JPH01171805A - Manufacture of ceramic molding - Google Patents

Manufacture of ceramic molding

Info

Publication number
JPH01171805A
JPH01171805A JP33183387A JP33183387A JPH01171805A JP H01171805 A JPH01171805 A JP H01171805A JP 33183387 A JP33183387 A JP 33183387A JP 33183387 A JP33183387 A JP 33183387A JP H01171805 A JPH01171805 A JP H01171805A
Authority
JP
Japan
Prior art keywords
molding
slurry
casting
dried
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33183387A
Other languages
Japanese (ja)
Other versions
JPH0482083B2 (en
Inventor
Takeshi Fukuda
健 福田
Noboru Kondo
昇 近藤
Muneyuki Iwabuchi
宗之 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP33183387A priority Critical patent/JPH01171805A/en
Publication of JPH01171805A publication Critical patent/JPH01171805A/en
Publication of JPH0482083B2 publication Critical patent/JPH0482083B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the occurrence of cuts, cracks and the like due to gas generation, by granulating a ceramic material powder body, adding an organic binder thereto, regulating a mud slurry and casting it in a mold, calcining it tentatively at a specified temperature as occasion demands after the molding is dried, and then calcining the molding obtained in an isostatic press. CONSTITUTION:Globular granulates of 10-1000mum in grain size are obtained, for example from a ceramic material powder body by a spray dry and granulating method. A mud slurry is conditioned by adding an organic binder thereto and casted into a mold made of resin and others. The obtained molding is dried and tentatively calcined at 600-800 deg.C as occasion demands. Next, the molding is coated with latex, etc., and dried to cover its whole surface and pressed isostatically at pressures of hundreds to thousands kg/cm<2>. By calcining the pressed molding with a normal method, the vaporization of water from the molding becomes easy because the space between particles is relatively large due to granulates used in molding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス成形物の!!遣方法に関する。[Detailed description of the invention] [Industrial application field] The present invention is a ceramic molded product! ! Regarding the method of sending.

〔従来技術〕[Prior art]

近年、ファインセラミックスの粉体を原料とするセラミ
ックス成形物においては金属材料、有機材料からなる成
形物に比して優れた機械的、化学的、熱的特性が注目さ
れ、各種の分野でその用途開発がなされている。
In recent years, ceramic molded products made from fine ceramic powder have attracted attention for their superior mechanical, chemical, and thermal properties compared to molded products made of metal or organic materials, and are being used in a variety of fields. development is underway.

しかして、セラミックス成形物において機械的、熱的特
性を向上させるには、均質かつ緻密で微細な結晶構造を
持つ焼結体であることが要求され、これに対処するには
セラミックス原料が均質かつ微細であることが必要であ
り、これに伴いセラミックス原料のより一層の微粉末化
が要求される。
Therefore, in order to improve the mechanical and thermal properties of a ceramic molded product, a sintered body with a homogeneous, dense, and fine crystal structure is required. It is necessary that the ceramic raw material be fine, and accordingly, the ceramic raw material is required to be made into a finer powder.

一方、伝統的なセラミックスの成形方法の一つとして泥
漿漬込成形法があり、当該成形法は大型、複雑な構造の
セラミックス成形物の成形法として適し、その重要性が
再認識されている。″〔発明が解決しようとする課題〕 このように、セラミックス成形物の機械的、熱的特性を
向上させるにはセラミックス原料の微粉末化が必要であ
るが、セラミックス成形物を成形する面からすれば原料
が微粉であるほどその成形が難しい、特に、泥漿鋳込成
形法においては、セラミックス原料が微粉であるほど内
部欠陥の少ない比較的均一な成形体を得ることが難しく
、次のごとき問題が生じる。
On the other hand, one of the traditional methods for molding ceramics is the slurry immersion molding method, and this molding method is suitable for molding large-sized, complex-structured ceramic moldings, and its importance is being reaffirmed. ” [Problem to be solved by the invention] As described above, it is necessary to finely powder the ceramic raw material in order to improve the mechanical and thermal properties of ceramic molded products, but it is necessary to finely powder the ceramic raw materials. The finer the ceramic raw material is, the more difficult it is to mold it. Particularly in the slurry casting method, the finer the ceramic raw material, the more difficult it is to obtain a relatively uniform molded product with few internal defects, which causes the following problems. arise.

(a)一般に、泥漿鋳込成形法においては、セラミック
ス粉末に有機結合剤(解膠剤、結合剤等)および水を加
えて泥漿化し、この泥漿を石膏、樹脂等からなる鋳込用
型に匍込んで成形するものであり、匍込みに先立って成
形体中に気孔等による内部欠陥の発生を防止するために
、泥漿は脱気等の前処理に付される。しかしながら、か
かる方法により成形された成形体を乾燥、焼成しても嵩
密度、強度等の特性が十分に発現されない、特に、プレ
ス成形にで得られた焼結体と比較した場合には強度特性
が劣り、鋳込成形にて得られた焼結体では5〜20%の
特性低下が認められる。この特性低下の原因は、鋳込成
形時泥漿中の水分が鋳込型に吸収されて成形体として固
化する際、および乾燥工程において原料粒子間に存在す
る水分が飛散した際に、成形体内部に微細な気孔が内部
欠陥として残存するためと推定される。
(a) Generally, in the slurry casting method, organic binders (deflocculants, binders, etc.) and water are added to ceramic powder to form slurry, and this slurry is placed in a casting mold made of gypsum, resin, etc. The slurry is molded by being inserted into the molded body, and the slurry is subjected to pretreatment such as deaeration in order to prevent the occurrence of internal defects such as pores in the molded product prior to being inserted into the molded product. However, even if the compact formed by this method is dried and fired, properties such as bulk density and strength are not sufficiently expressed, especially when compared with a sintered compact obtained by press forming. The properties of the sintered body obtained by cast molding are lower by 5 to 20%. The cause of this property deterioration is that when water in the slurry is absorbed into the casting mold during casting molding and solidifies as a molded object, and when moisture existing between raw material particles is scattered during the drying process, inside the molded object. This is presumed to be because fine pores remain as internal defects.

(b)泥漿漬込成形法においては、離型時、乾燥時成形
体は収縮等により切れ、クラック等の損傷を発生させや
すい、特に複雑かつ肉厚差の大きい大型の成形体になる
ほど成形体の密度は不均一になりやすく、密度差に起因
して成形体の固化、乾燥時の収縮率が異なり切れ、クラ
ック等の損傷が発生しやすい。
(b) In the slurry immersion molding method, when the molded product is released from the mold and dried, the molded product is likely to break due to shrinkage, etc., and damage such as cracks can easily occur. The density tends to be non-uniform, and due to the difference in density, the solidification of the molded product and the shrinkage rate during drying are different, which tends to cause damage such as breakage and cracks.

(e) II込成形体は有機結合剤を多く使用した場合
には仮焼されることが多いが、この場合添加した有機結
合剤の燃焼によるガス発生時に成形体に切れ、クラック
等の損傷が発生しやすい。特に、セラミックス原料が微
粉になるほどその傾向が強t%。
(e) Molded bodies containing II are often calcined when a large amount of organic binder is used, but in this case, when the added organic binder burns and generates gas, the molded body may be cut, causing damage such as cracks. Likely to happen. In particular, this tendency becomes stronger as the ceramic raw material becomes finer.

従って、本発明の目的は、例え大型、複雑な構造であっ
ても機械的、熱的特性の優れたセラミックス成形物を製
造する方法を確立することにある。
Therefore, an object of the present invention is to establish a method for producing ceramic molded articles with excellent mechanical and thermal properties even if they are large and have a complicated structure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1の目的は、下記(イ)〜(ホ)の工程から
なるセラミックス成形物の製造方法である。
The first object of the present invention is a method for manufacturing a ceramic molded article comprising the following steps (a) to (e).

(イ) セラミックスの原料粉体を造粒する工程。(b) Process of granulating raw material powder for ceramics.

(ロ)造粒工程にて得られた造粒体に有機系結合剤を添
加して泥漿を調整する工程。
(b) A step of adjusting the slurry by adding an organic binder to the granules obtained in the granulation step.

(ハ)泥漿?I4gI4上で得られた泥漿を成形型に債
込む工程。
(c) Sludge? I4g Step of loading the slurry obtained on I4 into a mold.

(ニ)II込み工程にて得られた成形体を乾燥し、アイ
ソスタティックプレスに付す工程。
(d) A step of drying the molded product obtained in the step including II and subjecting it to an isostatic press.

(ホ) アイソスタティックプレス工程にて得られた成
形体を焼成する工程。
(e) A process of firing the molded body obtained in the isostatic pressing process.

また、本発明は上記した発明において、債込み工程にて
得られた成形体を乾燥した後仮焼し、アイソスタティッ
クプレス・に付す製造方法である。
Furthermore, the present invention is a manufacturing method in which the molded product obtained in the bonding step is dried, then calcined, and subjected to isostatic pressing.

本発明の造粒工程(イ)においては、造粒法として公知
の下記の方法を採用することができる。すなわち、(1
)加湿した粉体に転動作用を付与して球形粒子に凝集さ
せる松動式造粒法、(2)原料粉体の一定量を一定の大
きさ、形状に圧縮成形して粒状物を作る圧縮造粒法、(
3)粉体を流動化させてこれにスプレーノズルから液を
噴霧し粒子表面を液コーティングして造粒する流fds
NyiL粒法、(4)スラリーを加圧型ノズルまたは2
流体ノズルを用いて微粉化し造粒塔内で空冷固化して球
状造粒物を得る噴射造粒法、(5)原料粉体をスラリー
化して噴霧乾燥すると同時に造粒する噴霧乾燥造粒法等
を採用し得る。
In the granulation step (a) of the present invention, the following known methods can be employed as the granulation method. That is, (1
) Spinal granulation method in which humidified powder is given rolling action to agglomerate into spherical particles, (2) Granules are made by compressing a certain amount of raw powder into a certain size and shape. Compression granulation method, (
3) FDS is a process in which powder is fluidized and a liquid is sprayed onto it from a spray nozzle to coat the particle surface with liquid and granulate it.
NyiL grain method, (4) the slurry is passed through a pressurized nozzle or 2
Injection granulation method, which obtains spherical granules by pulverizing the powder using a fluid nozzle and air-cooling it in a granulation tower, (5) Spray drying granulation method, which slurries raw material powder, spray-dries it, and granulates it at the same time. can be adopted.

これらの造粒法においては噴霧乾燥造粒法、流動Ma粒
法が好ましい、また、造粒体の形状は特に限定されるも
のではないが球状が好ましく、かつ平均粒子径は10〜
1000μ醜特に20〜100μ醜のものが好ましい、
平均粒子径が10μm未満の場合には匍込成形時の着肉
時間が長くなり、かつ内部の固化が遅くて均一な成形体
が得られない、また、乾燥時、仮焼時の水分の飛散や発
生がスの飛散が不充分となる。一方、平均粒子径が10
00μ−を越える場合には泥漿の7F!4整が難しく、
鋳込成形が行えなくなる。
Among these granulation methods, the spray drying granulation method and the fluidized Ma granulation method are preferable.Although the shape of the granules is not particularly limited, it is preferably spherical, and the average particle size is 10 to 10.
1000μ ugly, especially preferably 20 to 100μ ugly.
If the average particle size is less than 10 μm, the time for inlaying during inlay molding will be longer, internal solidification will be slow and a uniform molded product will not be obtained, and moisture will scatter during drying and calcination. The dispersion of the generated soot will be insufficient. On the other hand, the average particle diameter is 10
If it exceeds 00μ-, it is 7F of slurry! 4 adjustment is difficult,
Casting cannot be performed.

泥漿調整工程(ロ)においては、上記した造粒体を用い
有機結合剤を添加して泥漿が調整され、鋳込み工程(ハ
)においでは石膏、街脂等からなる鋳込型に上記泥漿を
常圧または加圧して鋳込む、所定の着肉になった時、亡
で離型すれば成形体が得られ、得られた成形体は乾燥さ
れ、必要により600〜800℃で仮焼されてアイソス
タティックプレスに付される。
In the slurry adjustment step (b), the slurry is adjusted by adding an organic binder using the granules described above, and in the casting step (c), the slurry is constantly poured into a casting mold made of gypsum, street fat, etc. It is cast under pressure or pressure, and when it reaches the desired thickness, it is released from the mold at the end of the process to obtain a molded product. Subjected to static press.

アイソスタティックプレス工程(ニ)においては、プレ
スに先立って成形体の全面にラテックス等を塗布しかつ
乾燥して全面を被覆し、数100〜数1000 Kg/
c+a”の圧力でアイソスタティックプレスに付す、プ
レスされた成形体を最後の焼成工程(ホ)において常法
により焼成するが、焼成条件は所望する特性に応じて適
宜選定する。
In the isostatic pressing step (d), prior to pressing, latex or the like is applied to the entire surface of the molded product and dried to cover the entire surface, resulting in a weight of several 100 to several 1000 kg/
The pressed compact is subjected to an isostatic press at a pressure of c+a'' and is fired in the final firing step (e) by a conventional method, and the firing conditions are appropriately selected depending on the desired characteristics.

〔発明の作用・効果〕[Action/effect of the invention]

かかる製造方法によれば、セラミックス原料として造粒
体を採用していることがら鋳込成形体の可塑性が増大し
、複雑かつ肉厚差のある成形体であっても未着内部の発
生や離型時の切れ等の損傷の発生が少ない、また、成形
体内での粒子間の間隙が比較的大きいために乾燥時成形
体内の水分が蒸発飛散され易く、水分の蒸発飛散に伴う
収縮量が少ないため乾燥時の成形体の切れ、クラック等
の損傷が少ない。
According to this manufacturing method, since granules are used as the ceramic raw material, the plasticity of the cast molded product is increased, and even if the molded product is complex and has different wall thicknesses, it will not cause unattached internal parts or separation. There is little occurrence of damage such as cuts during molding, and because the gaps between particles in the molded body are relatively large, the moisture inside the molded body is easily evaporated and scattered during drying, and the amount of shrinkage due to moisture evaporation and scattering is small. Therefore, there is less damage such as cuts and cracks to the molded product during drying.

漬込成形体はアイソスタティックプレスに付されて全面
から等軸加圧されるため強固に結合し、これを焼成して
得られる焼結体であるセラミックス成形物は機械的、熱
的特性の優れたものとなる。
The soaked compact is placed in an isostatic press and equiaxially pressed from the entire surface, resulting in a strong bond.The sintered ceramic compact obtained by firing this compact has excellent mechanical and thermal properties. Become something.

仮焼を必要とする成形体においても、成形体内での粒子
間の間隙が比較的大きいことから有機結合剤の燃焼によ
り発生するガスが飛散し易く、〃ス発生に起因する切れ
、クラック等の損傷の発生も少ない。
Even in molded bodies that require calcination, the gaps between particles within the molded body are relatively large, so the gas generated by combustion of the organic binder is likely to scatter, resulting in cuts, cracks, etc. caused by the generation of soot. There is also less damage.

〔実施例1〕 原料粉体として粘土系焼結助剤2IIlt%を含む平均
粒子径0.4μ論、0.8μ輸の^1□Os、 3mo
1%のY2O。
[Example 1] Raw material powder containing 2IIlt% of clay-based sintering aid, average particle diameter of 0.4μ theory, 0.8μ^1□Os, 3mo
1% Y2O.

を含む平均粒子径0.4μm+ 0.81J mのZr
0zの計41a類を用い、これらを(1)噴霧乾燥造粒
法、(2)流動層造粒法、(3)圧縮造粒法により平均
粒子径80μ論の造粒粉末を得る。(1)、(2)の造
粒法においては有機結合剤(カルボン酸系パイングー1
wt%、ワックス0.5wt%)を用い専用造粒装置に
て、(3)の造粒法においては各原料を氷のうに詰め1
000 Kg/am”の圧力にでアイソスタティックプ
レス(CIP)に付し、その後破砕し篩にて分級して造
粒粉末を得る。なお、比較のため(4)未造粒の粉末を
も用いる。
Zr with an average particle diameter of 0.4 μm + 0.81 J m including
A granulated powder with an average particle diameter of 80 μm is obtained using a total of 41a of 0z by (1) spray drying granulation method, (2) fluidized bed granulation method, and (3) compression granulation method. In the granulation methods (1) and (2), an organic binder (carboxylic acid-based Pine Gu 1
In the granulation method (3), each raw material is packed in ice packs using a special granulation device (wt%, wax 0.5wt%).
The powder is subjected to isostatic press (CIP) at a pressure of 000 Kg/am", then crushed and classified with a sieve to obtain a granulated powder. For comparison, (4) ungranulated powder is also used. .

泥漿調整には有機結合剤(カルボン酸系パイングー0.
01〜0.9wt%、アクリル酸系パイングー0.01
〜0.9wt%)および消泡剤Q、Q5wt%を用い、
各造粒粉末については混練機にて混合分散して泥漿化し
、また未造粒粉末についてはボッ)ミルにて混合分散し
て泥漿化する。造粒粉末をボットミルにて混合分散する
と造粒粉末が破壊するおそれがあって好ましくなく、ま
た未造粒粉末を混練機にて混合分散すると均一混合し難
い。
For slurry adjustment, organic binder (carboxylic acid-based Pine Gu0.
01-0.9wt%, acrylic acid-based pine goo 0.01
~0.9wt%) and antifoam agent Q, using Q5wt%,
Each granulated powder is mixed and dispersed in a kneader to form a slurry, and the ungranulated powder is mixed and dispersed in a bottle mill to form a slurry. Mixing and dispersing granulated powder in a bot mill is undesirable because the granulated powder may be destroyed, and mixing and dispersing ungranulated powder in a kneader makes it difficult to mix uniformly.

鋳込用テスト型は第1図(a)に示すもので上型1と下
型2とからなり、同テスト型を用いて5Kg/cm”G
の圧力にて加圧鋳込成形し、得られた鋳込成形体を温度
80℃以下、湿度60%以上の恒温恒湿の条件で乾燥を
開始し、漸次湿度を下げて乾燥する。
The test mold for casting is shown in Fig. 1(a) and consists of an upper mold 1 and a lower mold 2.
Pressure casting is carried out at a pressure of 100.degree. C., and drying of the obtained cast body is started under constant temperature and humidity conditions of a temperature of 80° C. or lower and a humidity of 60% or higher, and the humidity is gradually lowered to dry.

乾燥後の成形体にはラテックスを塗布して乾燥し全面を
ゴム膜にて被覆し、次いで2000Kg/Cm2の圧力
でCIPに付す、CIPに付した成形体は1400℃に
て焼成され、第1図(b)に示す形状および寸法のセラ
ミックス成形物10を得る。かかる成形物10から中心
部11と外周部12のサンプルを切出し、同サンプルの
熱処理前後の曲げ強度なJISRIGOIの4点曲げ試
験法にて測定した。この結果を第1表に示すとともに、
判定基準としてプレス成形法にて得たサンプルの曲げ強
度の値を示す、なお、熱処理はオートクレーブ内で25
0°C飽和水蒸気圧中で行い、熱処理時間は^120゜
については500時間、ZrO,については250時間
である。
After drying, latex is applied to the molded body, dried, the entire surface is covered with a rubber film, and then subjected to CIP at a pressure of 2000 Kg/Cm2.The molded body subjected to CIP is fired at 1400°C, and the first A ceramic molded article 10 having the shape and dimensions shown in Figure (b) is obtained. Samples of the center portion 11 and the outer peripheral portion 12 were cut out from the molded product 10, and the bending strength of the samples before and after heat treatment was measured using the JISRIGOI four-point bending test method. The results are shown in Table 1, and
The bending strength value of the sample obtained by the press molding method is shown as the judgment criterion.The heat treatment was performed in an autoclave at 25
The heat treatment time was 500 hours for ^120 degrees and 250 hours for ZrO.

同表を参照すると、造粒粉末を使用した場合は未造粒粉
末を使用した場合に比し熱処理前後の強度が高(、かつ
造粒法に関しては噴霧乾燥造粒法を採用した場合にはプ
レス成形体の場合と同等の強度が得られる。CIPに関
しては、未造粒粉末の場合ではあるがCIPの有無によ
り強度に着しい差異が認められ、CIPによる全面加圧
により全面が強固に圧縮されて強度が向上することが判
る。原料粉体の平均粒子径に関しては、粒子径0.8μ
lより0.4μ鶴の方が強度が高いことが判る。
Referring to the same table, when using granulated powder, the strength before and after heat treatment is higher than when using ungranulated powder (and regarding the granulation method, when spray drying granulation method is used) The same strength as that of a press-formed product can be obtained.As for CIP, although it is an ungranulated powder, there is a considerable difference in strength depending on the presence or absence of CIP, and the entire surface is firmly compressed by CIP. It can be seen that the strength is improved when the average particle size of the raw material powder is 0.8μ.
It can be seen that the strength of 0.4μ Tsuru is higher than that of 1.

(以下余白) 〔実施例2〕 実施例1で調整した泥漿を用いて第2図(、)、(b)
に示す形状、寸法のポンプ用インペラー20、第3図(
a)、(b)に示す形状、寸法のバタフライ弁体30等
の大型で複雑な構造゛のセラミックス成形体を、加圧鋳
込成形、乾燥して形成し、僑込戊形能力を評価した。能
力評価は各成形体の成形、乾燥工程での外観から切れ、
クラック等の損傷を観察して行い、その結果を第2表に
示す、なお、損傷部位21〜24はtIIJ2図に示す
インペラー20の損傷部位、損傷部位31.32は第3
図に示す弁体30の損傷部位である。
(The following is a blank space) [Example 2] Using the slurry prepared in Example 1, Figure 2 (,), (b)
A pump impeller 20 having the shape and dimensions shown in Fig. 3 (
A ceramic molded body with a large and complicated structure such as a butterfly valve body 30 having the shape and dimensions shown in a) and (b) was formed by pressure casting and drying, and the embedding ability was evaluated. . Performance evaluation is based on the appearance of each molded object during the molding and drying process.
The results are shown in Table 2. Damaged areas 21 to 24 are the damaged areas of the impeller 20 shown in Figure tIIJ2, and damaged areas 31 and 32 are the damaged areas of the impeller 20 shown in Figure tIIJ2.
This is the damaged part of the valve body 30 shown in the figure.

鋳込成形能力は原料粉体の種M(^1205、Zr0z
)によっては差異がなく、造粒の有無および造粒方法に
より差異がある。造粒法に関しては、噴霧乾燥造粒法お
上り流動層造粒法を採用した場合には良好であり、また
圧縮造粒法においても原料粉末として平均粒子径0.8
μmのものを採用した場合には良好である。未造粒粉末
を用いた場合には、成形特中央部まで充分に着肉しない
うちに着肉した表面層から乾燥、収縮が生じ、中途で離
型しても崩壊するものがあった。このことは、実施例1
の鋳込テスト型では未造粒粉末を用いても鋳込成形は充
分に可能であるものの、構造が複雑、大型、肉厚差の大
きい成形体の鋳込成形においては、本発明の製造方法が
極めて有効であることを意味している。
The casting ability is determined by the raw powder type M (^1205, Zr0z
), but there are differences depending on whether or not granulation is used and the granulation method. As for the granulation method, spray drying granulation method and fluidized bed granulation method are suitable, and compression granulation method also uses an average particle size of 0.8 as the raw material powder.
Good results are obtained when μm is used. When ungranulated powder was used, drying and shrinkage occurred from the inked surface layer before the ink was sufficiently attached to the center of the molding, and some of the ink also collapsed even after being released from the mold halfway. This can be seen in Example 1
Although it is possible to perform casting test molds using ungranulated powder, the manufacturing method of the present invention is not suitable for casting molded bodies with complex structures, large sizes, and large differences in wall thickness. This means that it is extremely effective.

(以下余白) 第2表(Margin below) Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)は鋳込テスト型の縦断面図、同図(b)は
同テスト型を鋳込成形にて使用したセラミックス成形物
の側面図、第2図(、)は鋳込成形および乾燥して形成
された一成形体(ポンプ用インペラー)の平面図、同図
(b)は同成形体の縦断面図、第3図(PL)は他の成
形体(バタフライ弁体)の平面図、同図(b)は同成形
体の側面図である。 符号の説明 10・・・成形物、20・・・ポンプ用インペラー、3
0・・・バタフライ弁体。
Figure 1 (,) is a longitudinal cross-sectional view of the casting test mold, Figure (b) is a side view of a ceramic molded product using the same test mold in casting, and Figure 2 (,) is casting molding. and a plan view of one molded body (pump impeller) formed by drying, FIG. 3(b) is a longitudinal cross-sectional view of the same molded body, and FIG. The plan view and the figure (b) are a side view of the same molded object. Explanation of symbols 10...Molded product, 20...Pump impeller, 3
0...Butterfly valve body.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の(イ)〜(ホ)の工程からなるセラミック
ス成形物の製造方法。 (イ)セラミックスの原料粉体を造粒する工程。 (ロ)造粒工程にて得られた造粒体に有機系結合剤を添
加して泥漿を調整する工程。 (ハ)泥漿調整工程にて得られた泥漿を成形型に鋳込む
工程。 (ニ)鋳込み工程にて得られた成形体を乾燥し、アイソ
スタティックプレスに付す工程。(ホ)アイソスタティ
ックプレス工程にて得られた成形体を焼成する工程。
(1) A method for producing a ceramic molded article comprising the following steps (a) to (e). (a) Process of granulating raw material powder for ceramics. (b) A step of adjusting the slurry by adding an organic binder to the granules obtained in the granulation step. (c) A process of casting the slurry obtained in the slurry preparation process into a mold. (d) A process of drying the molded body obtained in the casting process and subjecting it to an isostatic press. (e) A process of firing the molded body obtained in the isostatic pressing process.
(2)鋳込み工程にて得られた成形体を乾燥した後仮焼
し、アイソスタティックプレスに付す第1項記載の製造
方法。
(2) The manufacturing method according to item 1, wherein the molded body obtained in the casting step is dried, then calcined, and subjected to an isostatic press.
JP33183387A 1987-12-25 1987-12-25 Manufacture of ceramic molding Granted JPH01171805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33183387A JPH01171805A (en) 1987-12-25 1987-12-25 Manufacture of ceramic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33183387A JPH01171805A (en) 1987-12-25 1987-12-25 Manufacture of ceramic molding

Publications (2)

Publication Number Publication Date
JPH01171805A true JPH01171805A (en) 1989-07-06
JPH0482083B2 JPH0482083B2 (en) 1992-12-25

Family

ID=18248155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33183387A Granted JPH01171805A (en) 1987-12-25 1987-12-25 Manufacture of ceramic molding

Country Status (1)

Country Link
JP (1) JPH01171805A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615699B (en) * 2012-02-28 2015-11-25 宜兴市金鱼陶瓷有限公司 Punching press prepares the method for bottle head in conjunction with cutting forming

Also Published As

Publication number Publication date
JPH0482083B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
US4407967A (en) Method for producing spheroidal ceramics
JP4677899B2 (en) Manufacture of goods from fly ash
KR101729054B1 (en) Alumina graula by spray-drying and manufacturing method thereof
KR20070115720A (en) Method of making cemented carbide or cermet agglomerated powder mixtures
JPH06183848A (en) Production of whisker reinforced ceramic body
JP5977027B2 (en) Production of deformable granules
KR100367073B1 (en) Ceramic granule for molding ceramic product, process for producing or treating the same, ceramic molded product and process for producing the same
JPH01171805A (en) Manufacture of ceramic molding
CN115108812A (en) Method for regulating and controlling ceramsite structural characteristics and mechanical strength, pomegranate-like structure light-weight high-strength ceramsite and preparation method thereof
JPH0369545A (en) Manufacturing white ware ceramic product
EP0704414A1 (en) Alumina fiber granules, process for producing the granules and a process for producing a porous article using the granules
Baklouti et al. Compaction behaviour of alumina powders spray-dried with organic binders
JPH02279553A (en) Ceramic molded body and its production
KR102595822B1 (en) High-density alumina manufacturing method for plasma resistance using HIP
JPH02171207A (en) Ceramic injection-molded body and its molding method
JPH02217348A (en) Raw material for slip of ceramics
JP7072220B2 (en) Method for manufacturing unfired silica solidified body
JPH038779A (en) Porous ceramic molded article and production thereof
JP2002128570A (en) Manufacture of granules for forming ceramics and equipment thereof, and granules, shaped compact and sintered compact
JPH0462774B2 (en)
KR20230076373A (en) Manufacturing Method of Alumina Spheres
JPH038780A (en) Sintered fine particle of ceramics and production thereof
JPH0248511B2 (en)
CN117865689A (en) Silicon nitride green body and preparation method thereof
Tanaka et al. Evaluation of Compaction Behavior by Observation of Internal Structure in Granules Compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term