JPH0482083B2 - - Google Patents

Info

Publication number
JPH0482083B2
JPH0482083B2 JP33183387A JP33183387A JPH0482083B2 JP H0482083 B2 JPH0482083 B2 JP H0482083B2 JP 33183387 A JP33183387 A JP 33183387A JP 33183387 A JP33183387 A JP 33183387A JP H0482083 B2 JPH0482083 B2 JP H0482083B2
Authority
JP
Japan
Prior art keywords
casting
slurry
molded
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33183387A
Other languages
Japanese (ja)
Other versions
JPH01171805A (en
Inventor
Takeshi Fukuda
Noboru Kondo
Muneyuki Iwabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP33183387A priority Critical patent/JPH01171805A/en
Publication of JPH01171805A publication Critical patent/JPH01171805A/en
Publication of JPH0482083B2 publication Critical patent/JPH0482083B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセラミツクス成形物の製造方法に関す
る。 〔従来技術〕 近年、フアインセラミツクスの粉体を原料とす
るセラミツクス成形物においては金属材料、有機
材料からなる成形物に比して優れた機械的、化学
的、熱的特性が注目され、各種の分野でその用途
開発がなされている。 しかして、セラミツクス成形物において機械
的、熱的特性を向上させるには、均質かつ緻密で
微細な結晶構造を持つ焼結体であることが要求さ
れ、これに対処するにはセラミツクス原料が均質
かつ微細であることが必要であり、これに伴いセ
ラミツクス原料により一層の微粉末化が要求され
る。 一方、伝統的なセラミツクスの成形方法の一つ
として泥漿鋳込成形法があり、当該成形法は大
型、複雑な構造のセラミツクス成形物の成形法と
して適し、その重要性が再認識されている。 〔発明が解決しようとする課題〕 このように、セラミツクス成形物の機械的、熱
的特性を向上させるためにはセラミツクス原料の
微粉末化が必要であるが、セラミツクス成形物を
成形する面からすれば原料が微粉であるほどその
成形が難しい。特に、泥漿鋳込成形法において
は、セラミツクス原料が微粉であるほど内部欠陥
の少ない比較的均一な成形体を得ることが難し
く、次のごとき問題が生じる。 (a) 一般に、泥漿鋳込成形法においては、セラミ
ツクス粉末に有機結合剤(解膠剤、結合剤等)
および水を加えて泥漿化し、この泥漿を石膏、
樹脂等からなる鋳込用型に鋳込んで成形するも
のであり、鋳込みに先立つて成形体中に気孔等
による内部欠陥の発生を防止するために、泥漿
は脱気等の前処理に付される。しかしながら、
かかる方法により成形された成形体を乾燥、焼
成しても嵩密度、強度等の特性が十分に発現さ
れない。特にプレス成形にて得られた焼結体と
比較した場合には強度特性が劣り、鋳込成形に
て得られた焼結体では5〜20%の特性低下が認
められる。この特性低下の原因は、鋳込成形時
泥漿中の水分が鋳込型に吸収されて成形体とし
て固化する際、および乾燥工程において原料粒
子間に存在する水分が飛散した際に、成形体内
部に微細な気孔が内部欠陥として残存するため
と推定される。 (b) 泥漿鋳込成形法においては、離型時、乾燥時
成形体は収縮等により切れ、クラツク等の損傷
を発生させやすい。特に複雑かつ肉厚差の大き
い大型の成形体になるほど成形体の密度は不均
一になりやすく、密度差に起因して成形体の固
化、乾燥時の収縮率が異なり切れ、クラツク等
の損傷が発生しやすい。 (c) 鋳込成形体は有機結合剤を多く使用した場合
には仮焼されることが多いが、この場合添加し
た有機結合剤の燃焼によるガス発生時に成形体
に切れ、クラツク等の損傷が発生しやすい。特
に、セラミツクス原料が微粉になるほどその傾
向が強い。 従つて、本発明の目的は、例え大型、複雑な構
造であつても機械的、熱的特性の優れたセラミツ
クス成形物を製造する方法を確立することにあ
る。 〔課題を解決するための手段〕 本発明の第1の目的は、下記(イ)〜(ホ)の工程から
なるセラミツクス成形物の製造方法である。 (イ) セラミツクスの原料粉体を造粒する工程。 (ロ) 造粒工程にて得らえた造粒体に有機系結合剤
を添加して泥漿を調整する工程。 (ハ) 泥漿調整工程にて得られた泥漿を成形型に鋳
込む工程。 (ニ) 鋳込み工程にて得られた成形体を乾燥し、ア
イソスタテイツクプレスに付す工程。 (ホ) アイソスタテイツクプレス工程にて得られた
成形体を焼成する工程。 また、本発明は上記した発明において、鋳込み
工程にて得られた成形体を乾燥した後仮焼し、ア
イソスタテイツクプレスに付す製造方法である。 本発明の造粒工程(イ)においては、造粒法として
公知の下記の方法を採用することができる。すな
わち、(1)加湿した粉体に転動作用を付与して球形
粒子に凝集させる転動式造粒法、(2)原料粉体の一
定量を一定の大きさ、形状に圧縮成形して粒状物
を作る圧縮造粒法、(3)粉体を流動化させてこれに
スプレーノズルから液を噴霧し粒子表面を液コー
テイングして造粒する流動層造粒法、(4)スラリー
を加圧型ノズルまたは2流体ノズルを用いて微粉
化し造粒塔内で空冷固化して球状造粒物を得る噴
射造粒法、(5)原料粉体をスラリー化して噴霧乾燥
すると同時に造粒する噴霧乾燥造粒法等を採用し
得る。 これらの造粒法においては噴霧乾燥造粒法、流
動層造粒法が好ましい。また、造粒体の形状は特
に限定されるものではないが球状が好ましく、か
つ平均粒子径は10〜1000μm特に20〜100μmのも
のが好ましい。平均粒子径が10μm未満の場合に
は鋳込成形時の着肉時間が長くなり、かつ内部の
固化が遅くて均一な成形体が得られない。また、
乾燥時、仮焼時の水分の飛散や発生ガスの飛散が
不充分となる。一方、平均粒子径が1000μmを越
える場合には泥漿の調整が難しく、鋳込成形が行
えなくなる。 泥漿調整工程(ロ)においては、上記した造粒体を
用い有機結合剤を添加して泥漿が調整され、鋳込
み工程(ハ)においては石膏、樹脂等からなる鋳込型
に上記泥漿を常圧または加圧して鋳込む。所定の
着肉になつた時点で離型すれば成形体が得られ、
得られた成形体は乾燥され、必要により600〜800
℃で仮焼されてアイソスタテイツクプレスに付さ
れる。 アイソスタテイツクプレス工程(ニ)においては、
プレスに先立つて成形体の全面にラテツクス等を
塗布しかつ乾燥して全面を被覆し、数100〜数
1000Kg/cm2の圧力でアイソスタテイツクプレスに
付す。プレスされた成形体を最後の焼成工程(ホ)に
おいて常法により焼成するが、焼成条件は所望す
る特性に応じて適宜選定する。 〔発明の作用・効果〕 かかる製造方法によれば、セラミツクス原料と
して造粒体を採用していることから鋳込成形体の
可塑性が増大し、複雑かつ肉厚差のある成形体で
あつても未着肉部の発生や離型時の切れ等の損傷
の発生が少ない。また、成形体内での粒子間の間
隙が比較的大きいために乾燥成形体内の水分が蒸
発飛散され易く、水分の蒸発飛散に伴う収縮量が
少ないため乾燥時の成形体の切れ、クラツク等の
損傷が少ない。 鋳込成形体はアイソスタテイツクプレスに付さ
れて全面から等軸加圧されるため強固に結合し、
これを焼成して得られる焼結体であるセラミツク
ス成形物は機械的、熱的特性の優れたものとな
る。 仮焼を必要とする成形体においても、成形体内
での粒子間の間隙が比較的大きいことから有機結
合剤の燃焼により発生するガスが飛散し易く、ガ
ス発生に起因する切れ、クラツク等の損傷の発生
も少ない。 実施例 1 原料粉体として粘土系焼結助剤2wt%を含む平
均粒子径0.4μm、0.8μmのAl2O3、3mol%のY2O3
を含む平均粒子径0.4μm、0.8μmのZrO2の計4種
類を用い、これらを(1)噴霧乾燥造粒法、(2)流動層
造粒法、(3)圧縮像粒法により平均粒子径80μmの
造粒粉末を得る。(1)、(2)の造粒法においては有機
結合剤(カルボン酸系バインダー1wt%、ワツク
ス0.5wt%)を用い専用造粒装置にて、(3)の造粒
法においては各原料を氷のうに詰め1000Kg/cm2
圧力にてアイソスタテイツクプレス(CIP)に付
し、その後破砕し篩にて分級して造粒粉末を得
る。なお、比較のため(4)未造粒の粉末をも用い
る。 泥漿調整には有機結合剤(カルボン酸系バイン
ダー0.01〜0.9wt%、アクリル酸系バインダー0.01
〜0.9wt%)および消泡剤0.05wt%を用い、各造
粒粉末については混練機にて混合分散して泥漿化
し、また未造粒粉末についてはポツトミルにて混
合分散して泥漿化する。造粒粉末をポツトミルに
て混合分散すると造粒粉末が破壊するおそれがあ
つて好ましくなく、また未造粒粉末を混練機にて
混合分散すると均一混合し難い。 鋳込用テスト型は第1図aに示すもので上型1
と下型2とからなり、同テスト型を用いて5Kg/
cm2Gの圧力にて加圧鋳込成形し、得られた鋳込成
形体を温度80℃以下、湿度60%以上の恒温恒湿の
条件で乾燥を開始し、漸次湿度を下げて乾燥す
る。 乾燥後の成形体にはラテツクスを塗布して乾燥
し全面をゴム膜にて被覆し、次いで2000Kg/cm2
圧力でCIPに付す。CIPに付して成形体は1400℃
にて焼成され、第1図bに示す形状および寸法の
セラミツクス成形物10を得る。かかる成形物1
0から中心部11と外周部12のサンプルを切出
し、同サンプルの熱処理前後の曲げ強度を
JISR1601の4点曲げ試験法にて測定した。この
結果を第1表に示すとともに、判定基準としてプ
レス成形法にて得たサンプルの曲げ強度の値を示
す。なお、熱処理はオートクレーブ内で250℃飽
和水蒸気圧で行い、熱処理時間はAl2O3について
は500時間、ZrO2については250時間である。 同表を参照すると、造粒粉末を使用した場合は
未造粒粉末を使用した場合に比し熱処理前後の強
度が高く、かつ造粒法に関しては噴霧乾燥造粒法
を採用した場合にはプレス成形体の場合と同等の
強度が得られる。CIPに関しては、未造粒粉末の
場合ではあるがCIPの有無により強度に著しい差
異が認められ、CIPによる全面加圧により全面が
強固に圧縮されて強度が向上することが判る。原
料粉体の平均粒子径に関しては、粒子径0.8μmよ
り0.4μの方がμm強度が高いことが判る。
[Industrial Field of Application] The present invention relates to a method for manufacturing a ceramic molded article. [Prior art] In recent years, ceramic molded products made from fine ceramic powder have attracted attention for their superior mechanical, chemical, and thermal properties compared to molded products made of metal or organic materials. Applications are being developed in the following fields. Therefore, in order to improve the mechanical and thermal properties of a ceramic molded product, a sintered body with a homogeneous, dense, and fine crystal structure is required. It is necessary that the powder be fine, and as a result, the ceramic raw material is required to be made into a finer powder. On the other hand, one of the traditional methods for molding ceramics is the slurry casting method, and this molding method is suitable for molding ceramic moldings of large size and complicated structure, and its importance is being reaffirmed. [Problems to be Solved by the Invention] As described above, in order to improve the mechanical and thermal properties of ceramic molded products, it is necessary to pulverize the ceramic raw material, but it is necessary to finely powder the ceramic raw material. The finer the raw material, the more difficult it is to mold it. In particular, in the slurry casting method, the finer the ceramic raw material, the more difficult it is to obtain a relatively uniform molded product with few internal defects, resulting in the following problems. (a) Generally, in the slurry casting method, an organic binder (peptizer, binder, etc.) is added to the ceramic powder.
Add water to make a slurry, and use this slurry to make plaster,
It is molded by being cast into a casting mold made of resin, etc. Prior to casting, the slurry is subjected to pretreatment such as deaeration in order to prevent the occurrence of internal defects due to pores etc. in the molded product. Ru. however,
Even when a molded body formed by such a method is dried and fired, characteristics such as bulk density and strength are not sufficiently developed. In particular, when compared with a sintered body obtained by press molding, the strength properties are inferior, and a 5 to 20% decrease in properties is observed in a sintered body obtained by cast molding. The cause of this property deterioration is that when water in the slurry is absorbed into the casting mold during casting molding and solidifies as a molded object, and when moisture existing between raw material particles is scattered during the drying process, inside the molded object. This is presumed to be because fine pores remain as internal defects. (b) In the slurry casting method, the molded product is likely to break due to shrinkage during demolding and drying, causing damage such as cracks. In particular, the larger the molded product is complex and has a large difference in wall thickness, the more likely the density of the molded product is uneven.Due to the density difference, the molded product solidifies, shrinkage rate differs during drying, and damage such as breakage and cracks occurs. Likely to happen. (c) Cast molded bodies are often calcined when a large amount of organic binder is used, but in this case, when the added organic binder burns and generates gas, the molded body may be cut, causing damage such as cracks. Likely to happen. This tendency is particularly strong as the ceramic raw material becomes finer powder. Accordingly, an object of the present invention is to establish a method for manufacturing ceramic molded articles with excellent mechanical and thermal properties even if they are large and have a complicated structure. [Means for Solving the Problems] The first object of the present invention is a method for manufacturing a ceramic molded article, which comprises the following steps (a) to (e). (a) A process of granulating raw material powder for ceramics. (b) A process of adjusting the slurry by adding an organic binder to the granules obtained in the granulation process. (c) A process of casting the slurry obtained in the slurry preparation process into a mold. (d) A process of drying the molded body obtained in the casting process and subjecting it to an isostatic press. (e) A process of firing the molded body obtained in the isostatic pressing process. Further, the present invention is a manufacturing method in which the molded body obtained in the casting process is dried, then calcined, and subjected to an isostatic press. In the granulation step (a) of the present invention, the following known methods can be employed as the granulation method. In other words, (1) a rolling granulation method in which humidified powder is given rolling action to agglomerate into spherical particles; (2) a certain amount of raw material powder is compression-molded into a certain size and shape. Compression granulation method to create granules, (3) fluidized bed granulation method in which powder is fluidized and then sprayed with liquid from a spray nozzle to coat the particle surface with liquid, and (4) slurry is added. Injection granulation method, in which the powder is pulverized using a pressure type nozzle or a two-fluid nozzle, and then air-cooled and solidified in a granulation tower to obtain spherical granules. (5) Spray drying, in which the raw material powder is slurried, spray-dried, and granulated at the same time. A granulation method etc. can be adopted. Among these granulation methods, spray drying granulation method and fluidized bed granulation method are preferred. Further, the shape of the granules is not particularly limited, but is preferably spherical, and has an average particle diameter of 10 to 1000 μm, particularly preferably 20 to 100 μm. If the average particle diameter is less than 10 μm, the time required for ink forming during casting will be long, and the internal solidification will be slow, making it impossible to obtain a uniform molded product. Also,
During drying and calcining, the scattering of moisture and generated gas becomes insufficient. On the other hand, if the average particle size exceeds 1000 μm, it is difficult to adjust the slurry, making casting impossible. In the slurry adjustment step (b), the slurry is adjusted by adding an organic binder using the granules described above, and in the casting step (c), the slurry is poured into a mold made of gypsum, resin, etc. under normal pressure. Or cast under pressure. If the mold is released when the predetermined thickness is reached, a molded product can be obtained.
The obtained molded body is dried and dried at a temperature of 600 to 800
It is calcined at ℃ and subjected to an isostatic press. In the isostatic press process (d),
Prior to pressing, latex or the like is applied to the entire surface of the molded product, dried, and coated over the entire surface.
Place in an isostatic press at a pressure of 1000Kg/ cm2 . In the final firing step (e), the pressed compact is fired by a conventional method, and the firing conditions are appropriately selected depending on the desired characteristics. [Operations and effects of the invention] According to this manufacturing method, since granules are used as the ceramic raw material, the plasticity of the cast molded product is increased, and even if the molded product is complex and has different wall thicknesses, There is less occurrence of damage such as unattached parts and cuts during mold release. In addition, since the gaps between particles in the molded body are relatively large, the moisture in the dried molded body is easily evaporated and scattered, and the amount of shrinkage accompanying the evaporation of moisture is small, resulting in damage such as cuts and cracks in the molded body during drying. Less is. The cast molded body is placed in an isostatic press and equiaxially pressed from all sides, so it is firmly bonded.
The ceramic molded product, which is a sintered body obtained by firing this, has excellent mechanical and thermal properties. Even in molded bodies that require calcination, the gaps between particles within the molded body are relatively large, making it easy for gas generated by combustion of the organic binder to scatter, resulting in damage such as cuts and cracks caused by gas generation. Occurrence is also low. Example 1 Al 2 O 3 with an average particle size of 0.4 μm and 0.8 μm and 3 mol% Y 2 O 3 containing 2 wt% clay-based sintering aid as raw material powder
A total of four types of ZrO 2 with average particle diameters of 0.4 μm and 0.8 μm including Granulated powder with a diameter of 80 μm is obtained. In the granulation methods (1) and (2), an organic binder (carboxylic acid binder 1wt%, wax 0.5wt%) is used in a dedicated granulation device, and in the granulation method (3), each raw material is It is packed in an ice bag and subjected to an isostatic press (CIP) at a pressure of 1000 kg/cm 2 , then crushed and classified using a sieve to obtain a granulated powder. For comparison, (4) ungranulated powder is also used. Organic binders (carboxylic acid binder 0.01 to 0.9 wt%, acrylic acid binder 0.01 wt%) are used to adjust the slurry.
~0.9 wt%) and 0.05 wt% of an antifoaming agent, each granulated powder is mixed and dispersed in a kneader to form a slurry, and the ungranulated powder is mixed and dispersed in a pot mill to form a slurry. Mixing and dispersing granulated powder in a pot mill is undesirable because there is a risk that the granulated powder may be destroyed, and mixing and dispersing ungranulated powder in a kneader makes it difficult to mix uniformly. The test mold for casting is shown in Fig. 1a, upper mold 1.
and lower mold 2, and using the same test mold, 5 kg/
Pressure casting is performed at a pressure of cm 2 G, and the resulting cast body is dried under constant temperature and humidity conditions of 80°C or less and humidity of 60% or more, and the humidity is gradually lowered to dry. . After drying, latex is applied to the molded product, dried, the entire surface is covered with a rubber film, and then subjected to CIP at a pressure of 2000 kg/cm 2 . The molded body is subjected to CIP at 1400℃
A ceramic molded article 10 having the shape and dimensions shown in FIG. 1b is obtained. Such a molded article 1
A sample of the center part 11 and outer peripheral part 12 was cut out from 0, and the bending strength of the sample before and after heat treatment was measured.
Measured using JISR1601 4-point bending test method. The results are shown in Table 1, and the bending strength values of the samples obtained by press molding are shown as criteria. The heat treatment was performed in an autoclave at 250° C. and saturated steam pressure, and the heat treatment time was 500 hours for Al 2 O 3 and 250 hours for ZrO 2 . Referring to the same table, when using granulated powder, the strength before and after heat treatment is higher than when using ungranulated powder. Strength equivalent to that of a molded body can be obtained. Regarding CIP, although it is an ungranulated powder, there is a significant difference in strength depending on the presence or absence of CIP, and it can be seen that the entire surface is compressed firmly by CIP and the strength is improved. Regarding the average particle diameter of the raw material powder, it can be seen that the μm strength is higher when the particle diameter is 0.4 μm than when it is 0.8 μm.

【表】 実施例 2 実施例1で調整した泥漿を用いて第2図a,b
に示す形状、寸法のポンプ用インペラー20、第3
図a,bに示す形状、寸法のバタフライ弁体30
等の大型で複雑な構造のセラミツクス成形体を、
加圧鋳込成形、乾燥して形成し、鋳込成形能力を
評価した。能力評価は各成形体の成形、乾燥工程
での外観から切れ、クラツク等の損傷を観察して
行い、その結果を第2表に示す。なお、損傷部位
21〜24は第2図に示すインペラー20の損傷
部位、損傷部位31,32は第3図に示す弁体3
0の損傷部位である。 鋳込成形能力は原料粉体の種類(Al2O3
ZrO2)によつては差異がなく、造粒の有無およ
び造粒方法により差異がある。造粒法に関して
は、噴霧乾燥造粒法および流動層造粒法を採用し
た場合には良好であり、また圧縮造粒法において
も原料粉末として平均粒子径0.8μmのものを採用
した場合には良好である。未造粒粉末を用いた場
合には、成形時中央部まで充分に着肉しないうち
に着肉した表面層から乾燥、収縮が生じ、中途で
離型しても崩壊するものがあつた。このことは、
実施例1の鋳込テスト型では未造粒粉末を用いて
も鋳込成形は充分に可能であるものの、構造が複
雑、大型、肉厚差の大きい成形体の鋳込成形にお
いては、本発明の製造方法が極めて有効であるこ
とを意味している。
[Table] Example 2 Figure 2 a and b using the slurry prepared in Example 1.
Pump impeller 20, No. 3, with the shape and dimensions shown in
Butterfly valve body 30 with the shape and dimensions shown in figures a and b
Ceramic molded bodies with large and complicated structures such as
It was formed by pressure casting and drying, and the casting ability was evaluated. Performance evaluation was performed by observing the external appearance of each molded product for damage such as cuts and cracks during the molding and drying process, and the results are shown in Table 2. In addition, damaged parts 21 to 24 are damaged parts of the impeller 20 shown in FIG. 2, and damaged parts 31 and 32 are damaged parts of the valve body 3 shown in FIG.
This is the damage site of 0. Casting ability depends on the type of raw material powder (Al 2 O 3 ,
There is no difference depending on ZrO 2 ), but there is a difference depending on the presence or absence of granulation and the granulation method. Regarding the granulation method, good results are obtained when spray drying granulation method and fluidized bed granulation method are used, and even in compression granulation method, when a material powder with an average particle size of 0.8 μm is used as the raw material powder, the results are good. In good condition. When ungranulated powder was used, drying and shrinkage occurred from the inked surface layer before the center part was fully inked during molding, and some products collapsed even after being released from the mold in the middle. This means that
Although the casting test mold of Example 1 is fully capable of casting even when ungranulated powder is used, the present invention is not suitable for casting molding of compacts with complex structures, large sizes, and large differences in wall thickness. This means that the manufacturing method is extremely effective.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図aは鋳込テスト型の縦断面図、同図bは
同テスト型を鋳込成形にて使用したセラミツクス
成形物の側面図、第2図aは鋳込成形および乾燥
して形成された一成形体(ポンプ用インペラー)
の平面図、同図bは同成形体の縦断面図、第3図
aは他の成形体(バタフライ弁体)の平面図、同
図bは同成形体の側面図である。 符号の説明、10……成形物、20……ポンプ
用インペラー、30……バタフライ弁体。
Figure 1a is a longitudinal cross-sectional view of a casting test mold, Figure 1b is a side view of a ceramic molded product using the test mold in casting, and Figure 2a is a ceramic molded product formed by casting and drying. Molded body (impeller for pump)
FIG. 3B is a longitudinal sectional view of the molded body, FIG. 3A is a plan view of another molded body (butterfly valve body), and FIG. 3B is a side view of the molded body. Explanation of symbols: 10...Molded product, 20...Pump impeller, 30...Butterfly valve body.

Claims (1)

【特許請求の範囲】 1 下記の(イ)〜(ホ)の工程からなるセラミツクス成
形物の製造方法。 (イ) セラミツクスの原料粉体を造粒する工程。 (ロ) 造粒工程にて得られた造粒体に有機系結合剤
を添加して泥漿を調整する工程。 (ハ) 泥漿調整工程にて得られた泥漿を成形型に鋳
込む工程。 (ニ) 鋳込み工程にて得られた成形体を乾燥し、ア
イソスタテイツクプレスに付す工程。 (ホ) アイソスタテイツクプレス工程にて得られた
成形体を焼成する工程。 2 鋳込み工程にて得られた成形体を乾燥した後
仮焼し、アイソスタテイツクプレスに付す第1項
記載の製造方法。
[Scope of Claims] 1. A method for manufacturing a ceramic molded article, comprising the following steps (a) to (e). (a) A process of granulating raw material powder for ceramics. (b) A process of adjusting the slurry by adding an organic binder to the granules obtained in the granulation process. (c) A process of casting the slurry obtained in the slurry preparation process into a mold. (d) A process of drying the molded body obtained in the casting process and subjecting it to an isostatic press. (e) A process of firing the molded body obtained in the isostatic pressing process. 2. The manufacturing method according to item 1, wherein the molded product obtained in the casting step is dried, then calcined, and subjected to an isostatic press.
JP33183387A 1987-12-25 1987-12-25 Manufacture of ceramic molding Granted JPH01171805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33183387A JPH01171805A (en) 1987-12-25 1987-12-25 Manufacture of ceramic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33183387A JPH01171805A (en) 1987-12-25 1987-12-25 Manufacture of ceramic molding

Publications (2)

Publication Number Publication Date
JPH01171805A JPH01171805A (en) 1989-07-06
JPH0482083B2 true JPH0482083B2 (en) 1992-12-25

Family

ID=18248155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33183387A Granted JPH01171805A (en) 1987-12-25 1987-12-25 Manufacture of ceramic molding

Country Status (1)

Country Link
JP (1) JPH01171805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615699A (en) * 2012-02-28 2012-08-01 宜兴市金鱼陶瓷有限公司 Method for producing bottle head through stamping and cutting combined molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615699A (en) * 2012-02-28 2012-08-01 宜兴市金鱼陶瓷有限公司 Method for producing bottle head through stamping and cutting combined molding
CN102615699B (en) * 2012-02-28 2015-11-25 宜兴市金鱼陶瓷有限公司 Punching press prepares the method for bottle head in conjunction with cutting forming

Also Published As

Publication number Publication date
JPH01171805A (en) 1989-07-06

Similar Documents

Publication Publication Date Title
JP5977027B2 (en) Production of deformable granules
JP3182648B2 (en) Ceramic granules for molding a ceramic molded body, method for producing or treating the same, ceramic molded body and method for producing the same
JPH0482083B2 (en)
JP3105524B2 (en) Manufacturing method of whiteware ceramic products
JPS6230668A (en) Manufacture of homogeneous yttria-alumina-doped silicon nitride product
JPH02279553A (en) Ceramic molded body and its production
CN112500157A (en) Method for reducing shrinkage rate of nano zirconia ceramic dry-pressed product
DE4118752A1 (en) Sintered ceramic spray granulate prodn. - by spraying ceramic dross into liq. cooling medium, removing granules, then freeze drying
JPH02217348A (en) Raw material for slip of ceramics
TW200407276A (en) Composition of sanitary ware substrate, the manufacturing method thereof, and the manufacturing method of sanitary ware using the composition of sanitary ware substrate
JP2002128570A (en) Manufacture of granules for forming ceramics and equipment thereof, and granules, shaped compact and sintered compact
JP2614880B2 (en) Method for producing ceramic granules
JP7072220B2 (en) Method for manufacturing unfired silica solidified body
JPH038779A (en) Porous ceramic molded article and production thereof
JP2740996B2 (en) Method for producing ferrite granules
JPH01234352A (en) Far-infrared radiating sintered body and its production
JPH01298054A (en) Separation material made of ceramic, its production and use
JPH032820B2 (en)
JPS63170254A (en) Manufacture of ceramics
JPS6213303A (en) Slip casting molding method
JP3198920B2 (en) Ceramic product and method of manufacturing the same
JPH06279142A (en) Granule of aluminous fiber, its production and production of porous compact using the same
JPH01261277A (en) Granulated powder for production of silicon nitride sintered form
JPH08300326A (en) Molding method for ceramic material
JPH061673A (en) Production of porous ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term