JP7072220B2 - Method for manufacturing unfired silica solidified body - Google Patents

Method for manufacturing unfired silica solidified body Download PDF

Info

Publication number
JP7072220B2
JP7072220B2 JP2018090161A JP2018090161A JP7072220B2 JP 7072220 B2 JP7072220 B2 JP 7072220B2 JP 2018090161 A JP2018090161 A JP 2018090161A JP 2018090161 A JP2018090161 A JP 2018090161A JP 7072220 B2 JP7072220 B2 JP 7072220B2
Authority
JP
Japan
Prior art keywords
silica
curing
solid body
solidified
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018090161A
Other languages
Japanese (ja)
Other versions
JP2019196279A (en
Inventor
正督 藤
千加 高井
ホソロシャヒ ハディ ラザヴィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2018090161A priority Critical patent/JP7072220B2/en
Publication of JP2019196279A publication Critical patent/JP2019196279A/en
Application granted granted Critical
Publication of JP7072220B2 publication Critical patent/JP7072220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、無焼成シリカ固化体の製造方法に関する。 The present invention relates to a method for producing a solidified unfired silica.

特許文献1には、表面がメカノケミカル的に非晶質化された活性化セラミックス粉体を、アルカリ水溶液で処理することにより、活性化セラミックス粉体の表面を溶解及び再析出させてセラミックス固化体を得る方法が記載されている。特許文献2には、シリカを含む複合材料の製造方法にアルカリ含有混合液を用い、そのアルカリ含有混合液の溶媒として、エタノール等を使用する方法が記載されている。しかしながら、粒径の異なる2種類のシリカを使用して固化体を製造することや、製造された固化体について、その固化体の特徴を示す例えば気孔率や収縮率が製造工程の条件によって調整しうることについては知見をうることができないといった問題があった。 In Patent Document 1, an activated ceramic powder having a mechanochemically amorphized surface is treated with an alkaline aqueous solution to dissolve and reprecipitate the surface of the activated ceramic powder to solidify the ceramic. How to get is described. Patent Document 2 describes a method in which an alkali-containing mixed solution is used as a method for producing a composite material containing silica, and ethanol or the like is used as a solvent for the alkali-containing mixed solution. However, it is possible to produce a solidified body using two types of silica having different particle sizes, and for the produced solidified body, for example, the porosity and shrinkage rate, which indicate the characteristics of the solidified body, are adjusted according to the conditions of the manufacturing process. There was a problem that it was not possible to obtain knowledge about silica.

特開2008-239433号公報Japanese Unexamined Patent Publication No. 2008-239433 WO2015/050243号公報WO2015 / 050243

本発明の課題は上記のような従来の問題を解決し、粒径の異なる2種類のシリカを使用して固体架橋を介して強固な固化体を製造することや、シリカ固化体の特徴を示す気孔率や収縮率を制御しうる製造工程の知見を提供することを目的とする。 The problem of the present invention is to solve the above-mentioned conventional problems, to produce a strong solidified body through solid cross-linking using two types of silica having different particle sizes, and to show the characteristics of the silica solidified body. It is an object of the present invention to provide the knowledge of the manufacturing process capable of controlling the porosity and the shrinkage rate.

(1)シリカ粒子がアルカリ濃度1M~5Mであるアルカリ性溶液に含まれるシリカ粒子原料を、造粒し一軸圧縮して第一の固形体とする造粒圧縮工程と、前記第一の固形体を養生することにより、前記シリカ粒子が架橋されて第二の固形体となる養生工程と、前記第二の固形体を乾燥する乾燥工程と、を備えることを特徴とする無焼成シリカ固化体の製造方法である。
(2)(1)に記載の無焼成シリカ固化体の製造方法において、造粒圧縮工程の代わりに、造粒することなく圧縮する圧縮工程を含み、前記シリカ粒子原料に、微小シリカ粒子がアルカリ濃度3Mであるアルカリ性溶液に含まれる微小シリカ粒子原料を混合する混合工程をさらに含み、前記養生工程のとき、微小シリカ粒子が半固体半液体となることに起因する架橋を含むことを特徴とする無焼成シリカ固化体の製造方法である。
(3)前記シリカ粒子が形成する空隙に対して、微小シリカ粒子原料の割合が40vol%~280vol%であることを特徴とする(2)に記載の無焼成シリカ固化体の製造方法である。
(4)前記造粒圧縮工程の前に、アルコールを混合するアルコール混合工程を、さらに備えることを特徴とする(1)に記載の無焼成シリカ固化体の製造方法である。
(5)前記圧縮工程の前に、アルコールを混合するアルコール混合工程を、さらに備えることを特徴とする(2)又は(3)に記載の無焼成シリカ固化体の製造方法である。
(6)前記養生工程の養生条件として養生温度が40℃~80℃であり、養生時間が40時間以下であることを特徴とする(1)~(5)に記載の無焼成シリカ固化体の製造方法である。
(1) A granulation compression step of granulating and uniaxially compressing a silica particle raw material contained in an alkaline solution in which the silica particles have an alkali concentration of 1 M to 5 M to obtain a first solid body, and the first solid body. Production of a non-fired silica solidified body comprising a curing step of bridging the silica particles to become a second solid body by curing and a drying step of drying the second solid body. The method.
(2) In the method for producing a non-firing silica solidified body according to (1), a compression step of compressing without granulation is included instead of the granulation compression step, and the fine silica particles are alkaline in the silica particle raw material. It further comprises a mixing step of mixing the fine silica particle raw materials contained in the alkaline solution having a concentration of 3 M, and is characterized by including cross-linking caused by the fine silica particles becoming a semi-solid semi-liquid during the curing step. This is a method for producing a solidified body of uncalcined silica.
(3) The method for producing a solidified unfired silica according to (2), wherein the ratio of the raw material of the fine silica particles to the voids formed by the silica particles is 40 vol% to 280 vol%.
(4) The method for producing a solidified unfired silica according to (1), further comprising an alcohol mixing step of mixing alcohol before the granulation compression step.
(5) The method for producing a solidified unfired silica according to (2) or (3), further comprising an alcohol mixing step of mixing alcohol before the compression step.
(6) The non-firing silica solidified body according to (1) to (5), wherein the curing temperature is 40 ° C. to 80 ° C. and the curing time is 40 hours or less as the curing conditions of the curing step. It is a manufacturing method.

本発明による無焼成シリカ固化体の製造方法は、粒径の異なる2種類のシリカを使用して強固な固化体を製造することができ、特に養生工程の養生条件によってシリカ固化体の特徴を示す気孔率や収縮率を制御することができるという効果を奏する。 The method for producing a non-firing silica solidified body according to the present invention can produce a strong solidified body using two types of silica having different particle sizes, and particularly exhibits the characteristics of the silica solidified body depending on the curing conditions of the curing step. It has the effect of being able to control the porosity and contraction rate.

本発明の一つの実施の形態である無焼成シリカ固化体の製造方法のフローを示す模式図である。It is a schematic diagram which shows the flow of the manufacturing method of the uncalcined silica solidified body which is one Embodiment of this invention. (A)無焼成シリカ固化体の製造方法の過程で製造される第二の固形体を示す模式図、(B)第二の固形体に形成された半固体半液体領域を拡大して示す模式図である。(A) Schematic diagram showing a second solid body produced in the process of manufacturing a solidified silica without calcining, (B) Schematic diagram showing an enlarged semi-solid semi-liquid region formed on the second solid body. It is a figure. アルコール混合工程において添加したエタノールが(A)0.625gのとき、(B)1.06gのときの無焼成シリカ固化体が有するLog微分細孔容積分布と積算細孔容積の関係を示す図である。It is a figure which shows the relationship between the Log differential pore volume distribution and the integrated pore volume which the uncalcined silica solidified body has when the amount of ethanol added in an alcohol mixing step is (A) 0.625 g, and (B) 1.06 g. be. エタノールを含有した無焼成シリカ固化体について、養生工程における養生温度に対する無焼成シリカ固化体の気孔率及び収縮率の関係を示す図である。It is a figure which shows the relationship between the porosity and the shrinkage rate of the uncalcined silica solidified body containing ethanol with respect to the curing temperature in a curing process. 養生時間(0、1、3、5及び20時間)に対するエタノールを含有した無焼成シリカ固化体のSEM写真を示す図(倍率40000倍)である。It is a figure (magnification 40,000 times) which shows the SEM photograph of the uncalcined silica solidified body containing ethanol with respect to the curing time (0, 1, 3, 5 and 20 hours). 養生時間(0、1、3、5及び20時間)に対し、大きなボイド又は小さなボイドについて、無焼成シリカ固化体の積算細孔容積cc/gの関係を示す図である。It is a figure which shows the relationship of the integrated pore volume cc / g of the uncalcined silica solidified body with respect to the curing time (0, 1, 3, 5 and 20 hours) with respect to a large void or a small void.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.

図1に示すように、本発明の一実施形態の無焼成シリカ固化体は、シリカ(Silica)粒子とアルカリ濃度1M~5Mであるアルカリ性溶液を混合(Mixing)して、造粒一軸圧縮して第一の固形体とする造粒(Granulation)圧縮(Uniaxial Compression)工程と、第一の固形体を養生して第二の固形体とする養生(Curing)工程と、第二の固形体を乾燥してシリカ同士を架橋する乾燥(Drying)工程と、を備える製造方法によって製造される。 As shown in FIG. 1, the uncalcined silica solidified body according to the embodiment of the present invention is obtained by mixing silica particles and an alkaline solution having an alkali concentration of 1 M to 5 M, and performing granulation uniaxial compression. A Granulation compression step to make the first solid body, a curing step to cure the first solid body to make it a second solid body, and a drying step to dry the second solid body. It is manufactured by a manufacturing method comprising a drying step of cross-linking silica to each other.

その製造方法は、スラリーの流動性と混合均一性を得るという観点から、造粒圧縮工程や圧縮工程の前に、アルコールを混合するアルコール混合工程をさらに備えることが好ましい。混合するアルコール量は、シリカ粒子原料又は微小シリカ粒子原料が混合されたシリカ粒子原料に対して、スラリーの流動性と混合均一性を得るという観点から1wt%~10wt%が好ましく、1wt%~6wt%がさらに好ましい。また、アルコールとしては安全性と蒸発除去の観点から、例えばエタノール(EtOH)が好ましい。ただし、蒸発除去できるならこれに限らない。 From the viewpoint of obtaining the fluidity and mixing uniformity of the slurry, the production method preferably further includes an alcohol mixing step of mixing alcohol before the granulation compression step and the compression step. The amount of alcohol to be mixed is preferably 1 wt% to 10 wt%, preferably 1 wt% to 6 wt%, with respect to the silica particle raw material mixed with the silica particle raw material or the fine silica particle raw material, from the viewpoint of obtaining the fluidity and mixing uniformity of the slurry. % Is more preferable. Further, as the alcohol, for example, ethanol (EtOH) is preferable from the viewpoint of safety and evaporation removal. However, the present invention is not limited to this as long as it can be removed by evaporation.

無焼成シリカ固化体の製造方法の別の実施形態は、シリカ粒子の平均粒径より小さい平均粒径を有する微小シリカ粒子が、アルカリ濃度3Mであるアルカリ性液に含まれた微小シリカ粒子原料を混合する混合(Mixing)工程を、さらに含むと共に、造粒することがなく圧縮するものである。微小シリカ粒子原料は、シリカ粒子が形成する空隙に対して密充填構造とする観点から、30vol%~280vol%の割合である。なお、その空隙とはシリカ粒子粉体を充填した際にできる粉体同士の隙間のことである。 In another embodiment of the method for producing a solidified uncalcined silica, fine silica particles having an average particle size smaller than the average particle size of the silica particles are mixed with a raw material for the fine silica particles contained in an alkaline liquid having an alkaline concentration of 3 M. The mixing step of mixing is further included, and the mixture is compressed without granulation. The ratio of the fine silica particle raw material is 30 vol% to 280 vol% from the viewpoint of forming a close-packed structure with respect to the voids formed by the silica particles. The voids are gaps between the powders formed when the silica particle powders are filled.

微小シリカ粒子を含むアルカリ性液は、完全に溶解しないという観点から3Mである。すなわち例えば微小シリカ粒子原料は、微小シリカ粒子にアルカリ性溶液を加え、シェイキングバスを用いて、所定の温度と周期で混合することによって調製することができる。 The alkaline liquid containing the fine silica particles is 3M from the viewpoint of not completely dissolving. That is, for example, the raw material for fine silica particles can be prepared by adding an alkaline solution to the fine silica particles and mixing them at a predetermined temperature and cycle using a shaking bath.

シリカ(SiO)粒子としては、反応および乾燥収縮の観点から、平均粒径が0.1μm~100μmのものが好ましく、微小シリカ(SiO)粒子としては、前述のシリカ粒子間に入るという観点から、大粒子シリカの1/10~1/10000の大きさで、概ね平均粒径が1nm~500nmのものが好ましく用いられる。 The silica (SiO 2 ) particles preferably have an average particle size of 0.1 μm to 100 μm from the viewpoint of reaction and drying shrinkage, and the fine silica (SiO 2 ) particles are considered to be between the above-mentioned silica particles. Therefore, one having a size of 1/10 to 1/10000 of large particle silica and an average particle size of about 1 nm to 500 nm is preferably used.

シリカ粒子原料に好ましくは混合する微小シリカ粒子原料の割合は、粒子の充填密度の観点から、シリカ粒子が形成する空隙に対して40vol%~280vol%が好ましく、50vol%~250vol%がさらに好ましい。ここで、シリカ粒子が形成する空隙は、大きい粒子のかさ密度によって求めることができる。 From the viewpoint of the packing density of the particles, the ratio of the fine silica particle raw material preferably mixed with the silica particle raw material is preferably 40 vol% to 280 vol%, more preferably 50 vol% to 250 vol% with respect to the voids formed by the silica particles. Here, the voids formed by the silica particles can be determined by the bulk density of the large particles.

図2(A)に示すように、第二の固形体は第一の固形体を養生することによって、半固体半液体領域(2)により、シリカ粒子(1)同士が結合(架橋)する。また、同(B)に示すように、半固体半液体領域(2)は液体微小領域部分(2a)と固体微小領域部分(2b)からなり、固体微小領域部分(2b)は微小シリカが構成し、液体微小領域部分(2a)はアルカリ性液で微小シリカが溶出したものを含み、シリカ粒子(1)が溶出したものを含む場合がある。 As shown in FIG. 2A, the second solid body cures the first solid body, so that the silica particles (1) are bonded (crosslinked) to each other by the semi-solid semi-liquid region (2). Further, as shown in the same (B), the semi-solid semi-liquid region (2) is composed of a liquid micro region portion (2a) and a solid micro region portion (2b), and the solid micro region portion (2b) is composed of micro silica. However, the liquid micro-region portion (2a) may include a liquid in which fine silica is eluted with an alkaline liquid, and may include a liquid in which silica particles (1) are eluted.

養生条件について、養生温度は反応促進および蒸発の観点から100℃以下が好ましく、60℃~80℃がより好ましい。養生時間は反応量の観点から1時間以上が好ましく、4時間以上がより好ましい。 Regarding the curing conditions, the curing temperature is preferably 100 ° C. or lower, more preferably 60 ° C. to 80 ° C. from the viewpoint of reaction promotion and evaporation. The curing time is preferably 1 hour or longer, more preferably 4 hours or longer, from the viewpoint of the amount of reaction.

(実施例1~4)
シリカ粒子としてガラスビーズ(SO-C1、ソーダ石灰ガラス、平均粒径約300μm、ユニチカ製)を用いた。シリカ粒子SO-C1 10gに、別に調製した3Mの水酸化カリウム溶液とエタノールを、水酸化カリウム溶液2.53gでエタノール0.625g、又は水酸化カリウム溶液2.10gでエタノール1.06gである溶媒を加えて混練した。混練した前者のものを造粒し、その3gを市販の金属製の金型(内径14mm)を用いて一軸圧縮し、乾燥して無焼成シリカ固化体を得た(参考例1)。混練した後者のもの3gも造粒し、一軸圧縮して、養生し(養生時間0、1、3、5、20hr)、乾燥して無焼成シリカ固化体を得た(参考例2、実施例1~4)。参考例1、2及び実施例1~4の製造条件は表1のようであり、それらの無焼成シリカ固化体大きさはφ13.9~13.5mm×高さ11.3~10.5mmであった。なお、参考例1においてエタノールを添加しなかったものは、造粒が困難であり上記のプロセスで固化体を作成することができなかった(比較例1)。
(Examples 1 to 4)
Glass beads (SO-C1, soda-lime glass, average particle size of about 300 μm, manufactured by Unitika) were used as the silica particles. A solvent in which 3 M potassium hydroxide solution and ethanol prepared separately are added to 10 g of silica particles SO-C1 to 0.625 g of ethanol with 2.53 g of potassium hydroxide solution or 1.06 g of ethanol with 2.10 g of potassium hydroxide solution. Was added and kneaded. The former kneaded product was granulated, and 3 g thereof was uniaxially compressed using a commercially available metal mold (inner diameter 14 mm) and dried to obtain an uncalcined silica solidified body (Reference Example 1). 3 g of the latter kneaded product was also granulated, uniaxially compressed, cured (curing time 0, 1, 3, 5, 20 hr), and dried to obtain an uncalcined silica solidified body (Reference Example 2, Example). 1-4). The production conditions of Reference Examples 1 and 2 and Examples 1 to 4 are as shown in Table 1, and the size of the solidified unfired silica is φ13.9 to 13.5 mm × height 11.3 to 10.5 mm. there were. In Reference Example 1, when ethanol was not added, granulation was difficult and a solidified body could not be prepared by the above process (Comparative Example 1).

Figure 0007072220000001
Figure 0007072220000001

養生条件について養生温度は60℃で行い、乾燥条件については2段階で行い、まず室温で12時間以上の乾燥を行い、次いで170℃で12時間以上真空乾燥を行った。造粒条件についてはふるいによって0.5mm~1.7mmの粒径とした。一軸圧縮条件については65Mpaとした。 Curing conditions The curing temperature was 60 ° C., and the drying conditions were two-step. First, drying was performed at room temperature for 12 hours or more, and then vacuum drying was performed at 170 ° C. for 12 hours or more. Regarding the granulation conditions, the particle size was set to 0.5 mm to 1.7 mm by sieving. The uniaxial compression condition was 65 MPa.

図3から無焼成シリカ固化体の積算細孔容積について、参考例1(図3(A))では細孔径が0.1μm~10μmの範囲で積算細孔容積は約0.05cc/gであった。一方、参考例2(図3(B))では0.1μm~10μmの範囲で積算細孔容積はほぼ0.0cc/g以下であったため、参考例1と参考例2を対比すると、参考例2の方が粗大なボイドが少ないことが分かった。すなわちシリカ粒子原料に含有されるエタノールが増加すると、無焼成シリカ固化体が有する粗大なボイドが減少することが分かった。 Regarding the integrated pore volume of the uncalcined silica solidified body from FIG. 3, in Reference Example 1 (FIG. 3 (A)), the integrated pore volume was about 0.05 cc / g in the range of the pore diameter of 0.1 μm to 10 μm. rice field. On the other hand, in Reference Example 2 (FIG. 3 (B)), the integrated pore volume was approximately 0.0 cc / g or less in the range of 0.1 μm to 10 μm. Therefore, when Reference Example 1 and Reference Example 2 are compared, Reference Example It was found that 2 had less coarse voids. That is, it was found that when the amount of ethanol contained in the silica particle raw material increased, the coarse voids contained in the uncalcined silica solidified body decreased.

図4に示した参考例2及び実施例1~4のプロットから、養生条件について養生時間が長くなるに従って、無焼成シリカ固化体が有する気孔率は減少し、収縮率は増加する傾向があることが分かった。すなわち養生時間によって、無焼成シリカ固化体が有する気孔率と収縮率を制御できることが分かった。また、養生の前の造粒、プレスが、気孔率を小さくすることに効いている。 From the plots of Reference Example 2 and Examples 1 to 4 shown in FIG. 4, the porosity of the uncalcined silica solidified body tends to decrease and the shrinkage rate tends to increase as the curing time increases for the curing conditions. I understood. That is, it was found that the porosity and shrinkage of the uncalcined silica solidified body can be controlled by the curing time. In addition, granulation and pressing before curing are effective in reducing the porosity.

気孔率は式(1)によって求めた。ここでシリカ理論密度は2.21g/cmであり、かさ密度は、無焼成シリカ固化体についてノギスで測った寸法と乾燥重量の測定結果から求めた。

Figure 0007072220000002
The porosity was determined by the formula (1). Here, the theoretical silica density was 2.21 g / cm 3 , and the bulk density was obtained from the dimensions measured with a caliper and the measurement results of the dry weight of the solidified unfired silica.
Figure 0007072220000002

一方、収縮率は(金型の内径-固化体の直径)/金型の内径 ×100によって求めた。 On the other hand, the shrinkage rate was determined by (inner diameter of mold-diameter of solidified body) / inner diameter of mold × 100.

上記の結果から、養生の前の造粒、プレスが、気孔率を小さくすることに効き、エタノールを使うことで、粘度の調整(下げる)及び、固化速度の調整(造粒時は固化しないように)ができ、粘度を下げることは、粉体が充填されやすくなるため、気孔率を下げることに効いたと推定された。また造粒時に固化しないようにすることは、その後プレスした際に粉体が充填されやすくなり、気孔率を下げるほうに効いていると推定された。 From the above results, granulation and pressing before curing are effective in reducing the porosity, and by using ethanol, the viscosity is adjusted (decreased) and the solidification rate is adjusted (so that it does not solidify during granulation). It was presumed that lowering the viscosity was effective in lowering the porosity because the powder was easily filled. In addition, it was presumed that preventing the solidification during granulation makes it easier for the powder to be filled when pressed thereafter, and is more effective in lowering the porosity.

図5に示した参考例2及び実施例1~4の表面状態から、養生条件について養生時間が長くなるに従って、無焼成シリカ固化体についてシリカ粒子の隙間が埋まっているように観察された。そのことは、図4において、養生時間が長くなるに従って、無焼成シリカ固化体が有する気孔率は減少し、収縮率は増加する傾向があったことと符合するものであった。 From the surface states of Reference Example 2 and Examples 1 to 4 shown in FIG. 5, it was observed that the gaps between the silica particles were filled in the unfired silica solidified body as the curing time became longer under the curing conditions. This is consistent with the fact that, in FIG. 4, the porosity of the uncalcined silica solidified body tended to decrease and the shrinkage rate tended to increase as the curing time became longer.

図6に示した参考例2及び実施例1~4のプロットから、養生条件について養生時間が長くなるに従って、無焼成シリカ固化体の小さなボイドの積算細孔容積は減少する傾向にあったが、無焼成シリカ固化体が有する大きなボイドはほぼ一定であった。
小さなボイドとはシリカ粒子の粒径250nmよりも小さい細孔(粒子の間隙を含む)であり、大きなボイドとはシリカ粒子の粒径より大きい細孔のことであった。これらのことから、養生時間によって小さい細孔の容積を制御することができることが分かった。すなわち、粒子同士のネック成長を制御できることが分かった。
From the plots of Reference Example 2 and Examples 1 to 4 shown in FIG. 6, the cumulative pore volume of the small voids of the uncalcined silica solidified body tended to decrease as the curing time became longer for the curing conditions. The large voids of the uncalcined silica solidified material were almost constant.
The small voids were pores smaller than the particle size of the silica particles of 250 nm (including the gaps between the particles), and the large voids were pores larger than the particle size of the silica particles. From these facts, it was found that the volume of small pores can be controlled by the curing time. That is, it was found that the neck growth between particles can be controlled.

(微小シリカ粒子原料の調製)
微小シリカ粒子としてAEROSIL OX50(平均粒径約50nm、日本アエロジル社製)を用い、AEROSIL OX50 20gに3Mの水酸化カリウム 80gを加え、シェイキングバスを用いて混合して調製した。
(Preparation of raw material for fine silica particles)
AEROSIL OX50 (average particle size of about 50 nm, manufactured by Nippon Aerosil Co., Ltd.) was used as fine silica particles, 80 g of 3M potassium hydroxide was added to 20 g of AEROSIL OX50, and the mixture was mixed using a shaking bath.

(混合原料の調製)
表2のように、ガラスビーズ(シリカ粒子)と、別に調製した3Mの水酸化カリウム溶液に含まれた微小シリカ粒子原料を混合して、混合原料1~5を調製した。そのときに空隙に占める微小シリカ粒子原料の比率も表2に示した。なお、実施例5(混合原料1)について、空隙に占める微小シリカ粒子原料の比率を、式(2)に基づいて計算すると50.5(=0.356/{(4.09/2.5)×0.301/(1-0.301)})であった。
(Preparation of mixed raw materials)
As shown in Table 2, the glass beads (silica particles) and the fine silica particle raw materials contained in the separately prepared 3M potassium hydroxide solution were mixed to prepare mixed raw materials 1 to 5. Table 2 also shows the ratio of the raw material of the fine silica particles to the voids at that time. For Example 5 (mixed raw material 1), the ratio of the fine silica particle raw material to the voids was calculated to be 50.5 (= 0.356 / {(4.09 / 2.5)) based on the formula (2). ) × 0.301 / (1-0.301)}).

Figure 0007072220000003
Figure 0007072220000003

Figure 0007072220000004
Figure 0007072220000004

混合原料1~5を用いて、それらの3gを造粒することなく、一軸圧縮して、養生し(養生時間5hr)、乾燥して無焼成シリカ固化体を得た(実施例5~9)。 Using the mixed raw materials 1 to 5, 3 g of them were uniaxially compressed without granulation, cured (curing time 5 hr), and dried to obtain an uncalcined silica solidified body (Examples 5 to 9). ..

実施例5~9から、空隙に占める微小シリカ粒子原料の比率が50%の時、固化体の圧縮度は最大値70MPaを示すことが分かった。空隙に占める微小シリカ粒子原料の比率があがるにつれ圧縮強度は低下し、250%の時は5MPaであった。 From Examples 5 to 9, it was found that when the ratio of the fine silica particle raw material to the voids was 50%, the degree of compression of the solidified body showed a maximum value of 70 MPa. The compressive strength decreased as the ratio of the raw material of the fine silica particles to the voids increased, and was 5 MPa at 250%.

強固な無焼成シリカ固化体や、気孔率や収縮率を制御した無焼成シリカ固化体を提供することができる。 It is possible to provide a strong non-firing silica solidified body and a non-firing silica solidified body having a controlled porosity and shrinkage rate.

1 :シリカ粒子
2 :半固体半液体領域
2a:液体微小領域部分
2b:固体微小領域部分
3 :第二の固形体


1: Silica particles 2: Semi-solid semi-liquid region 2a: Liquid micro-region part 2b: Solid micro-region part 3: Second solid body


Claims (5)

シリカ粒子がアルカリ濃度1M~5Mであるアルカリ性溶液に含まれるシリカ粒子原料を、造粒し一軸圧縮して第一の固形体とする造粒圧縮工程と、前記第一の固形体を養生することにより、前記シリカ粒子が架橋されて第二の固形体となる養生工程と、前記第二の固形体を乾燥する乾燥工程と、前記造粒圧縮工程の前に、アルコールを混合するアルコール混合工程を、さらに備えることを特徴とする無焼成シリカ固化体の製造方法。 A granulation compression step of granulating and uniaxially compressing a silica particle raw material contained in an alkaline solution having an alkali concentration of 1 M to 5 M to obtain a first solid body, and curing the first solid body. A curing step in which the silica particles are crosslinked to form a second solid body, a drying step of drying the second solid body, and an alcohol mixing step of mixing alcohol before the granulation compression step are performed. A method for producing a solidified non-firing silica, which comprises further preparation. シリカ粒子がアルカリ濃度1~5Mであるアルカリ性溶液に含まれるシリカ粒子原料を造粒することなく圧縮して第一の固形体とする圧縮工程と、前記第一の固形体を養生することにより、前記シリカ粒子が架橋されて第二の固形体となる養生工程と、前記第二の固形体を乾燥する乾燥工程と、を備え、前記シリカ粒子原料に、微小シリカがアルカリ濃度3Mであるアルカリ性溶液に含まれる微小シリカ粒子原料を混合する混合工程をさらに含み、前記養生工程のとき、前記微小シリカ粒子が半固体半液体となることに起因する架橋を含むことを特徴とする無焼成シリカ固化体の製造方法。 By the compression step of compressing the silica particle raw material contained in the alkaline solution in which the silica particles have an alkali concentration of 1 to 5 M into a first solid body without granulating, and by curing the first solid body. An alkaline solution comprising a curing step in which the silica particles are crosslinked to form a second solid body and a drying step in which the second solid body is dried, and the silica particle raw material has a fine silica having an alkali concentration of 3 M. The unfired silica solidified body further comprises a mixing step of mixing the fine silica particle raw materials contained in the above, and comprises a cross-linking caused by the fine silica particles becoming a semi-solid semi-liquid during the curing step. Manufacturing method. 前記シリカ粒子が形成する空隙に対して、微小シリカ粒子原料の割合が40vol%~280vol%であることを特徴とする請求項2に記載の無焼成シリカ固化体の製造方法。 The method for producing a solidified unfired silica according to claim 2, wherein the ratio of the raw material for fine silica particles to the voids formed by the silica particles is 40 vol% to 280 vol%. 前記圧縮工程の前に、アルコールを混合するアルコール混合工程を、さらに備えることを特徴とする請求項2又は3に記載の無焼成シリカ固化体の製造方法。 The method for producing a solidified unfired silica according to claim 2 or 3, further comprising an alcohol mixing step of mixing alcohol before the compression step. 前記養生工程の養生条件として養生温度が40℃~80℃であり、養生時間が40時間以下であることを特徴とする請求項1~に記載の無焼成シリカ固化体の製造方法。 The method for producing a solidified unfired silica according to claims 1 to 4 , wherein the curing temperature is 40 ° C. to 80 ° C. and the curing time is 40 hours or less as the curing conditions of the curing step.
JP2018090161A 2018-05-08 2018-05-08 Method for manufacturing unfired silica solidified body Active JP7072220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018090161A JP7072220B2 (en) 2018-05-08 2018-05-08 Method for manufacturing unfired silica solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018090161A JP7072220B2 (en) 2018-05-08 2018-05-08 Method for manufacturing unfired silica solidified body

Publications (2)

Publication Number Publication Date
JP2019196279A JP2019196279A (en) 2019-11-14
JP7072220B2 true JP7072220B2 (en) 2022-05-20

Family

ID=68537800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090161A Active JP7072220B2 (en) 2018-05-08 2018-05-08 Method for manufacturing unfired silica solidified body

Country Status (1)

Country Link
JP (1) JP7072220B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239433A (en) 2007-03-28 2008-10-09 Nagoya Institute Of Technology Solidification method of ceramic, ceramic solidified body and activated ceramic powder
JP2015036359A (en) 2013-08-13 2015-02-23 東ソー株式会社 Manufacturing method of silica solidified body and silica solidified body
JP2018123027A (en) 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 Silica/graphite-based uncalcinated solidified body, and method for producing the same
JP2018125412A (en) 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 Electromagnetic wave absorber and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239433A (en) 2007-03-28 2008-10-09 Nagoya Institute Of Technology Solidification method of ceramic, ceramic solidified body and activated ceramic powder
JP2015036359A (en) 2013-08-13 2015-02-23 東ソー株式会社 Manufacturing method of silica solidified body and silica solidified body
JP2018123027A (en) 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 Silica/graphite-based uncalcinated solidified body, and method for producing the same
JP2018125412A (en) 2017-02-01 2018-08-09 国立大学法人 名古屋工業大学 Electromagnetic wave absorber and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019196279A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
CN107200599B (en) Porous alumina ceramic and preparation method and application thereof
KR100668574B1 (en) Core Compositions and Articles with Improved Performance for Use in Castings for Gas Turbine Applications
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
JPWO2016140316A1 (en) Silica glass precursor manufacturing method, silica glass precursor, silica glass manufacturing method, and silica glass
JPH0859222A (en) Preparation of silica particle and use of its particle
US5096865A (en) High density fused silica process and product
JP7072220B2 (en) Method for manufacturing unfired silica solidified body
TWI779371B (en) Molybdenum oxychloride with improved bulk density
JPH07108348A (en) Production of air permeable durable mold
JP5977027B2 (en) Production of deformable granules
RU2009127876A (en) FIRE-RESISTANT CERAMIC MATERIAL, METHOD FOR ITS PRODUCTION AND DESIGN ELEMENT INCLUDING THE SPECIFIED CERAMIC MATERIAL
JP2008254427A (en) Manufacturing method of component by pim or micro pim
CN107352781B (en) Preparation method for silicon nitride porous ceramic material through rapid curing molding
JPH0572355B2 (en)
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
US7169336B2 (en) Preparation of powder granules by liquid condensation process and manufacture of powder compacts thereof
JPH08276410A (en) Cast molding method for ceramics
JP2012144389A (en) SiC/Si COMPOSITE MATERIAL
KR950011094B1 (en) Non-press forming of ceramic powder
JPS58208113A (en) Manufacture of isotropic graphite body
JPH02279553A (en) Ceramic molded body and its production
JP2000211979A (en) Production of silica porous body
JP3175455B2 (en) Ceramics molding method
JP2023019102A (en) Method for producing ceramic
JP2010222153A (en) Silicon carbide sintered compact and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220427

R150 Certificate of patent or registration of utility model

Ref document number: 7072220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150