JPH1087322A - High strength and low wear zeolite granule, its production and adsorption separation method using same - Google Patents

High strength and low wear zeolite granule, its production and adsorption separation method using same

Info

Publication number
JPH1087322A
JPH1087322A JP8243118A JP24311896A JPH1087322A JP H1087322 A JPH1087322 A JP H1087322A JP 8243118 A JP8243118 A JP 8243118A JP 24311896 A JP24311896 A JP 24311896A JP H1087322 A JPH1087322 A JP H1087322A
Authority
JP
Japan
Prior art keywords
zeolite
strength
weight
type
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8243118A
Other languages
Japanese (ja)
Other versions
JP3799678B2 (en
Inventor
Takaharu Yoshimura
敬治 吉村
Nobuhiro Ogawa
展弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP24311896A priority Critical patent/JP3799678B2/en
Publication of JPH1087322A publication Critical patent/JPH1087322A/en
Application granted granted Critical
Publication of JP3799678B2 publication Critical patent/JP3799678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain zeolite granules having a small diameter, a large pore volume and excellent in pressure and wear resistance by kneading a mixture of zeolite powder with a binder and other additives so that the bulk density of the mixture is regulated to a specified value. SOLUTION: A mixture of zeolite powder with 5-15 pts. wt. binder based on 100 pts.wt. (expressed in terms of anhydride) of the zeolite powder, 1-10 pts.wt. thickener and/or water retaining agent and 50-80 pts. wt. water is kneaded so that the bulk density of the mixture is regulated to 0.7-1.5kg/l. The kneaded mixture is granulated by extrusion and the resultant granules are made uniform by rolling, dried, fired, subjected to ion exchange and activated to obtain the objective high strength low wear zeolite granules having >=85wt.% zeolite content, 0.3-0.5cc/g pore volume and 0.5-2mm diameter. The zeolite is preferably A type, X type, Y type or L type zeolite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度低摩耗性ゼ
オライト粒状物、その製造方法及びそれを用いた吸着分
離方法に関するものである。更に詳しくは、吸着分離剤
として広く用いられ、例えば窒素と酸素とを主成分とす
る混合ガスから吸着法によって選択的に窒素を吸着さ
せ、酸素を濃縮する圧力揺動吸着法(以下PSA法とい
う)用の吸着剤として有用な結晶性の高強度低摩耗性ゼ
オライト粒状物、その製造方法及びそれを用いた吸着分
離方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, low-wear zeolite granule, a method for producing the same, and a method for adsorptive separation using the same. More specifically, it is widely used as an adsorptive separation agent. For example, a pressure swing adsorption method (hereinafter referred to as a PSA method) in which nitrogen is selectively adsorbed from a mixed gas containing nitrogen and oxygen as main components by an adsorption method and oxygen is concentrated. The present invention relates to a crystalline, high-strength, low-wear zeolite granule useful as an adsorbent for (1), a method for producing the same, and an adsorption separation method using the same.

【0002】[0002]

【従来の技術】従来より、結晶性ゼオライトX型、A型
を有効吸着成分として含有する成形体は広く吸着剤とし
て用いられており、特に最近は空気中から酸素を濃縮す
るための吸着剤としての用途が拡大しており、優れた性
能を有する結晶性ゼオライト吸着剤が求められている。
2. Description of the Related Art Conventionally, molded articles containing crystalline zeolites X and A as effective adsorbents have been widely used as adsorbents, and particularly recently as adsorbents for concentrating oxygen from air. Are expanding, and a crystalline zeolite adsorbent having excellent performance is demanded.

【0003】従来、結晶性ゼオライト成形体は、ゼオラ
イト粉末とバインダー成分として粘土鉱物、シリカゾル
またはアルミナゾルを用い、転動造粒法あるいは押し出
し造粒によって造粒成形されていた。例えば、特公平5
ー82327号にはバインダーとしてシリカバインダー
を用い転動造粒による吸着剤の製造方法が開示されてい
る。しかし、この様な方法を用いた転動造粒では、少な
いバインダーで十分な強度を有する粒状物を得ることが
難しく、特に粒径が小さくなると強度が著しく低下し
た。一方、特開平62ー283812号にはバインダー
として粘土鉱物を用い、ニーダーで処理した原料を押出
し造粒機を用いてペレット形状に成型する方法が開示さ
れている。しかし、この方法で得られる成形体は耐圧強
度はあるものの、耐摩耗性は不十分なものであった。耐
摩耗性が劣る吸着剤は、吸着塔への充填あるいは吸着、
脱着の繰り返しによって粉化が生じ、弁あるいはバルブ
のトラブルを招く、あるいは圧力損失が上昇して吸着分
離能低下等の原因になる。
Heretofore, crystalline zeolite compacts have been granulated and formed by tumbling granulation or extrusion granulation using a zeolite powder and a clay mineral, silica sol or alumina sol as a binder component. For example, Tokuho 5
No. 82327 discloses a method for producing an adsorbent by tumbling granulation using a silica binder as a binder. However, in the rolling granulation using such a method, it is difficult to obtain a granular material having sufficient strength with a small amount of binder, and the strength is remarkably reduced particularly when the particle diameter is small. On the other hand, Japanese Patent Application Laid-Open No. 62-283812 discloses a method in which a clay mineral is used as a binder, and a raw material treated by a kneader is extruded into a pellet shape by using a granulator. However, although the molded body obtained by this method has a pressure resistance, the abrasion resistance is insufficient. Adsorbents with poor abrasion resistance can be filled or adsorbed in adsorption towers,
Powdering occurs due to repetition of desorption, causing troubles in the valve or the valve, or increasing the pressure loss and causing a decrease in the adsorption separation ability.

【0004】通常吸着剤は成形して用いられるが、その
成形体におけるバインダー成分を少なくすることにより
吸着能を有する成分が多くなり、又、目的の吸着物(以
下被吸着物という)を効率的に吸脱着させるために、そ
の大きさあるいは径を小さくすることで高性能化でき
る。これは成形体が大きくなると、堺膜抵抗、拡散抵抗
により吸脱着速度が低下し、吸着剤としての性能は低く
なるからである。
[0004] Usually, the adsorbent is used after being molded. However, by reducing the binder component in the molded article, the component having adsorbability is increased, and the target adsorbed substance (hereinafter referred to as "adsorbed substance") is efficiently used. The performance can be improved by reducing the size or the diameter in order to adsorb and desorb the gas. This is because as the size of the molded body increases, the adsorption / desorption speed decreases due to the Sakai film resistance and diffusion resistance, and the performance as an adsorbent decreases.

【0005】一方、吸着剤としての利用面における吸脱
着操作においては、振動又は相互接触が不可避であるた
め、耐圧強度、耐摩耗性といった強度物性が優れている
ことが求められている。しかしながら、成形体中のバイ
ンダー成分が少なかったり、その径が小さくなると、成
形体の強度は低下するため、小さな径でかつバインダー
成分の少ない吸着剤を高強度で調製することは極めて困
難であった。例えば、有効吸着成分として結晶性ゼオラ
イトX型又はA型を有する成形体においては、その大き
さが小さく、バインダー成分が少なく、細孔容積が大き
く、かつ強度が高いものが高性能といえる。しかしなが
ら、大きさを小さく、バインダー成分を少なく、細孔容
積を大きくするといったことは、成形体の強度を高める
ことと相反するため、これらの全ての要件を満足する成
形体を得ることはこれまで困難であった。
On the other hand, in the adsorption / desorption operation on the surface used as an adsorbent, since vibration or mutual contact is inevitable, it is required to have excellent strength physical properties such as pressure resistance and wear resistance. However, when the amount of the binder component in the molded body is small or the diameter thereof is small, the strength of the molded body is reduced. Therefore, it is extremely difficult to prepare an adsorbent having a small diameter and a small amount of the binder component with high strength. . For example, in a molded article having crystalline zeolite X type or A type as an effective adsorbing component, one having a small size, a small amount of a binder component, a large pore volume, and a high strength can be said to have high performance. However, reducing the size, reducing the amount of the binder component, and increasing the pore volume contradicts increasing the strength of the molded body.Therefore, it has never been possible to obtain a molded body that satisfies all these requirements. It was difficult.

【0006】さらに吸着剤の動的な吸脱着性能はその細
孔によって影響されることが古くから公知であるが、吸
着剤に細孔を付与すると吸着剤はポーラスになり、強度
が低下するという課題を有していた。
Further, it has long been known that the dynamic adsorption / desorption performance of an adsorbent is affected by its pores. However, if pores are given to an adsorbent, the adsorbent becomes porous and its strength is reduced. Had issues.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、従来
の結晶性ゼオライト成形体よりも吸着剤として優れた特
性を有する、すなわち径が小さく、細孔容積が大きく、
更に耐圧強度及び耐摩耗性に優れた、高強度低磨耗性ゼ
オライト粒状物、その製造方法及びそれを用いた吸着分
離方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an adsorbent having properties superior to those of a conventional crystalline zeolite molded article, namely, having a small diameter and a large pore volume.
It is still another object of the present invention to provide a high-strength, low-abrasion zeolite granule excellent in pressure resistance and abrasion resistance, a method for producing the same, and an adsorption separation method using the same.

【0008】[0008]

【課題を解決するための手段】本発明者等は上記課題を
解決するために、結晶性ゼオライト成形体の造粒成形方
法に関して鋭意検討を重ねた結果、その径が小さく、バ
インダー量を少なくし、かつ細孔容積が大きい成形体を
高強度で耐磨耗性に優れたものとするには、造粒する前
の捏和混練処理が極めて重要であることを見出し、その
混合物のかさ密度に着目して、充分に混合捏和した原料
を押出し造粒することにより、耐圧強度及び細孔容積が
充分な予備成形体が得られ、更にこの予備成型体を転動
整粒することにより、耐圧強度と耐摩耗性を兼ね備えた
成形体、例えば角のとれた柱状の成形体となることを見
出し、本発明を完成するに至ったものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies on a method for granulating and molding a crystalline zeolite molded body. In order to obtain a molded product having a large pore volume with high strength and excellent abrasion resistance, it has been found that kneading and kneading before granulation is extremely important. By paying attention and extruding and granulating the sufficiently mixed and kneaded raw material, a preformed body having sufficient pressure resistance strength and pore volume can be obtained. The present inventors have found that a molded product having both strength and wear resistance, for example, a columnar molded product with sharp corners, has led to the completion of the present invention.

【0009】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】まず、本発明の高強度低摩耗性ゼオライト
粒状物について説明する。
First, the high-strength low-wear zeolite granules of the present invention will be described.

【0011】ここで、本明細書においては、「粒状物」
とは柱状、ペレット状又は球状の成形体をも意味するこ
とがあり、「直径」とは粒状物の中で最も短い部分の長
さを意味する。
Here, in this specification, "granular material"
The term “pillar” may also mean a columnar, pellet-like, or spherical shaped body, and “diameter” means the length of the shortest part of a granular material.

【0012】本発明の高強度低摩耗性ゼオライト粒状物
は、ゼオライト成分含量が全量の85重量%以上、細孔
容積が0.3〜0.5cc/g、直径が0.5〜2mm
である。
The high-strength, low-wear zeolite granules of the present invention have a zeolite content of at least 85% by weight, a pore volume of 0.3 to 0.5 cc / g and a diameter of 0.5 to 2 mm.
It is.

【0013】ここで、高強度とは、実施例において示さ
れるように、JIS−R−1608に記載のファインセ
ラミックスの圧縮強さ試験方法を参考とし、木屋式硬度
計を用い、試験片である粒状物の直径方向に一定速度で
加圧板を押し付けて圧縮負荷を加えたとき、粒状物が耐
えることができる最大荷重(単位はkgf)を耐圧強度
として表されるものである。この場合の耐圧強度として
は、2.0kgf以上であることが好ましい。この理由
は、粒状物の耐圧強度が2.0kgf未満では、粒状物
を吸着剤として充填塔に充填する際に破損が多くなるな
ど、その利用面において好ましくないからである。
As used herein, the term "high strength" refers to a test piece using a Kiya type hardness tester, referring to the compression strength test method for fine ceramics described in JIS-R-1608, as shown in Examples. When a compressive load is applied by pressing a pressing plate at a constant speed in the diameter direction of the granular material, the maximum load (unit: kgf) that the granular material can withstand is expressed as pressure resistance. The pressure resistance in this case is preferably 2.0 kgf or more. The reason for this is that if the pressure resistance of the granular material is less than 2.0 kgf, the granular material is unfavorably used, for example, when the granular material is packed into a packed tower as an adsorbent, the damage is increased.

【0014】低摩耗性としては、実施例において示され
るように、JIS−K−1464に記載の粒子強度の測
定法に準じて算出される摩耗率が1重量%以下であるこ
とが好ましい。この理由は、粒状物を吸着剤として、吸
着塔へ充填したり、あるいは吸脱着の繰り返しにより、
粉化が生じにくくすることで、弁、バルブ等のトラブル
を招いたり、圧力損失が上昇して吸着分離能が低下する
等の問題を回避するためである。
As the low wear property, as shown in Examples, the wear rate calculated according to the particle strength measurement method described in JIS-K-1464 is preferably 1% by weight or less. The reason for this is that the particulate matter is used as an adsorbent and is packed in an adsorption tower, or by repeating adsorption and desorption,
This is because, by making the powdering less likely to occur, problems such as a trouble of a valve, a valve, and the like, and an increase in pressure loss and a decrease in adsorption separation ability are avoided.

【0015】ゼオライト成分とは、粒状物中の被吸着物
を吸着し得る能力を有するものであり、イオン交換能を
高くし、又、細孔容積を大きくしてガス吸着能を高める
ために結晶性のX型ゼオライト、A型ゼオライト、Y型
ゼオライト、L型ゼオライト等であることが好ましい。
又、ゼオライト成分の含量としては、粒状物の全量の8
5重量%以上である。85重量%未満の場合、その吸着
容量が不十分であり、吸着剤の必要量が増大するため好
ましくない。又、これらのゼオライトはX型とA型とい
うように2種以上のゼオライトからなっていても良い。
[0015] The zeolite component has a capability of adsorbing an adsorbed substance in a granular material. The zeolite component is used for increasing the ion exchange capacity and increasing the pore volume to increase the gas adsorption capacity. X-type zeolite, A-type zeolite, Y-type zeolite, L-type zeolite and the like are preferable.
Further, the content of the zeolite component is 8% of the total amount of the granular material.
5% by weight or more. When the amount is less than 85% by weight, the adsorption capacity is insufficient and the required amount of the adsorbent increases, which is not preferable. These zeolites may be composed of two or more zeolites such as X-type and A-type.

【0016】細孔容積としては、0.3〜0.5cc/
gである。0.3cc/g未満では充分な吸着能が得ら
れず、0.5cc/gを越える場合には粒状物のかさ密
度が低くなって単位体積あたりの吸着能が低下するため
好ましくない。
The pore volume is 0.3 to 0.5 cc /
g. If the amount is less than 0.3 cc / g, sufficient adsorptivity cannot be obtained, and if it exceeds 0.5 cc / g, the bulk density of the granular material becomes low and the adsorptivity per unit volume decreases, which is not preferable.

【0017】粒状物の径としては、その直径が0.5〜
2mmである。直径が0.5mm未満では充分な強度が
得られず、2mmを越える場合には充分な吸脱着速度が
得られないため吸着剤としての性能が低くなり、好まし
くない。
The diameter of the granular material is 0.5 to
2 mm. If the diameter is less than 0.5 mm, sufficient strength cannot be obtained, and if it exceeds 2 mm, a sufficient adsorbing / desorbing speed cannot be obtained.

【0018】本発明の高強度低摩耗性ゼオライト粒状物
中のカチオン種は特に限定されず、アルカリ金属、アル
カリ土類金属等のカチオンを粒状物中のカチオンと交換
することで所望のカチオンを有した粒状物となる。
The type of cation in the high-strength, low-wear zeolite granules of the present invention is not particularly limited, and the desired cations can be obtained by exchanging cations such as alkali metals and alkaline earth metals with cations in the granules. This gives a granular product.

【0019】次に本発明の高強度低摩耗性ゼオライト粒
状物の製造方法について説明する。本発明の高強度低摩
耗性ゼオライト粒状物の製造方法は、ゼオライト粉末
と、ゼオライト粉末100重量部(無水物換算)に対し
て、バインダー成分5〜15重量部、増粘剤及び/又は
保水剤1〜10重量部、及び水分50〜80重量部から
なる混合物を捏和混練し、かさ密度を0.7〜1.5k
g/リットルとした後、押出し造粒成形、転動整粒、乾
燥、焼成、イオン交換、活性化することからなってお
り、更に必要に応じて、焼成後にバインダーレス処理を
実施することもできる。以下に各工程について説明す
る。
Next, the method for producing the high-strength and low-wear zeolite granules of the present invention will be described. The method for producing a high-strength, low-abrasion zeolite granule according to the present invention is characterized in that the binder component is 5 to 15 parts by weight, a thickener and / or a water retention agent, based on zeolite powder and 100 parts by weight of zeolite powder (in terms of anhydride). A mixture consisting of 1 to 10 parts by weight and 50 to 80 parts by weight of water is kneaded and kneaded, and the bulk density is 0.7 to 1.5 k.
g / l, extrusion granulation, rolling and sizing, drying, firing, ion exchange, and activation. If necessary, binderless treatment can be performed after firing. . Hereinafter, each step will be described.

【0020】<捏和混練>本発明の方法において用いら
れるゼオライト粉末の種類としては特に限定はないが、
例えば、その高い細孔容量からX型ゼオライト、A型ゼ
オライト、Y型ゼオライト、L型ゼオライト等が好まし
く用いられる。又、これらのゼオライト粉末の種類とし
ては、2種以上のゼオライトの型の粉末を組み合わせて
用いることもできる。
<Kneading and kneading> The type of zeolite powder used in the method of the present invention is not particularly limited.
For example, X-type zeolite, A-type zeolite, Y-type zeolite, L-type zeolite and the like are preferably used due to their high pore volume. Further, as a kind of these zeolite powders, two or more kinds of zeolite type powders can be used in combination.

【0021】又、バインダー成分としては特に限定はな
いが、粘土鉱物であるカオリナイト,加水ハロイサイ
ト,ベントナイト,アタパルジャイト等の粘土系鉱物、
あるいはシリカゾル,アルミナゾル等の無機系バインダ
ー等が好ましく用いられる。この理由としては、材料の
価格という経済面、低温で焼結できるといった操作面、
得られる粒状物の強度を高くできたり、吸着容量を大き
くできるといった物性面の点が挙げられる。
The binder component is not particularly limited. Clay minerals such as kaolinite, hydrohaloysite, bentonite, and attapulgite, which are clay minerals,
Alternatively, inorganic binders such as silica sol and alumina sol are preferably used. The reasons for this are the economics of the price of the material, the operational aspects of sintering at low temperatures,
The physical properties such as the strength of the obtained granular material can be increased and the adsorption capacity can be increased.

【0022】ここで、用いられるバインダー成分の使用
量としては、ゼオライト粉末100重量部(無水物換
算)に対して、5〜15重量部の範囲であることが好ま
しく、5〜10重量部の範囲がより好ましい。この理由
は、バインダー成分が多くなることでゼオライト成分含
量が減少し、得られる粒状物の吸着容量が低下するのを
抑えたり、又、得られる粒状物の形状を保持するためで
ある。更に、得られる粒状物中にバインダー成分が全く
無く、すなわち全ての成分がゼオライトでもあっても良
い。全ての成分をゼオライトとするには、バインダー成
分をゼオライト化するバインダーレス化という公知の手
法を採用することで得られる。
Here, the amount of the binder component used is preferably in the range of 5 to 15 parts by weight, more preferably in the range of 5 to 10 parts by weight, based on 100 parts by weight of zeolite powder (in terms of anhydride). Is more preferred. The reason for this is that the content of the zeolite component decreases due to an increase in the amount of the binder component, and a decrease in the adsorption capacity of the obtained granules is suppressed, and the shape of the obtained granules is maintained. Further, the obtained granules may have no binder component, that is, all components may be zeolites. In order to convert all the components into zeolites, it is possible to adopt a known method of converting the binder components into zeolites, that is, a known binderless method.

【0023】増粘剤及び/又は保水剤の使用量として
は、造粒の容易さといった操作面や得られる粒状体の強
度の低下を避けるために、ゼオライト粉末100重量部
(無水物換算)に対して、1〜10重量部の範囲である
ことが好ましく、より好ましくは3〜8重量部の範囲で
ある。又、その種類としては、通常用いることができる
ものであれば特に制限はなく、例えばカルボキシメチル
セルロース(以下CMCと略す)、ポリアクリル酸ナト
リウム等が例示できる。
The amount of the thickener and / or water retention agent used is 100 parts by weight of zeolite powder (in terms of anhydride) in order to avoid a decrease in the operation surface such as ease of granulation and the strength of the obtained granules. On the other hand, it is preferably in the range of 1 to 10 parts by weight, more preferably in the range of 3 to 8 parts by weight. The type is not particularly limited as long as it can be generally used, and examples thereof include carboxymethylcellulose (hereinafter abbreviated as CMC), sodium polyacrylate and the like.

【0024】水分の使用量としては、捏和混練の容易さ
といった操作面や得られる粒状体の強度の低下を避ける
ために、ゼオライト粉末100重量部(無水物換算)に
対して、50〜80重量部の範囲が好ましく、より好ま
しくは60〜75重量部である。又、水分としては水あ
るいは温水を用いることができる。
The amount of water used is 50 to 80 parts by weight with respect to 100 parts by weight of zeolite powder (in terms of anhydrous) in order to avoid a decrease in the operation surface such as ease of kneading and kneading and the strength of the obtained granules. The range of parts by weight is preferred, more preferably 60 to 75 parts by weight. Water or warm water can be used as the water.

【0025】これらの前記した原料を充分に混練し、混
練後の混合物のかさ密度を0.7〜1.5kg/リット
ルの範囲とすることが好ましく、0.8〜1.0kg/
リットルの範囲がより好ましい。この理由としては、混
合物のかさ密度がこの範囲にあれば、成形を容易に行う
ことができ、又、得られる粒状体を高強度とすることが
できるからである。
It is preferable that these raw materials are sufficiently kneaded, and the bulk density of the kneaded mixture is in the range of 0.7 to 1.5 kg / liter, and 0.8 to 1.0 kg / l.
A range of liters is more preferred. The reason for this is that if the bulk density of the mixture is within this range, molding can be easily performed and the obtained granular material can have high strength.

【0026】混練の温度、時間等の条件については通常
用いられる条件で良く、又、混練に用いる機種には特に
限定はないが、擂潰機、連続式ニーダー、ミックスマラ
ー等が例示できる。特に得られる混合物のかさ密度を高
くするためにミックスマラータイプが好ましく用いられ
る。
The conditions such as temperature and time for kneading may be the same as those usually used, and the type used for kneading is not particularly limited. Examples thereof include a crusher, a continuous kneader and a mix muller. In particular, a mix muller type is preferably used in order to increase the bulk density of the obtained mixture.

【0027】<押出し造粒成形>次に、混練された混合
物を押出し造粒して、予備成形体を成形する。ここで用
いられる押し出し造粒機には種々のものがあるが、原材
料をダイ・スクリーンより押し出し成形する押し出し機
構によって分類すれば、スクリュー型、ロール型、ブレ
ード型、自己成形型、ラム型等の形式に分けられ、これ
らを用いることができる。押し出し造粒機の機種、ある
いは押し出し造粒機に取り付けられているダイ・スクリ
ーンの厚さは特に限定がないが、予備成形体の強度を増
大させるために、好ましくはスクリュー式のペレッタ
ー、ロール式のペレットミル等を用い、ダイ・スクリー
ンの厚さを0.5〜40mmとするのが好ましい。更
に、ロール式のペレットミルを用い、ダイ・スクリーン
の厚さを0.5〜15mmとするのが好ましい。予備成
形体の大きさについては、その用途によって変えること
ができ、必要に応じて、得られた予備成形体をふるいに
より分級することで大きさを揃えてもよい。
<Extrusion Granulation> Next, the kneaded mixture is extruded and granulated to form a preform. There are various types of extrusion granulators used here, but if classified by the extrusion mechanism that extrudes raw materials from a die screen, it can be used for screw type, roll type, blade type, self-forming type, ram type, etc. They are divided into formats and can be used. There is no particular limitation on the type of the extruder or the thickness of the die screen attached to the extruder, but in order to increase the strength of the preform, preferably a screw-type pelletizer, a roll type It is preferable that the thickness of the die screen is 0.5 to 40 mm using a pellet mill or the like. Further, it is preferable to use a roll-type pellet mill and to set the thickness of the die screen to 0.5 to 15 mm. The size of the preform can be changed depending on the application, and if necessary, the obtained preform may be classified by sieving to make the size uniform.

【0028】<転動整粒>このように成形された予備成
形体に丸みを持たせるために転動整粒を行なう。ここ
で、転動整粒機の機種としては、成形体に丸みを持たせ
ることができるものであればその機種、条件については
特に制限がなく、例えば、マルメライザー等を用いて実
施することが例示できる。
<Rolling and sizing> Rolling and sizing is performed to impart roundness to the preformed body thus formed. Here, as the model of the rolling sizing machine, there is no particular limitation on the model and conditions as long as it can impart roundness to the compact, and for example, it can be carried out using a marmelizer or the like. Can be illustrated.

【0029】<乾燥・焼成>乾燥、焼成の方法として
は、公知の方法を用いて実施することができる。ここ
で、乾燥の温度としては、強度物性の低下を抑えるため
に120℃以下の条件にて行うことが好ましい。又、乾
燥に用いられる機種については特に制限はないが、振動
流動乾燥器等が例示できる。焼成の温度としては、得ら
れる粒状物の形状を安定に保持するために350〜65
0℃の条件にて行うことが好ましい。このような焼成に
用いられる機種としては、シャフトキルン、ロータリー
キルン等が例示できる。
<Drying / Firing> As a method for drying and firing, known methods can be used. Here, it is preferable to perform the drying at a temperature of 120 ° C. or less in order to suppress a decrease in the strength physical properties. The type used for drying is not particularly limited, and examples thereof include a vibrating fluidized dryer. The firing temperature is 350 to 65 to maintain the shape of the obtained granular material stably.
It is preferable to carry out at 0 ° C. Examples of a model used for such firing include a shaft kiln and a rotary kiln.

【0030】<バインダーレス処理>このようにして得
た粒状物を、必要に応じて、アルカリ水溶液等に浸漬し
てバインダーレス処理を実施することができ、条件とし
ては公知の方法を用いることで良い。このバインダーレ
ス処理を実施することで、得られる粒状物の吸着容量を
更に大きくし、優れた吸着剤とすることができる。
<Binderless treatment> The thus obtained granules can be immersed in an alkali aqueous solution or the like to perform binderless treatment, if necessary. good. By performing this binderless treatment, the adsorption capacity of the obtained particulate matter can be further increased, and an excellent adsorbent can be obtained.

【0031】<イオン交換>以上の工程により得られた
粒状物を、アルカリ金属、アルカリ土類金属を含む水溶
液等と接触させて粒状物中のカチオンを所望のカチオン
と交換することができ、その条件としては、公知の方法
を用いることで良い。イオン交換の方法としては、回分
接触法やカラム流通法等が通常用いられる。イオン交換
を実施する際の温度はイオン交換平衡到達速度を考慮し
て決められるが、通常50℃程度で充分である。
<Ion exchange> The cations in the granules can be exchanged with desired cations by bringing the granules obtained by the above steps into contact with an aqueous solution containing an alkali metal or an alkaline earth metal. As a condition, a known method may be used. As an ion exchange method, a batch contact method, a column flow method, and the like are usually used. The temperature at which the ion exchange is performed is determined in consideration of the speed at which the ion exchange equilibrium is reached, but usually about 50 ° C. is sufficient.

【0032】<活性化>このようにして得られた粒状体
を更に活性化することで、吸着性能の高い吸着分離剤が
得られる。活性化の条件としては、その目的として成形
体中の水分を脱着することにあり、粒状物が活性化して
吸着性能が向上する条件であればどの様な条件も用いる
ことができる。例えば、X型ゼオライトの場合には、6
00℃で1時間程度実施することにより達成できる。
又、活性化に用いられる装置の機種としては、シャフト
キルン等が例示できる。
<Activation> By further activating the granules thus obtained, an adsorptive separating agent having high adsorption performance can be obtained. The condition for the activation is to desorb water in the molded body for the purpose, and any condition can be used as long as the granular material is activated and the adsorption performance is improved. For example, in the case of X-type zeolite, 6
This can be achieved by performing the process at 00 ° C. for about one hour.
Further, as a model of the device used for activation, a shaft kiln or the like can be exemplified.

【0033】以上のように、製造条件などを適宜選択し
て、本発明の高強度低摩耗性ゼオライト粒状物の特徴を
有する成形体を得ることができる条件であればなんら問
題ない。
As described above, there is no problem if the production conditions and the like are appropriately selected so long as the molded product having the characteristics of the high-strength and low-abrasive zeolite granules of the present invention can be obtained.

【0034】本発明の高強度低摩耗性ゼオライト粒状物
は、その径が小さく、細孔容積が大きく、更に耐圧強度
及び耐摩耗性に優れているため、吸着剤として種々の分
野において使用することができる。例えば、圧力揺動吸
着法によるガス吸着分離等に使用することができ、具体
的には、空気中の窒素を吸着させ、残りの成分中の酸素
濃度を高めた高酸素濃度のガスを得て、鉄鋼、ガラス等
の製造において用いたり、医療分野への適用も可能であ
る。
The high-strength and low-wear zeolite granules of the present invention have a small diameter, a large pore volume, and excellent pressure resistance and abrasion resistance. Therefore, they can be used as adsorbents in various fields. Can be. For example, it can be used for gas adsorption separation by pressure swing adsorption method and the like. Specifically, it is possible to adsorb nitrogen in the air and obtain a high oxygen concentration gas with an increased oxygen concentration in the remaining components. It can be used in the production of steel, steel, glass and the like, and can also be applied to the medical field.

【0035】本発明の高強度低磨耗性ゼオライト粒状物
が、その直径を減少させた場合でも、吸着分離剤に必須
の耐圧強度及び耐摩耗性を損なわずして静的窒素吸着能
を高くできる理由は、バインダー量を低減し、原料を捏
和混練効果の高い捏和機で、充分に捏和混練して、かさ
密度を上昇させることにある。
Even when the high-strength, low-abrasive zeolite granules of the present invention have a reduced diameter, the static nitrogen adsorption capacity can be increased without impairing the pressure resistance and abrasion resistance essential for the adsorptive separation agent. The reason is that the amount of the binder is reduced, and the raw materials are sufficiently kneaded and kneaded by a kneading machine having a high kneading and kneading effect to increase the bulk density.

【0036】しかしながら、このような推測はなんら本
発明を拘束するものではない。
However, such presumption does not restrict the present invention.

【0037】[0037]

【実施例】以下、本発明を実施例を用いて更に詳細に説
明するが、本発明はこれらに限定されるものではない。
なお、各評価は以下に示した方法によって実施した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
In addition, each evaluation was implemented by the method shown below.

【0038】〜細孔容積〜 活性化後のラウンドペレット成形体を、ポアサイザー9
310(マイクロメリティクス社製)を用い、1〜30
000psiaの圧力範囲で測定した。
-Pore Volume- The activated round pellet compact is placed in a pore sizer 9
310 (manufactured by Micromeritics) and 1 to 30
It was measured in a pressure range of 000 psia.

【0039】〜混合物のかさ密度〜 JIS−K−3362の見かけ密度測定器を用いた方法
に準じ、混練後の混合物をVmlのアクリル製のカップ
に受け、山盛りになったところで直線状へらですり落と
した後、混合物の入ったカップの重量を0.1gまで量
る。混合物かさ密度は、次式(1)によって算出した。
-Bulk density of mixture-According to the method using an apparent density measuring device according to JIS-K-3362, the kneaded mixture is received in a Vml acrylic cup, and when it reaches the peak, it is straightened with a spatula. After dropping, weigh the cup containing the mixture to 0.1 g. The bulk density of the mixture was calculated by the following equation (1).

【0040】 E=(W2−W1)/V (1) 式中、Eは混合物のかさ密度(単位はg/ml)、W2
は成形体の入ったカップの重量(単位はg)、W1は空
のカップの重量(単位はg)、Vはカップの容量(単位
はml)であり、かさ密度の単位は任意に換算する。本
明細書においては、測定したみかけ密度を混合物のかさ
密度として表記した。
E = (W2−W1) / V (1) where E is the bulk density of the mixture (unit: g / ml), W2
Is the weight of the cup containing the compact (unit is g), W1 is the weight of the empty cup (unit is g), V is the capacity of the cup (unit is ml), and the unit of the bulk density is arbitrarily converted. . In this specification, the measured apparent density is described as the bulk density of the mixture.

【0041】〜耐圧強度〜 耐圧強度の測定においては、JIS−R−1608に記
載のファインセラミックスの圧縮強さ試験方法を参考と
し、木屋式硬度計を用い、常温、常圧の雰囲気におい
て、試験片である粒状物の直径方向に、一定速度で加圧
板を押し付けて圧縮負荷を加えたとき、粒状物が耐える
ことができる最大荷重(単位はkgf)を測定すること
で実施した。
Compressive Strength In the measurement of compressive strength, a Kiya type hardness tester is used in a normal temperature and normal pressure atmosphere using a Kiya hardness tester with reference to the compressive strength test method for fine ceramics described in JIS-R-1608. When a compressive load was applied by pressing a pressure plate at a constant speed in the diameter direction of a granular material as a piece, the maximum load (unit: kgf) that the granular material could withstand was measured.

【0042】具体的には、耐圧強度は、木屋式デジタル
硬度計(KHT−20型)により測定した。すなわち、
イオン交換、乾燥後のゼオライト粒状物をふるいにより
分級し、直径1mmのペレットについては、1mmアン
ダー、2mmオーバーを除き、直径1.5mmのペレッ
トについては、1.5mmアンダー、3mmオーバーを
除いた。このようにペレットの直径と、直径の2倍のふ
るいを使用して分級して測定に用いた。ただし、比較例
3の粒状物については2mmアンダー、3mmオーバー
を除いたものを用いた。これらの分級した粒状物を活性
化し、耐圧強度測定用粒状物を取り出し、直径方向の耐
圧強度を、直径5mmの円柱状の加圧板を装着した、木
屋式硬度計により測定した。加圧板はステンレス製のも
のを使用し、クロスヘッド速度は0.8mm/秒とし
た。このようにして30個の粒状物の耐圧強度測定を行
い、その結果の平均値を耐圧強度とした。
Specifically, the compressive strength was measured by a Kiya type digital hardness tester (type KHT-20). That is,
The ion-exchanged and dried zeolite granules were classified by sieving, excluding 1 mm under and 2 mm over for 1 mm diameter pellets, and 1.5 mm under and 3 mm over for 1.5 mm diameter pellets. As described above, the particles were classified using a sieve having a diameter twice as large as the diameter of the pellet and used for measurement. However, for the granules of Comparative Example 3, those excluding 2 mm under and 3 mm over were used. The classified granules were activated, the granules for compressive strength measurement were taken out, and the compressive strength in the diameter direction was measured by a Kiya hardness tester equipped with a cylindrical pressure plate having a diameter of 5 mm. The pressure plate used was made of stainless steel, and the crosshead speed was 0.8 mm / sec. In this way, the compressive strength of 30 granular materials was measured, and the average of the results was taken as the compressive strength.

【0043】〜摩耗率〜 摩耗率はJIS−K−1464(1962年版)に記載
の粒子強度の測定法に準じて算出した。すなわち、試料
である成形体をあらかじめ温度25℃、相対湿度80%
のデシケーター中で平衡になるまで16時間以上放置し
た。ついで、試料約70gを850μm、355μm及
び受け皿をセットしたふるい(東京スクリーン社製、型
式:JIS Z−8801)を用いて3分間ふるい分け
し、次いで、付着物等を取り除いた前記のふるいに、3
分間ふるい分けした。残った試料50gを正確に秤り取
り、同時に5個の10円玉銅貨をセットし、15分間振
動する。受け皿に落ちた試料をXgとして次の(2)式
で摩耗率を算出した。
-Abrasion Rate-The abrasion rate was calculated according to the particle strength measurement method described in JIS-K-1464 (1962 version). That is, a molded body as a sample was previously subjected to a temperature of 25 ° C. and a relative humidity of 80%.
In the desiccator for more than 16 hours. Then, about 70 g of the sample was sieved for 3 minutes using a sieve (manufactured by Tokyo Screen Co., Ltd., model: JIS Z-8801) having 850 μm, 355 μm, and a saucer, and then the sieve from which adhering substances were removed was filtered.
Sieved for minutes. The remaining 50 g of sample is accurately weighed, and at the same time, five 10-yen coins are set and shaken for 15 minutes. The wear rate was calculated by the following equation (2) using the sample dropped on the tray as Xg.

【0044】 摩耗率(重量%)=(X/50)×100 (2) 〜静的窒素吸着量〜 静的窒素吸着量は容量法により測定した。すなわち、カ
ルシウムイオン交換率を90%とした粒状物を測定用試
料とし、これを活性化後、350℃、2時間真空にて排
気処理し、25℃、700トールにおける静的窒素吸着
量を測定した。 実施例1 X型ゼオライト粉末(東ソー(株)製、商品名:ゼオラ
ム)と、この粉末100重量部(無水物換算)に対し
て、カオリン型粘土10重量部、CMC3重量部を混合
し、更に水を70重量部を添加し、ミックスマーラー造
粒器を用いて60分間混練捏和した。得られた混合物の
かさ密度を前記した方法により測定し、その結果を表1
に示した。
Abrasion rate (% by weight) = (X / 50) × 100 (2) —Static nitrogen adsorption amount—Static nitrogen adsorption amount was measured by a volumetric method. That is, a granular material having a calcium ion exchange rate of 90% was used as a sample for measurement, activated, and then evacuated at 350 ° C. for 2 hours under vacuum, and the static nitrogen adsorption amount at 25 ° C. and 700 Torr was measured. did. Example 1 X-type zeolite powder (manufactured by Tosoh Corporation, trade name: zeolam) and 10 parts by weight of kaolin-type clay and 3 parts by weight of CMC were mixed with 100 parts by weight (in terms of anhydride) of this powder. 70 parts by weight of water was added, and the mixture was kneaded and kneaded for 60 minutes using a mix marler granulator. The bulk density of the obtained mixture was measured by the method described above, and the results were shown in Table 1.
It was shown to.

【0045】その後、ダイス厚5mmのスクリュー押し
出し造粒機を用いて直径1.5mmの柱状品として押し
出した後、転動整粒して、角のとれた柱状品を得た。こ
れを110℃で乾燥した後、マッフル炉(アドバンテッ
ク社製、型式:KM−600)を用いて600℃の雰囲
気中で2時間焼成してカオリン型粘土を焼結させた後、
大気中で冷却した。得られたゼオライト成形体をカルシ
ウムイオン交換した後、管状炉(アドバンテック社製)
で空気流通下において600℃、1時間活性化処理し
た。得られた活性化品の細孔容積、耐圧強度、及び、こ
れを水和したものの摩耗率を前記した方法により測定
し、その結果を表1に示した。
Thereafter, the product was extruded as a columnar product having a diameter of 1.5 mm using a screw extrusion granulator having a die thickness of 5 mm, and then tumbled to obtain a columnar product having a sharp corner. After drying this at 110 ° C., it was fired in a muffle furnace (manufactured by Advantech Co., model: KM-600) for 2 hours in an atmosphere of 600 ° C. to sinter the kaolin-type clay,
Cooled in air. After the obtained zeolite compact was subjected to calcium ion exchange, a tubular furnace (manufactured by Advantech)
At 600 ° C. for 1 hour under flowing air. The pore volume, compressive strength, and the abrasion rate of the hydrated product of the obtained activated product were measured by the above-described method. The results are shown in Table 1.

【0046】[0046]

【表1】 [Table 1]

【0047】実施例2 X型ゼオライト粉末と、この粉末100重量部(無水物
換算)に対して、カオリン粘土10重量部、CMC3重
量部を混合し、更に水を70重量部を添加して混練捏和
した。得られた混合物のかさ密度を前記した方法により
測定し、その結果を表1に示した。
Example 2 10 parts by weight of kaolin clay and 3 parts by weight of CMC were mixed with 100 parts by weight of the X-type zeolite powder and 100 parts by weight of the powder (in terms of anhydride), and 70 parts by weight of water was further added and kneaded. Kneaded. The bulk density of the obtained mixture was measured by the method described above, and the results are shown in Table 1.

【0048】その後、ダイス厚3mmのロール式ペレッ
トミル型押し出し造粒機で、直径1.5mmの柱状品と
して押し出した後、マルメライザーで転動整粒し、角の
とれた柱状品を得た。その後は実施例1と同様にして処
理した後、得られた活性化品の細孔容積、耐圧強度、及
び、これを水和したものの摩耗率を前記した方法により
測定し、その結果を表1に示した。
Thereafter, the product was extruded as a columnar product having a diameter of 1.5 mm by a roll-type pellet mill type extrusion granulator having a die thickness of 3 mm, and then tumbled and sized with a marmellaizer to obtain an angular columnar product. . Thereafter, after treating in the same manner as in Example 1, the obtained activated product was measured for the pore volume, the pressure resistance, and the wear rate of the hydrated product by the method described above. It was shown to.

【0049】実施例3 X型ゼオライト粉末と、この粉末100重量部(無水物
換算)に対して、カオリン粘土10重量部、CMC8重
量部を混合し、更に水を70重量部を添加して混練捏和
した。得られた混合物のかさ密度を前記した方法により
測定し、その結果を表1に示した。
Example 3 10 parts by weight of kaolin clay and 8 parts by weight of CMC were mixed with 100 parts by weight of the X-type zeolite powder and 100 parts by weight of the powder (anhydrous equivalent), and 70 parts by weight of water was further added and kneaded. Kneaded. The bulk density of the obtained mixture was measured by the method described above, and the results are shown in Table 1.

【0050】その後、ダイス厚3mmのロール式ペレッ
トミル型押し出し造粒機で、直径1mmの柱状品として
押し出し、マルメライザーで転動整粒し、角のとれた柱
状品を得た。その後は実施例1と同様にして処理した
後、得られた活性化品の細孔容積、耐圧強度、及び、こ
れを水和したものの摩耗率を前記した方法により測定
し、その結果を表1に示した。
Thereafter, the product was extruded as a columnar product having a diameter of 1 mm by a roll-type pellet mill type extrusion granulator having a die thickness of 3 mm, and tumbled and sized with a marmellaizer to obtain a columnar product having a sharp corner. Thereafter, after treating in the same manner as in Example 1, the obtained activated product was measured for the pore volume, the pressure resistance, and the wear rate of the hydrated product by the method described above. It was shown to.

【0051】実施例4 A型ゼオライト粉末と、この粉末100重量部(無水物
換算)に対して、加水ハロイサイト粘土10重量部、C
MC3重量部を混合し、更に水を65重量部を添加して
混練捏和した。得られた混合物のかさ密度を前記した方
法により測定し、その結果を表1に示した。
Example 4 A-type zeolite powder, 100 parts by weight of this powder (in terms of anhydride), 10 parts by weight of hydrolyzed halloysite clay, C
3 parts by weight of MC were mixed, and 65 parts by weight of water was further added and kneaded and kneaded. The bulk density of the obtained mixture was measured by the method described above, and the results are shown in Table 1.

【0052】その後、ダイス厚1.5mmのロール式ペ
レットミル型押し出し造粒機で直径1.5mmの柱状品
として押し出し、マルメライザーで転動整粒し、角のと
れた柱状品を得た。その後は活性化を400℃で行った
以外は実施例1と同様にして処理した後、得られた活性
化品の細孔容積、耐圧強度、及び、これを水和したもの
の摩耗率を前記した方法により測定し、その結果を表1
に示した。
Thereafter, the resulting product was extruded as a columnar product having a diameter of 1.5 mm by a roll-type pellet mill type extrusion granulator having a die thickness of 1.5 mm, and tumbled and sized with a marmellaizer to obtain a columnar product having a sharp corner. After that, the treatment was performed in the same manner as in Example 1 except that the activation was performed at 400 ° C., and the pore volume, the compressive strength, and the wear rate of the hydrated product of the activated product were described above. Table 1 shows the measurement results.
It was shown to.

【0053】比較例1 X型ゼオライト粉末と、この粉末100重量部(無水物
換算)に対して、カオリン粘土10重量部、CMC3重
量部を、水70重量部を用いて加水しながらニーダーで
混練捏和した。得られた混合物のかさ密度を前記した方
法により測定し、その結果を表1に示した。
Comparative Example 1 X-type zeolite powder and 10 parts by weight of kaolin clay and 3 parts by weight of CMC were kneaded with a kneader while adding water to 70 parts by weight of water with respect to 100 parts by weight of the powder (in terms of anhydride). Kneaded. The bulk density of the obtained mixture was measured by the method described above, and the results are shown in Table 1.

【0054】その後、スクリュー押し出し造粒機で直径
1.5mmの柱状品として押し出した後、マルメライザ
ーで転動整粒し、角のとれた柱状品を得た。その後は実
施例1と同様にして処理した後、得られた活性化品の細
孔容積、耐圧強度、及び、これを水和したものの摩耗率
を前記した方法により測定し、その結果を表1に示し
た。
Thereafter, the mixture was extruded as a columnar product having a diameter of 1.5 mm with a screw extrusion granulator, and then tumbled and sized with a marmerizer to obtain a columnar product having a sharp corner. Thereafter, after treating in the same manner as in Example 1, the obtained activated product was measured for the pore volume, the pressure resistance, and the wear rate of the hydrated product by the method described above. It was shown to.

【0055】この結果より、混合物のかさ密度が低い場
合には、耐圧強度が低く、摩耗率が高い不十分なものし
か得られなかった。
From these results, it was found that when the bulk density of the mixture was low, only an insufficient one having a low pressure resistance and a high wear rate was obtained.

【0056】比較例2 A型ゼオライト粉末と、この粉末123重量部に対し
て、α化澱粉2重量部、カオリン粘土10重量部、モン
モリロナイト粘土10重量部、繊維長10〜100μm
の非晶質のパルプ短繊維10重量部を混合後、水42重
量部を加えてニーダーで20分混練捏和した。得られた
混合物のかさ密度を前記した方法により測定し、その結
果を表1に示した。
Comparative Example 2 A-type zeolite powder and 2 parts by weight of pregelatinized starch, 10 parts by weight of kaolin clay, 10 parts by weight of montmorillonite clay, fiber length of 10 to 100 μm based on 123 parts by weight of this powder
After mixing 10 parts by weight of the amorphous pulp short fibers, 42 parts by weight of water was added and kneaded and kneaded with a kneader for 20 minutes. The bulk density of the obtained mixture was measured by the method described above, and the results are shown in Table 1.

【0057】次いでスクリュー押出し造粒機を用いて、
ダイス径1.5mmをセットし、押出成形し円柱状成形
物を得た。得られた成形物を110℃で2時間乾燥後、
600℃で2時間焼成して直径1.5mmのゼオライト
ペレットを得た。得られたペレットの細孔容積、耐圧強
度、及び、これを水和したものの摩耗率を前記した方法
により測定し、その結果を表1に示した。ここで、カル
シウムイオン交換率については74%とした。
Then, using a screw extrusion granulator,
A die having a diameter of 1.5 mm was set and extruded to obtain a cylindrical molded product. After drying the obtained molded article at 110 ° C. for 2 hours,
It was calcined at 600 ° C. for 2 hours to obtain zeolite pellets having a diameter of 1.5 mm. The pore volume, compressive strength, and the wear rate of the hydrated pellet were measured by the above-mentioned method. The results are shown in Table 1. Here, the calcium ion exchange rate was 74%.

【0058】この結果より、混合物のかさ密度が低い場
合には、バインダー重量部数を多くしても摩耗率の低い
ものしか得られなかった。
From these results, it was found that when the bulk density of the mixture was low, only a material having a low wear rate was obtained even if the number of parts by weight of the binder was increased.

【0059】比較例3 10重量%の水分含量(強熱減量)を有する30kgの
A型ナトリウムゼオライトに約300m2/gのベット
(BET)値を有する15リットルの30重量%のシリ
カゾルを添加して、強力ミキサー中で約0.1ないし
0.8mmの粒径の粒子として加工した。ここで得られ
た加工物のかさ密度を前記した方法により測定し、その
結果を表1に示した。
Comparative Example 3 To 30 kg of type A sodium zeolite having a water content (loss on ignition) of 10% by weight was added 15 liters of 30% by weight silica sol having a BET value of about 300 m 2 / g. And processed in a high intensity mixer as particles with a particle size of about 0.1 to 0.8 mm. The bulk density of the obtained workpiece was measured by the method described above, and the results are shown in Table 1.

【0060】次いでこの粗製の粒子を造粒パン中に入れ
た後、微粉砕したA型ゼオライトを回転するパン中に連
続的に導入し、同時にパン中の他の部位から運動してい
る粒子上に30重量%のシリカゾルを噴霧した。その
後、インゼクターを通してシリカゾルに水ガラスを流し
込み、ゾル対水ガラスの比率を10:1に調整して、直
径2〜3mmの球形の粒状物を得た。その後は、活性化
を400℃の温度で行なった以外は実施例1と同様にし
て処理した後、得られた活性化品の細孔容積、耐圧強
度、及び、これを水和したものの摩耗率を前記した方法
により測定し、その結果を表1に示した。
Next, after putting the coarse particles into a granulating pan, the finely pulverized A-type zeolite is continuously introduced into a rotating pan, and simultaneously on the particles moving from other parts of the pan. Was sprayed with 30% by weight of silica sol. Thereafter, water glass was poured into the silica sol through an injector, and the ratio of sol to water glass was adjusted to 10: 1 to obtain a spherical granular material having a diameter of 2 to 3 mm. After that, the treatment was performed in the same manner as in Example 1 except that the activation was performed at a temperature of 400 ° C., and the pore volume, the pressure resistance, and the wear rate of the hydrated product of the obtained activated product were obtained. Was measured by the method described above, and the results are shown in Table 1.

【0061】この結果より、混合物のかさ密度が低い場
合には、耐圧強度が低く、摩耗率が高い不十分なものし
か得られなかった。
From these results, it was found that when the bulk density of the mixture was low, only an insufficient one having a low pressure resistance and a high wear rate was obtained.

【0062】[0062]

【発明の効果】以上の説明から明らかなように、本発明
の高強度低磨耗性ゼオライト粒状物は、窒素吸着能が高
く、耐圧強度及び耐摩耗性に優れている。又、本発明の
製造方法によれば、窒素吸着能を損なわずして、耐圧強
度及び耐摩耗性に優れた高強度低磨耗性ゼオライト粒状
物を容易に得ることができる。更に、本発明の高強度低
磨耗性ゼオライト粒状物を用いることで、混合ガスから
吸着法により選択的に窒素を吸着させることができ、吸
着剤として有用である。
As is clear from the above description, the high-strength, low-abrasive zeolite granules of the present invention have a high nitrogen adsorption capacity, and are excellent in pressure resistance and abrasion resistance. Further, according to the production method of the present invention, it is possible to easily obtain a high-strength, low-abrasion zeolite granular material having excellent pressure resistance and abrasion resistance without impairing the nitrogen adsorption ability. Further, by using the high-strength and low-wear zeolite granules of the present invention, nitrogen can be selectively adsorbed from a mixed gas by an adsorption method, and is useful as an adsorbent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C01B 39/14 C01B 39/14 39/22 39/22 39/24 39/24 39/32 39/32 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C01B 39/14 C01B 39/14 39/22 39/22 39/24 39/24 39/32 39/32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高強度低摩耗性ゼオライト粒状物におい
て、ゼオライト成分含量が全量の85重量%以上、細孔
容積が0.3〜0.5cc/g、直径が0.5〜2mm
であることを特徴とする高強度低摩耗性ゼオライト粒状
物。
1. A high-strength low-wear zeolite granule having a zeolite component content of 85% by weight or more, a pore volume of 0.3 to 0.5 cc / g, and a diameter of 0.5 to 2 mm.
A high-strength, low-wear zeolite granule characterized by the following:
【請求項2】請求項1に記載の高強度低摩耗性ゼオライ
ト粒状物において、ゼオライトがA型、X型、Y型及び
L型ゼオライトからなる群より選ばれるゼオライトであ
ることを特徴とする高強度低摩耗性ゼオライト粒状物。
2. The high-strength, low-wear zeolite granule according to claim 1, wherein the zeolite is a zeolite selected from the group consisting of A-type, X-type, Y-type and L-type zeolites. Zeolite granules with low strength and low wear.
【請求項3】請求項1又は請求項2に記載の高強度低摩
耗性ゼオライト粒状物を製造する方法において、ゼオラ
イト粉末と、ゼオライト粉末100重量部(無水物換
算)に対して、バインダー成分5〜15重量部、増粘剤
及び/又は保水剤1〜10重量部、及び水分50〜80
重量部からなる混合物を捏和混練し、かさ密度を0.7
〜1.5kg/リットルとした後、押出し造粒成形、転
動整粒、乾燥、焼成、イオン交換、活性化することを特
徴とする高強度低摩耗性ゼオライト粒状物の製造方法。
3. The method for producing a high-strength low-wear zeolite granule according to claim 1 or 2, wherein the binder component 5 is added to the zeolite powder and 100 parts by weight of zeolite powder (in terms of anhydride). 1515 parts by weight, 1-10 parts by weight of a thickener and / or water retention agent, and 50-80 moisture
The mixture consisting of parts by weight is kneaded and kneaded to have a bulk density of 0.7.
A method for producing a high-strength, low-wear zeolite granule, comprising extruding, granulating, rolling and sizing, drying, calcining, ion-exchanging, and activating after adjusting to 1.5 kg / liter.
【請求項4】請求項1又は請求項2に記載の高強度低摩
耗性ゼオライト粒状物を用い、圧力揺動吸着法により空
気から酸素を濃縮することを特徴とする吸着分離方法。
4. An adsorption separation method comprising using the high-strength and low-wear zeolite granules according to claim 1 or 2 to concentrate oxygen from air by a pressure swing adsorption method.
JP24311896A 1996-09-13 1996-09-13 High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same Expired - Fee Related JP3799678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24311896A JP3799678B2 (en) 1996-09-13 1996-09-13 High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24311896A JP3799678B2 (en) 1996-09-13 1996-09-13 High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same

Publications (2)

Publication Number Publication Date
JPH1087322A true JPH1087322A (en) 1998-04-07
JP3799678B2 JP3799678B2 (en) 2006-07-19

Family

ID=17099072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24311896A Expired - Fee Related JP3799678B2 (en) 1996-09-13 1996-09-13 High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same

Country Status (1)

Country Link
JP (1) JP3799678B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347123A (en) * 2000-04-04 2001-12-18 Tosoh Corp Adsorptive separation method for carbon dioxide
JP2004238209A (en) * 2002-12-11 2004-08-26 Catalysts & Chem Ind Co Ltd Microspherical zeolite molding
WO2008114771A1 (en) 2007-03-20 2008-09-25 Mitsui Chemicals, Inc. Process for conversion of hydrocarbons with molded zeolite catalyst
JP2009101294A (en) * 2007-10-23 2009-05-14 Kyodo Printing Co Ltd Method for manufacturing molded body containing adsorbent and molded body containing adsorbent
WO2010050417A1 (en) * 2008-10-30 2010-05-06 東ソー株式会社 High-strength zeolite bead molding and method for producing the same
JP2010520805A (en) * 2007-03-08 2010-06-17 プラクスエア・テクノロジー・インコーポレイテッド Adsorbent with high speed and high pressure crush strength
JP2010529939A (en) * 2007-06-04 2010-09-02 スサ・エス・アー Zeolite-based spherical agglomerates, processes for the production and adsorption of these agglomerates and the use of these agglomerates in catalysts
JP2011255376A (en) * 2000-04-04 2011-12-22 Tosoh Corp Method for separation of carbon dioxide by adsorption
JP2012143757A (en) * 1999-02-22 2012-08-02 Ceca Sa Agglomerated zeolitic adsorbent, production method of the adsorbent and use of the adsorbent
CN103071472A (en) * 2011-10-25 2013-05-01 中国石油化工股份有限公司 Flash-evaporation-dried molecular sieve pelletizing method
JP2016102053A (en) * 2014-11-14 2016-06-02 東ソー株式会社 Silicotitanate compact
WO2017146137A1 (en) * 2016-02-26 2017-08-31 東ソー株式会社 Silver-carrying zeolite molded article
CN107694476A (en) * 2017-07-25 2018-02-16 江苏远鸿新材料科技有限公司 A kind of moulding manufacture method of high intensity ball-type drier
WO2019230841A1 (en) * 2018-05-31 2019-12-05 東ソー株式会社 Highly abrasion-resistant zeolite moulded article and method for producing same
WO2021107014A1 (en) 2019-11-28 2021-06-03 東ソー株式会社 Highly wear-resistant zeolite molded article, and method for manufacturing same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143757A (en) * 1999-02-22 2012-08-02 Ceca Sa Agglomerated zeolitic adsorbent, production method of the adsorbent and use of the adsorbent
JP2001347123A (en) * 2000-04-04 2001-12-18 Tosoh Corp Adsorptive separation method for carbon dioxide
JP2011255376A (en) * 2000-04-04 2011-12-22 Tosoh Corp Method for separation of carbon dioxide by adsorption
JP2004238209A (en) * 2002-12-11 2004-08-26 Catalysts & Chem Ind Co Ltd Microspherical zeolite molding
JP2010520805A (en) * 2007-03-08 2010-06-17 プラクスエア・テクノロジー・インコーポレイテッド Adsorbent with high speed and high pressure crush strength
US8138386B2 (en) 2007-03-20 2012-03-20 Mitsui Chemicals, Inc. Method for converting hydrocarbons with zeolite shaped catalyst
WO2008114771A1 (en) 2007-03-20 2008-09-25 Mitsui Chemicals, Inc. Process for conversion of hydrocarbons with molded zeolite catalyst
JP2010529939A (en) * 2007-06-04 2010-09-02 スサ・エス・アー Zeolite-based spherical agglomerates, processes for the production and adsorption of these agglomerates and the use of these agglomerates in catalysts
JP2009101294A (en) * 2007-10-23 2009-05-14 Kyodo Printing Co Ltd Method for manufacturing molded body containing adsorbent and molded body containing adsorbent
JP2010132530A (en) * 2008-10-30 2010-06-17 Tosoh Corp High-strength zeolite bead molding and method for producing the same
WO2010050417A1 (en) * 2008-10-30 2010-05-06 東ソー株式会社 High-strength zeolite bead molding and method for producing the same
CN103071472A (en) * 2011-10-25 2013-05-01 中国石油化工股份有限公司 Flash-evaporation-dried molecular sieve pelletizing method
JP2016102053A (en) * 2014-11-14 2016-06-02 東ソー株式会社 Silicotitanate compact
WO2017146137A1 (en) * 2016-02-26 2017-08-31 東ソー株式会社 Silver-carrying zeolite molded article
JP2017154965A (en) * 2016-02-26 2017-09-07 東ソー株式会社 Silver-carrying zeolite molded body
US10603652B2 (en) 2016-02-26 2020-03-31 Tosoh Corporation Silver-carrying zeolite molded article
CN107694476A (en) * 2017-07-25 2018-02-16 江苏远鸿新材料科技有限公司 A kind of moulding manufacture method of high intensity ball-type drier
WO2019230841A1 (en) * 2018-05-31 2019-12-05 東ソー株式会社 Highly abrasion-resistant zeolite moulded article and method for producing same
JP2019210207A (en) * 2018-05-31 2019-12-12 東ソー株式会社 Highly wear-resistant zeolite compact and its production method
WO2021107014A1 (en) 2019-11-28 2021-06-03 東ソー株式会社 Highly wear-resistant zeolite molded article, and method for manufacturing same

Also Published As

Publication number Publication date
JP3799678B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP3799678B2 (en) High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same
JP4890444B2 (en) Granules comprising porous particles containing calcium and / or magnesium
MXPA04006944A (en) Process for production of molecular sieve adsorbent blends.
EA028588B1 (en) Spherical agglomerates based on zeolites, process for their production and their use in adsorption processes or in catalysis
JP2002519188A (en) Molecular sieve adsorbent for gas purification and method for producing the same
JPH05138016A (en) Molding containing dealminized zeolite y, method for its production and adsorbing body consisting of said molding
JP2002509788A (en) Molded zeolite, its production method and its use
RU2745299C1 (en) High-quality composite adsorbents with core-in-coated component for vsa / vpsa / psa systems
KR101005396B1 (en) Method for the production of deformed zeolites, and method for eliminating impurities from a gas stream
JPH0674136B2 (en) Zeolite compact and manufacturing method thereof
JPH11314913A (en) High strength low wear zeolite granule and its production
EP1427513A1 (en) Desiccant based on clay-bound zeolite, process for its preparation and its use
JPH0535090B2 (en)
JP4320797B2 (en) A-type zeolite bead molded body and method for producing the same
JPS6219363B2 (en)
JP2001226167A (en) Zeolite formed bead, production process of the same and adsorption/removal process using the same
JP2003002636A (en) Binder-less zeolite bead molding, manufacturing method for the same, and adsorbing and removing method using the same
JP2000210557A (en) Molded product containing x-type zeolite, manufacture and use application thereof
JPH11246282A (en) X-zeolite bead compact and its production
JP2004238209A (en) Microspherical zeolite molding
US3411888A (en) Agglomeration of naturally occurring zeolites
JP2006182623A (en) Core-cell type zeolite formed article
JP3772412B2 (en) Low-abrasion zeolite bead molded body and method for producing the same
JP2004123412A (en) Method for manufacturing zeolite microsphereic formed body
Ugal et al. Preparation of zeolite type 13X from locally available raw materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees