JPS6219363B2 - - Google Patents

Info

Publication number
JPS6219363B2
JPS6219363B2 JP13979679A JP13979679A JPS6219363B2 JP S6219363 B2 JPS6219363 B2 JP S6219363B2 JP 13979679 A JP13979679 A JP 13979679A JP 13979679 A JP13979679 A JP 13979679A JP S6219363 B2 JPS6219363 B2 JP S6219363B2
Authority
JP
Japan
Prior art keywords
zeolite
urea
pellets
molded
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13979679A
Other languages
Japanese (ja)
Other versions
JPS5663818A (en
Inventor
Kojiro Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Original Assignee
Kanto Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc filed Critical Kanto Chemical Co Inc
Priority to JP13979679A priority Critical patent/JPS5663818A/en
Publication of JPS5663818A publication Critical patent/JPS5663818A/en
Publication of JPS6219363B2 publication Critical patent/JPS6219363B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゼオライト成型体の新規な製造法に関
する。さらに詳しく言えば、本発明は、機械的強
度の優れた耐摩耗性の大きいゼオライト成型体の
製造法に関する。 アルミノシリケートを主成分として構成される
各種の天然又は合成のゼオライトは、その吸着性
能を利用して各種ゼオライトの特性に応じた用途
をもつて、工業的に多くの分野で使用されてい
る。ところで、一般にそれらのゼオライト自体
は、粒子間の凝集性は、余り大きくなく工業上の
使用にあたつては、そのままの小塊粒等の状態で
使用されることは希であり多くの場合は、ゼオラ
イトの造粒、成型を行つてペレツト、タブレツ
ト、小球その他の適当な粒状形態に成型し、それ
らを焼成して、成型体とし、機械的強度を高めて
使用されている。通常行われるゼオライトの造
粒、成型工程は、大別すると混合、成型、乾燥、
焼成(焼結)の4工程よりなる。すなわち、混合
工程においては、ボールミル、ロツドミル等の粉
砕機を用いて粉砕して得られたゼオライト粉末に
適当な結合剤例えばカオリン、ベントナイト、酸
性白土等の粘土物質系の無機系結合剤や、必要に
応じ分散剤、滑沢剤、押し出し助剤等の添加助剤
を加えて水分の存在下に湿式混錬を行つて均質な
混合物を造り次の成型工程ではこの混合物を適当
な形状を有する中間的凝集体に成型する。さらに
乾燥工程ではこの中間的凝集体を乾燥して大部分
の水分を除去し、次いで、焼成工程に於ては各種
ゼオライトの性質に応じて適当な温度範囲を選択
してその温度領域で焼成を行つて、最終的にゼオ
ライト成型体を得ている。ところで、従来、ゼオ
ライト成型体の製造に際しては、結合剤として前
述の如く無機系の粘土物質が多く使用されている
が、此等の結合剤の使用により、ゼオライトの凝
集体または成型体を構成している粒子相互間の結
合力は増大するが、最終製品のゼオライト成型体
中に構成成分として残留、分布している粘土系物
質の量に応じて本来の吸着性能やイオン変換性能
が低下するという欠点がある。また使用するゼオ
ライト素材の種類によつては粘土系物質のみを結
合剤として用いた場合においてゼオライト成型体
は水分の吸着量の増大につれて機械的強度が次第
に弱くなりさらに水分飽和状態に近づくと急速に
成型体の強度が低下して遂には細粉化してしまう
いわゆる劣化現象が見られる。 これら従来のゼオライト成型体の製造における
欠点を改良してゼオライト本来の吸着性能を出来
るだけ長期間持続させ、しかも種々の工業的用途
に耐えうる機械的強度の優れた耐摩耗性の大きな
ゼオライト成型体を得るための製造法を開発する
ことは重要な課題とされていた。本発明者は、か
かる従来法の欠点を解消すべくゼオライト成型体
の改良を種々研究した結果、本発明によりゼオラ
イトに水分の存在する状態で尿素を混和し、その
混和物を成型し、乾燥し、360〜730℃の温度で焼
成することにより機械的強度の優れた耐摩耗性の
大きなゼオライト成型体が得られることを見出し
た。本発明はかかる知見に基づくものである。 したがつて、本発明はまず第一に粉状もしくは
粒状の天然又は合成のゼオライトに、水分の存在
する状態において尿素を混和し、その混和物を成
型し、得られた成型体を乾燥し、次いで360℃な
いし730℃の温度で焼成することを特徴とするゼ
オライト成型体の製造法(以下第一法と記す)を
提供するものである。 本発明者はまた上記の製造法において、尿素を
混和する際に公知の粘土物質系結合剤を併用する
と、尿素を混和することにより得られる効果に加
えて、粘土物質系結合剤の使用量を著しく減少し
得る効果が得られることを見出した。 したがつて本発明は第二に、粉状もしくは粒状
の天然又は合成のゼオライトに水分の存在する状
態において、粘土系結合剤と尿素とを混和し、そ
の混和物を成型し、得られた成型体を乾燥し、次
いで360°〜730℃の温度で焼成することを特徴と
するゼオライト成型体の製造法(以下第二法と記
す)を提供するものである。 以下に本発明を詳細に説明する。 本発明のゼオライト成型体の製造法は基本的に
は、粉状もしくは粒状の天然又は合成のゼオライ
トに、水分の存在する状態において尿素を混和
し、その混和物を成型し、得られた成型体を乾燥
し、次いで360℃ないし730℃の温度で焼成するこ
とを特徴とするものであるが、上述の第一法、第
二法を通じて、本発明方法で素材として使用する
ゼオライトは天然品または合成品のいずれでも差
支えない。ゼオライトは周知の如く多孔性のアル
ミノシリケートの3次元構造を有する結晶物質よ
り構成されているものであるが、その結晶形はゼ
オライトの種類により異なるものである。天然の
ゼオライトとしてはクリノプチロライト、モルデ
ナイト、チヤバサイト、エリオナイト、フイリプ
サイト、方フツ石等が、また合成ゼオライトとし
てはA−型ゼオライト(例:MS−3A、4A、
5A)、X−型ゼオライト(例:MS−13X)、Y−
型ゼオライト、合成モルデナイト等が代表的な例
として挙げられる。これらのゼオライトは通常粉
状ないしは粒状で使用される。 本発明方法においては、粉状ないし粒状の天然
または合成のゼオライト素材に尿素を加え、含水
率を適当に保持して湿式混和を行い、得られた混
和物をペレツト、タブレツト等の適当な形状に成
型する。次に成型体の乾燥を行つて付着水の大部
分を除去し、最終的に360゜〜730℃の温度域で成
型体を焼成する。上述の混和に際し、使用される
天然または合成ゼオライトの素材の形状は微粒子
状ないし微粉体状が好ましく、少くとも20メツシ
ユ以上の細かい粒子が望ましい。かかる形状のゼ
オライトは天然ゼオライトの場合は乾燥した塊状
品を適当な粉砕機により粉砕すれば容易に得ら
れ、また、合成ゼオライトの場合は上記の20メツ
シユより遥かに細かい粉末が合成時に得られるの
で、粉砕することなしに、合成粉末をそのまま成
型時の素材として使用すればよい。本発明方法に
おける湿式混錬に際してはゼオライト素材に対し
て尿素を添加して水分の存在する状態においてニ
ーダー(混和機)を用いて適当な時間混錬する。
尿素の添加量は、0.5〜15%(重量)が好まし
い。使用するゼオライト素材により水添加量が混
和時間も当然異なるが、通常の場合1〜5時間
で、均質の混合物を得ることが可能である。 上述の尿素の添加に際しては予め尿素の溶液を
調製してこれをゼオライト素材に添加して混錬を
行へば、尿素添加剤のゼオライト相への分散が好
ましい均一の状態となる利点がある。また混錬工
程ではゼオライト素材の種類に応じて水の添加量
も異なるが、例えば天然のゼオライト系粉末を使
用するときは25〜35%程度に、また合成のA−型
ないしX型ゼオライトを使用するときは、水分を
29〜40%程度に保持して混錬を1.5〜3時間実施
することが好ましい条件として推奨される。 本発明方法においてはゼオライトと尿素とを水
分の存在する状態で混和して成型することにより
成型体中には可成りの水分が含有されているので
まず、通常の100℃前後の乾燥を行つて成型体中
の付着水分を除去し、次いで最終的な焼成を360
゜〜730℃で行つて最終製品を得るものである。
焼成工程の前段階で上述のような成型体の乾燥を
行わずに湿つた成型体を急激に焼成温度に加熱す
ると成型体に各種大きさの亀裂が入るのみなら
ず、多量の水分存在下の加熱のためにゼオライト
の結晶構造の劣化や破壊が起る。 本発明方法においてゼオライトに尿素を混和す
ることは以下に述べるように著しい特徴的利点を
もたらす。すなわち、本発明の方法においては、
混錬工程で添加された尿素はゼオライト粒子の表
面あるいは粒子間に分散し、次の乾燥工程および
焼成工程において尿素が加水分解、熱分解して CO(NH22+H2O→CO2+2NH3 の如き分解反応が起る。この分解反応の結果生成
する物質CO2、NH3は、いずれも気体であるの
で、発泡現象によりゼオライトの成型体は、さら
に多孔性が増大することとなり比表面積や細孔容
積も極めて好ましい方向に増大する。使用した尿
素は加熱工程によりゼオライト成型体相より気体
となつて完全に発散してしまうため、ゼオライト
成型体自体の構造中には残存物質を遺留しないこ
ととなる。その結果最終製品ゼオライトの吸着性
能に影響を与えることはない。このことは、従来
の無機系の結合剤の使用がゼオライト粒子間の結
合力を強める効果が得られる半面において最終製
品中に残存し、吸着性能を低下させるという結果
をもたらすことに比較すると本発明の特徴的利点
として特記すべきものである。 前述の第二法は、基本的には第一法の要領と同
様に実施かれるが、尿素の使用量はゼオライト素
材に対して0.3〜12%、また粘土物質系結合剤の
使用量はゼオライト素材に対して17%以下が好ま
しい量である。 第二法においても、尿素添加の効果は前述のと
おりであるが、尿素を使用することにより粘土系
結合剤の使用量を著しく減少させることができ
る。 以下に本発明の実施例を掲げるが、本発明はこ
れら実施例により限定されるものではない。 実施例 1 本実施例は本発明の第2の成型法にもとづいて
粘土物質としてベントナイトを使用し、これと尿
素の存在下にゼオライトの成型を実施した例であ
る。 合成ゼオライトの粉末(粒径:200メツシユよ
り細かい粉末;化学組成:1.02Na2O・Al2O3
1.99SiO2・xH2O;A−型ゼオライト;ミクロポ
ア−4Å)の105゜〜110℃乾燥品約4Kgに150メ
ツシユより細かいベントナイト粉末結合剤を8.1
%添加してV−ミキサーを用いて約3時間に亘る
混合を実施した。次に上記混合物に4%尿素溶液
を加えて混錬機を用いて約2時間湿式混和を行つ
た。この場合含水率は約33%に保持した。混和工
程終了後、成型機を用いて1/8″ペレツト(径:3
mm;長さ:5〜7mm)に成型し、次いで成型ペレ
ツトの乾燥を105゜〜110℃で行つた。引続き乾燥
ペレツトの焼成を510℃で3時間実施して最終製
品であるペレツト焼成体を得た。 焼成ペレツトの硬度試験……本例で得られた焼
成済1/8″ペレツトの抜き取り検査を実施して機械
的強度の測定を行つた。その結果硬度平均値とし
て6.35Kg荷重/ペレツトを得た。一方本実施例に
使用したゼオライトと同種類に属する市販MS−
4A1/8″ペレツトを用いて上記と全く同一法で機
械的強度を測定し、ペレツトの平均硬度値として
5.23Kg荷重/ペレツトを得た。さらに上記市販品
の再焼成を本実施例と全く同一条件(510℃;3
時間)で実施してこれの硬度を抜き取り方式で測
定して平均値として5.74Kg荷重/ペレツトを得
た。本発明の第2の成型法により得られる焼成済
み1/8″ペレツト成型体は、上述の比較よりも明か
に市販品に比較してより優れた強度を有すること
は明白である。 焼成ペレツトの吸着性能試験……本実施例で得
られた焼成済みの1/8″ペレツトを用いて吸着剤と
しての性能評価試験を行つた。即ち上記吸着剤を
加熱活性化後、水分の吸着能を測定して第1表記
載の結果を得た。表には一定水蒸気圧(mmHg)
下に於ける水の
The present invention relates to a novel method for producing zeolite molded bodies. More specifically, the present invention relates to a method for producing a zeolite molded body having excellent mechanical strength and high wear resistance. Various natural or synthetic zeolites mainly composed of aluminosilicate are used in many industrial fields, taking advantage of their adsorption performance and having applications depending on the characteristics of the various zeolites. By the way, in general, these zeolites themselves do not have very high cohesiveness between particles, and when used industrially, they are rarely used as they are in the form of small agglomerates, etc., and in many cases, Zeolite is granulated and molded into pellets, tablets, spherules, and other suitable granular forms, which are then fired to form molded bodies that have increased mechanical strength and are used. The commonly performed zeolite granulation and molding processes can be roughly divided into mixing, molding, drying,
It consists of four steps: firing (sintering). That is, in the mixing step, zeolite powder obtained by pulverization using a pulverizer such as a ball mill or a rod mill is mixed with a suitable binder, such as an inorganic binder based on a clay material such as kaolin, bentonite, or acid clay, or as necessary. Depending on the requirements, additives such as dispersants, lubricants, and extrusion aids are added, and wet kneading is performed in the presence of water to create a homogeneous mixture. In the next molding process, this mixture is transformed into an intermediate having an appropriate shape. Form into a target agglomerate. Furthermore, in the drying process, this intermediate aggregate is dried to remove most of the moisture, and then in the calcination process, an appropriate temperature range is selected depending on the properties of the various zeolites, and calcination is performed in that temperature range. Finally, we obtained a zeolite molded body. By the way, in the past, in the production of zeolite molded bodies, inorganic clay materials have often been used as binders as described above, but the use of such binders makes it possible to form zeolite aggregates or molded bodies. Although the bonding force between particles increases, the original adsorption performance and ion conversion performance decrease depending on the amount of clay-based substances that remain and are distributed as constituents in the final zeolite molded product. There are drawbacks. Also, depending on the type of zeolite material used, when only clay-based materials are used as a binder, the mechanical strength of the zeolite molded body gradually weakens as the amount of water adsorption increases, and then rapidly decreases as it approaches water saturation. A so-called deterioration phenomenon is observed in which the strength of the molded product decreases and eventually becomes fine powder. By improving these drawbacks in the production of conventional zeolite molded bodies, we have created a zeolite molded body that maintains the inherent adsorption performance of zeolite for as long as possible, and has excellent mechanical strength and high abrasion resistance that can withstand various industrial applications. Developing a manufacturing method to obtain it was considered an important issue. As a result of various studies on improving zeolite molded bodies in order to eliminate the drawbacks of such conventional methods, the present inventor has found that, according to the present invention, urea is mixed with zeolite in the presence of water, the mixture is molded, and dried. We have found that a zeolite molded body with excellent mechanical strength and high wear resistance can be obtained by firing at a temperature of 360 to 730°C. The present invention is based on this knowledge. Therefore, the present invention first involves mixing urea with powdered or granular natural or synthetic zeolite in the presence of moisture, molding the mixture, and drying the resulting molded product. The present invention provides a method for producing a zeolite molded body (hereinafter referred to as the first method), which is characterized in that the method is then fired at a temperature of 360°C to 730°C. The present inventor also found that in the above production method, when a known clay-based binder is used in combination with urea, in addition to the effect obtained by mixing urea, the amount of clay-based binder used can be reduced. It has been found that the effect can be significantly reduced. Therefore, the second aspect of the present invention is to mix a clay-based binder and urea in powdered or granular natural or synthetic zeolite in the presence of water, mold the mixture, and mold the resulting molded product. The present invention provides a method for producing a molded zeolite body (hereinafter referred to as the second method), which is characterized in that the body is dried and then calcined at a temperature of 360° to 730°C. The present invention will be explained in detail below. The method for producing a zeolite molded body of the present invention basically involves mixing urea with powdered or granular natural or synthetic zeolite in the presence of moisture, molding the mixture, and producing a molded body. The zeolite used as a raw material in the method of the present invention is a natural product or a synthetic material. Any product is acceptable. As is well known, zeolite is composed of a crystalline substance having a three-dimensional structure of porous aluminosilicate, and its crystal form differs depending on the type of zeolite. Natural zeolites include clinoptilolite, mordenite, chaabasite, erionite, filipsite, and calalite, and synthetic zeolites include A-type zeolites (e.g., MS-3A, 4A,
5A), X-type zeolite (e.g. MS-13X), Y-
Typical examples include type zeolite and synthetic mordenite. These zeolites are usually used in powder or granule form. In the method of the present invention, urea is added to a powdered or granular natural or synthetic zeolite material, wet mixing is performed while maintaining an appropriate moisture content, and the resulting mixture is formed into an appropriate shape such as pellets or tablets. Mold. Next, the molded body is dried to remove most of the adhering water, and finally the molded body is fired in a temperature range of 360° to 730°C. In the above-mentioned mixing, the shape of the natural or synthetic zeolite used is preferably in the form of fine particles or fine powder, preferably fine particles of at least 20 meshes or more. In the case of natural zeolite, such a shape of zeolite can be easily obtained by pulverizing a dry lump with an appropriate pulverizer, and in the case of synthetic zeolite, a powder much finer than the 20 mesh mentioned above can be obtained during synthesis. The synthetic powder can be used as a raw material for molding without being pulverized. In wet kneading in the method of the present invention, urea is added to the zeolite material and kneaded for an appropriate time using a kneader in the presence of moisture.
The amount of urea added is preferably 0.5 to 15% (by weight). Although the amount of water added and the mixing time naturally vary depending on the zeolite material used, it is usually possible to obtain a homogeneous mixture in 1 to 5 hours. When adding the above-mentioned urea, if a solution of urea is prepared in advance and added to the zeolite material and kneaded, there is an advantage that the urea additive can be uniformly dispersed in the zeolite phase. Additionally, in the kneading process, the amount of water added varies depending on the type of zeolite material; for example, when using natural zeolite powder, it is around 25 to 35%, and when using synthetic A-type or X-type zeolite, the amount of water added varies. When doing so, drink water
It is recommended as a preferable condition that the content be maintained at about 29 to 40% and kneading is carried out for 1.5 to 3 hours. In the method of the present invention, since zeolite and urea are mixed and molded in the presence of moisture, the molded product contains a considerable amount of water, so first, it is dried at a normal temperature of around 100°C. The moisture adhering to the molded body is removed, and the final firing is then carried out at 360°C.
The process is carried out at a temperature of ~730°C to obtain the final product.
If a wet molded body is rapidly heated to the firing temperature without drying the molded body as described above before the firing process, not only will the molded body crack of various sizes, but it will also crack in the presence of a large amount of moisture. The heating causes deterioration and destruction of the zeolite crystal structure. The incorporation of urea into the zeolite in the process according to the invention offers significant specific advantages as described below. That is, in the method of the present invention,
The urea added in the kneading process is dispersed on the surface of the zeolite particles or between the particles, and in the next drying process and calcination process, the urea is hydrolyzed and thermally decomposed to form CO(NH 2 ) 2 +H 2 O→CO 2 +2NH. A decomposition reaction like 3 occurs. Since the substances CO 2 and NH 3 produced as a result of this decomposition reaction are both gases, the porosity of the zeolite molded body further increases due to the foaming phenomenon, and the specific surface area and pore volume also become extremely favorable. increase Since the urea used becomes a gas from the zeolite molded body phase during the heating process and is completely released, no residual substance remains in the structure of the zeolite molded body itself. As a result, the adsorption performance of the final product zeolite is not affected. This is because the use of conventional inorganic binders has the effect of strengthening the bonding force between zeolite particles, but it remains in the final product, resulting in a decrease in adsorption performance. This is a characteristic advantage that deserves special mention. The second method mentioned above is basically carried out in the same manner as the first method, but the amount of urea used is 0.3 to 12% based on the zeolite material, and the amount of clay-based binder used is different from the zeolite material. A preferable amount is 17% or less. In the second method, the effect of adding urea is as described above, but by using urea, the amount of clay-based binder used can be significantly reduced. Examples of the present invention are listed below, but the present invention is not limited by these Examples. Example 1 This example is an example in which bentonite was used as the clay material based on the second molding method of the present invention, and zeolite was molded in the presence of bentonite and urea. Synthetic zeolite powder (particle size: finer than 200 mesh; chemical composition: 1.02Na 2 O・Al 2 O 3
Add bentonite powder binder finer than 150 mesh to about 4 kg of 1.99SiO 2 xH 2 O; A-type zeolite; micropore-4Å) dried at 105° to 110°C.
% and mixing was carried out using a V-mixer for about 3 hours. Next, a 4% urea solution was added to the above mixture, and wet mixing was performed for about 2 hours using a kneader. In this case, the moisture content was maintained at approximately 33%. After the mixing process is completed, a molding machine is used to make 1/8" pellets (diameter: 3
mm; length: 5 to 7 mm), and then the molded pellets were dried at 105° to 110°C. Subsequently, the dried pellets were fired at 510°C for 3 hours to obtain a final product, a fired pellet. Hardness test of fired pellets...The fired 1/8" pellets obtained in this example were sampled and inspected to measure their mechanical strength. As a result, an average hardness value of 6.35 kg load/pellet was obtained. On the other hand, commercially available MS-
Mechanical strength was measured using exactly the same method as above using 4A1/8" pellets, and the average hardness value of the pellets was
A load of 5.23Kg/pellet was obtained. Furthermore, the above commercial product was re-fired under exactly the same conditions as in this example (510°C;
The hardness of the pellet was measured using a sampling method, and an average value of 5.74 kg load/pellet was obtained. It is clear that the fired 1/8" pellet molded body obtained by the second molding method of the present invention has clearly superior strength compared to the commercially available product than the above comparison. Adsorption performance test: A performance evaluation test as an adsorbent was conducted using the calcined 1/8'' pellets obtained in this example. That is, after the above-mentioned adsorbent was activated by heating, the water adsorption ability was measured and the results shown in Table 1 were obtained. The table shows constant water vapor pressure (mmHg)
water below

【表】 吸着量をmg/g−吸着剤の単位で示してある。表
記の値は同質系の市販吸着剤例えばMS−4A、1/
8″ペレツトの水分吸着能と比較して本発明法で得
られる成型体が少くとも同等の性能を示すことを
表わしている。 本実施例よりも明かに本発明の第2の方法を実
施することにより、好ましいペレツト強度と吸着
性能を有する最終成型体製品が得られる。なお本
成型に際してはベントナイトと尿素を併用してい
るために、ベントナイトの使用量が従来の公知の
方法に比較して極端に減少出来る効果のあること
は本実施例よりも明白である。 実施例 2 本実施例は本発明の第1の成型法にもとづいて
尿素の存在下に天然ゼオライトの成型を実施した
例である。天然ゼオライトとしては天然のモルデ
ナイト粉末の乾燥品を約5Kg使用した。成型に使
用したゼオライトは下記の粒径と化学組成を有す
るものを使用した。 成型に使用した天然モルデナイト粉末乾燥品 粒度分布:100〜250メツシユ(76.9%);250
メツシユパス(23.1%) 化学組成:SiO2(71.88%);Al2O3(12.01
%);NO2O(1.59%);K2O
(1.56%);CaO(2.35%);MgO
(0.14%);其の他の成分(重金属
酸化物、結晶水等)モル比:
SiO2/Al2O3〓10 上記の天然モルデナイト粉末(乾燥品)約5Kg
に3%尿素溶液を加えて混錬機を用いて2時間30
分に亘る湿式混和を行つた。この場合含水率は36
%に保つた。混和工程終了後、成型機を用いて1/
8″ペレツト(径:3mm;長さ:5〜7mm)に成型
し次いで成型ペレツトの乾燥を105゜〜110℃で実
施した。引続き乾燥ペレツトの焼成を540゜〜560
℃で3時間30分実施して最終製品ペレツト焼成体
を得た。 焼成ペレツトの硬度試験……本例で得られた焼
成済1/8″ペレツトの硬度試験を、実施例1に準じ
て抜き取り検査を行つて硬度平均値として13.96
Kg荷重/ペレツトを得た。上記硬度値は、本発明
の第1の成型法により極めて機械的強度の優れた
吸着剤ペレツトが得られることを示しており、か
かる強度は工業的使用に際して充分過ぎる程の値
である。 焼成ペレツトの吸着性能試験……本実施例で得
られた焼成済み1/8″ペレツトを用いて吸着剤とし
ての性能評価試験を行つた。即ち上記の成型法で
得られた吸着剤を加熱活性化後これを用いてアム
モニヤガスに対する飽和吸着量を25℃にて測定し
て第2表記載の結果を得た。表には一定NH3−圧
(mmHg)下に於けるNH3−吸着量をmg/g−吸着
剤の単位で表示した。
[Table] The amount of adsorption is shown in units of mg/g-adsorbent. The values shown are for homogeneous commercially available adsorbents such as MS-4A, 1/
This shows that the molded product obtained by the method of the present invention exhibits at least the same performance as the water adsorption capacity of 8" pellets. It is clearer that the second method of the present invention is carried out than in this example. As a result, a final molded product with favorable pellet strength and adsorption performance can be obtained.In addition, since bentonite and urea are used together in this molding, the amount of bentonite used is extremely large compared to conventional known methods. It is clearer than this example that there is an effect of reducing urea.Example 2 This example is an example in which natural zeolite was molded in the presence of urea based on the first molding method of the present invention. Approximately 5 kg of dried natural mordenite powder was used as the natural zeolite.The zeolite used for molding had the following particle size and chemical composition.Dried natural mordenite powder used for molding Particle size distribution: 100-250 meshes (76.9%); 250
Metsuyupath (23.1%) Chemical composition: SiO 2 (71.88%); Al 2 O 3 (12.01
%); NO2O (1.59%); K2O
(1.56%); CaO (2.35%); MgO
(0.14%); Molar ratio of other components (heavy metal oxides, water of crystallization, etc.):
SiO 2 /Al 2 O 3 〓10 The above natural mordenite powder (dry product) approx. 5Kg
Add 3% urea solution to the mixture and mix using a kneader for 2 hours30
Wet mixing was carried out for several minutes. In this case the moisture content is 36
%. After the mixing process, use a molding machine to
The pellets were formed into 8" pellets (diameter: 3 mm; length: 5-7 mm) and then dried at 105° to 110°C. The dried pellets were then calcined at 540° to 560°C.
C. for 3 hours and 30 minutes to obtain a final pellet fired product. Hardness test of fired pellets...The hardness test of the fired 1/8" pellets obtained in this example was conducted according to Example 1, and the average hardness value was 13.96.
Kg load/pellet was obtained. The above hardness values indicate that adsorbent pellets with extremely excellent mechanical strength can be obtained by the first molding method of the present invention, and this strength is more than sufficient for industrial use. Adsorption performance test of calcined pellets: A performance evaluation test as an adsorbent was conducted using the calcined 1/8" pellets obtained in this example. That is, the adsorbent obtained by the above molding method was heated and activated. After the reaction, the saturated adsorption amount of ammonia gas was measured at 25 °C, and the results shown in Table 2 were obtained. Expressed in units of mg/g-adsorbent.

【表】 本実施例で得られた1/8″ペレツトと本成型に使
用した天然モルデナイト素材の性能を比較するた
めに下記の試験を行つた。即ち実施例2に使用し
たと同一の天然モルデナイト粉末を試料として採
取し、これを550℃で加熱活性化後、アムモニヤ
ガスに対する吸着等温線(25℃)を求めた。一方
第2表の測定値より1/8″ペレツト使用時のアムモ
ニヤガスに対する吸着等温線(25℃)を求めた。
両者の吸着等温線は実験誤差内で完全に一致する
ことが判明した。これよりみても尿素を使用する
本発明の効果は明かである。 実施例 3 本実施例は天然ゼオライトとしてクリノプチロ
ライトを使用して実施例2に準じて成型を行つた
例である。成型方法は実施例2と基本的に同じで
あるので要点のみを下記に記載する。 成型用クリノプチロライト素材 粉末(乾燥品;200メツシユより細かい粉
末); X−線回折(クリノプチロライトの回折線と本
素材は全く一致) 成型方法の要旨 3%尿素溶液使用 含水率(混錬終了時):34% 湿式混和時間:2時間 1/8″ペレツトの乾燥温度:105゜〜110℃ 1/8″ペレツトの焼成:540℃(4時間) 1/8″ペレツト(焼成済み)の硬度平均値:7.28Kg
荷重/ペレツト 実施例3で得られた1/8″ペレツト(焼成済み;
径:3mm;長さ:5〜7mm)の活性化品は窒素ガ
スに対して下記の吸着量(25℃)を示した。 但し吸着量の単位 25℃に於けるN2−吸着量 1.51(30.9mmHg);6.03(220.1mmHg);13.9
(760.0mmHg)はN2ml/g−吸着剤(ペレツト)
(NTP)であり括弧内は測定時の窒素圧(mmHg)
を示している。一方本成型で使用したと同一のク
リノプチロライト粉末を540℃で加熱活性化し
て、これに対する窒素ガスの吸着等温線(25℃)
を求めた。その結果上述のペレツトを使用した3
点の測定値はクリノプチロライトの粉末の吸着等
温線に誤差以内でのつて来ることが判明した。
[Table] In order to compare the performance of the 1/8" pellet obtained in this example and the natural mordenite material used in this molding, the following test was conducted. Namely, the same natural mordenite material used in Example 2 was used. A powder was taken as a sample, and after heating and activation at 550°C, the adsorption isotherm for ammonia gas (25°C) was determined. On the other hand, from the measured values in Table 2, the adsorption isotherm for ammonia gas when using 1/8" pellets was determined. The line (25℃) was determined.
It was found that the two adsorption isotherms matched perfectly within experimental error. From this, the effects of the present invention using urea are clear. Example 3 This example is an example in which clinoptilolite was used as the natural zeolite and molding was carried out in accordance with Example 2. Since the molding method is basically the same as in Example 2, only the main points will be described below. Clinoptilolite material for molding Powder (dry product; powder finer than 200 mesh); At the end of kneading): 34% Wet mixing time: 2 hours Drying temperature for 1/8″ pellets: 105° to 110°C Calcining of 1/8″ pellets: 540°C (4 hours) 1/8″ pellets (baked) ) hardness average value: 7.28Kg
Load/Pellet 1/8″ pellets obtained in Example 3 (calcined;
The activated product (diameter: 3 mm; length: 5-7 mm) showed the following adsorption amount (at 25°C) for nitrogen gas. However, the unit of adsorption amount is N 2 − adsorption amount at 25℃ 1.51 (30.9 mmHg); 6.03 (220.1 mmHg); 13.9
(760.0mmHg) is N 2 ml/g - adsorbent (pellet)
(NTP), and the value in parentheses is the nitrogen pressure at the time of measurement (mmHg)
It shows. On the other hand, the same clinoptilolite powder used in the main molding was activated by heating at 540℃, and the adsorption isotherm of nitrogen gas (25℃) for it was
I asked for As a result, 3 using the above pellets
It was found that the measured values at the points followed the adsorption isotherm of clinoptilolite powder within error.

Claims (1)

【特許請求の範囲】 1 粉状もしくは粒状の天然又は合成のゼオライ
トに、水分の存在する状態において尿素を混和
し、その混和物を成型し、得られた成型体を乾燥
し、次いで360℃ないし730℃の温度で焼成するこ
とを特徴とするゼオライト成型体の製造法。 2 粉状もしくは粒状の天然又は合成のゼオライ
トに、水分の存在する状態において、粘土系結合
剤と尿素とを混和し、その混和物を成型し、得ら
れた成型体を乾燥し、次いで360°〜730℃の温度
で焼成することを特徴とするゼオライト成型体の
製造法。
[Claims] 1. Urea is mixed with powdered or granular natural or synthetic zeolite in the presence of moisture, the mixture is molded, the resulting molded product is dried, and then heated at 360°C or A method for producing a zeolite molded body characterized by firing at a temperature of 730°C. 2. Powdered or granular natural or synthetic zeolite is mixed with a clay binder and urea in the presence of moisture, the mixture is molded, the resulting molded body is dried, and then 360° A method for producing a zeolite molded body characterized by firing at a temperature of ~730°C.
JP13979679A 1979-10-31 1979-10-31 Manufacture of zeolite molded body Granted JPS5663818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13979679A JPS5663818A (en) 1979-10-31 1979-10-31 Manufacture of zeolite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13979679A JPS5663818A (en) 1979-10-31 1979-10-31 Manufacture of zeolite molded body

Publications (2)

Publication Number Publication Date
JPS5663818A JPS5663818A (en) 1981-05-30
JPS6219363B2 true JPS6219363B2 (en) 1987-04-28

Family

ID=15253617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13979679A Granted JPS5663818A (en) 1979-10-31 1979-10-31 Manufacture of zeolite molded body

Country Status (1)

Country Link
JP (1) JPS5663818A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124539A (en) * 1982-01-19 1983-07-25 Toray Ind Inc Adsorbent for separating gas
JPH026846A (en) * 1989-02-17 1990-01-11 Hagiwara Giken:Kk Production of molded body of oxygen-nitrogen separating agent made of zeolite composition
US7135127B2 (en) 1999-12-13 2006-11-14 Süd-Chemie AG Laminated pressed articles
DE19959957A1 (en) * 1999-12-13 2001-06-21 Sued Chemie Ag Platelet-shaped compacts
US20030015687A1 (en) 2001-01-08 2003-01-23 Sud-Chemie Ag Plate-shaped pressed bodies
DE102004024676A1 (en) * 2004-05-18 2005-12-15 Süd-Chemie AG Film-type sorbent-containing compositions
DE102004050562A1 (en) * 2004-10-15 2006-05-04 Henkel Kgaa Absorbable particles
CN101844776B (en) * 2010-05-26 2012-01-25 郑州大学 Kaolinite lamellar crystal and preparation method thereof

Also Published As

Publication number Publication date
JPS5663818A (en) 1981-05-30

Similar Documents

Publication Publication Date Title
JP4244808B2 (en) Method for producing molecular sieve adsorbent blend
KR0146503B1 (en) Polyfunctional granular molecular sieve composition
JP2005515876A6 (en) Method for producing molecular sieve adsorbent blend
US20050272594A1 (en) Lithium exchanged zeolite X adsorbent blends
JP4890444B2 (en) Granules comprising porous particles containing calcium and / or magnesium
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
JP3799678B2 (en) High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same
KR101203258B1 (en) BaX TYPE ZEOLITE GRANULE AND PROCESS FOR PREPARING THE SAME
JPS6219363B2 (en)
US4239655A (en) Process for the production of bonded zeolite bodies
EP0502301B1 (en) Composition and method of making high porosity, high strength compositions
JPH11314913A (en) High strength low wear zeolite granule and its production
US3917544A (en) Agglomerated adsorbent products of molecular sieve grains
JP4660876B2 (en) Method for producing zeolite bead compact
JP4320797B2 (en) A-type zeolite bead molded body and method for producing the same
KR0124983B1 (en) Preparation of granule of mixed molecular sieve
JP2881875B2 (en) High strength molded activated carbon
JPS5926923A (en) Preparation of formed zeolite
JPH11246282A (en) X-zeolite bead compact and its production
JP5103692B2 (en) Zeolite bead molded body, method for producing the same, and adsorption removal method using the same
JP4517406B2 (en) Low-silica X-type zeolite bead molded body and method for producing the same
JP2003154261A (en) Formed adsorbent and production method thereof
JPS6068052A (en) Zeolite composition suitable for separating oxygen and nitrogen and manufacture of its molded body
JPH06114275A (en) Production of ion exchange functional material
JPH0443696B2 (en)