成することを特徴とする
球形造粒方法。
(1) An operation of compressing the raw material powder by applying gas pressure to form an aggregate, and a fluidized bed or other method in a dry state or in an atmosphere containing a slight amount of moisture or organic solvent vapor. A spherical granulation method characterized in that granules are formed by individually adding two operations: an operation for forming spherical particles.
(2)上記二つの操作を交互に繰返し行なうことを特徴
とする請求項(1)の球形造粒方法。
(2) The spherical granulation method according to claim (1), characterized in that the above two operations are repeated alternately.
JP29112189A 1989-11-10 1989-11-10 Granulation of spherical particle Pending JPH03154629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29112189A JPH03154629A (en) 1989-11-10 1989-11-10 Granulation of spherical particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29112189A JPH03154629A (en) 1989-11-10 1989-11-10 Granulation of spherical particle

Publications (1)

Publication Number Publication Date
JPH03154629A true JPH03154629A (en) 1991-07-02

Family

ID=17764728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29112189A Pending JPH03154629A (en) 1989-11-10 1989-11-10 Granulation of spherical particle

Country Status (1)

Country Link
JP (1) JPH03154629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106111998A (en) * 2016-08-15 2016-11-16 覃士杰 Stream pressure granulation device and stream pressure method of granulating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106111998A (en) * 2016-08-15 2016-11-16 覃士杰 Stream pressure granulation device and stream pressure method of granulating

Similar Documents

Publication Publication Date Title
US3207824A (en) Process for preparing agglomerates
Kapur Balling and granulation
JP2001327849A (en) Granule consisting of dispersible fine solids and their manufacturing method
JPH10202187A (en) Method for classifying particulate hydrophilic polymer and screening apparatus
JPS597745B2 (en) Free-flowing aggregate of hollow spheres
JP2009503156A5 (en)
Nienow Fluidised bed granulation and coating: applications to materials, agriculture and biotechnology
US3875282A (en) Production of high bulk density spray dried hydrous sodium silicate
US5124100A (en) Dry granulating method and apparatus
JPH1087322A (en) High strength and low wear zeolite granule, its production and adsorption separation method using same
Nishii et al. Pressure swing granulation, a novel binderless granulation by cyclic fluidization and gas flow compaction
JPH03154629A (en) Granulation of spherical particle
JP3440489B2 (en) Fine spherical zeolite compact and method for producing the same
JPH10180080A (en) Granulating method of powder and device therefor
US4183763A (en) Gypsum-based granules and method of production
JPH10329136A (en) Method and apparatus for producing granules
JPH03161041A (en) Spherical granulation method
JPH0471632A (en) Method and device for fluidized granulation
JP3019953B2 (en) Fluid compression granulator
Charinpanitkul et al. Granulation and tabletization of pharmaceutical lactose granules prepared by a top-sprayed fluidized bed granulator
JP4602639B2 (en) Abrasion-resistant small particles made of agglomerated inorganic material, powder composed of such small particles, and method for producing the same
JP3109972B2 (en) Granulation of raw materials for ceramics
JP2001137684A (en) Granulating system without using binder
SU667226A1 (en) Method of obtaining granulated product from solutions, suspensions and melts
JP3348379B2 (en) Ultrasonic granulation method and apparatus