JPH038780A - Sintered fine particle of ceramics and production thereof - Google Patents

Sintered fine particle of ceramics and production thereof

Info

Publication number
JPH038780A
JPH038780A JP1042311A JP4231189A JPH038780A JP H038780 A JPH038780 A JP H038780A JP 1042311 A JP1042311 A JP 1042311A JP 4231189 A JP4231189 A JP 4231189A JP H038780 A JPH038780 A JP H038780A
Authority
JP
Japan
Prior art keywords
sintered
ceramic
fine particles
sintering
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1042311A
Other languages
Japanese (ja)
Inventor
Yoshihiko Yuzawa
湯沢 慶彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1042311A priority Critical patent/JPH038780A/en
Publication of JPH038780A publication Critical patent/JPH038780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain sintered fine particles useful as filters, having uniform particle diameters, improved durability and reliability, by blending ceramic powder with a sintering auxiliary and a molding auxiliary, granulating and then sintering in a granular state as it is. CONSTITUTION:Ceramic powder having <=10mu average particle diameter is blended with a sintering auxiliary and a molding auxiliary, granulated and sintered in a granular state as it is to give the aimed sintered fine particles. Silicon carbide, alumina, silicon nitride, zirconia, sialon, etc., may be cited as the ceramics used. The reason why the average particle diameter should be <=10mu is that the sintered fine particles must have dense texture and high strength. Usually C, B, Al, etc., may be cited as the sintering auxiliary in the case of silicon carbide, MgO, etc., in the case of alumina, alumina or yttria in the case of silicon nitride, generally also yttria in the case of sialon and nothing is added in the case of zirconia.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフィルター等に使用されるセラミックス多孔質
焼結体を造る際に用いるセラミックス原料用焼結微粒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sintered fine particle for a ceramic raw material used in producing a ceramic porous sintered body used for filters and the like.

(従来の技術〕 セラミックス焼結体は耐熱性、耐食性、高硬度等に優れ
ていることから、フィルター等に用いられる材料である
ことか知られ、実用に供せられている。
(Prior Art) Ceramic sintered bodies have excellent heat resistance, corrosion resistance, high hardness, etc., and are therefore known to be materials used in filters and the like, and are put into practical use.

従来は、セラミックスフィルターとしては、高分子発泡
体等の材料にセラミックスの泥しようを含浸させ、その
高分子発泡体材料を脱脂、消失させ、セラミックス素地
を形成し、焼結することによりセラミックスフィルター
を造っていた。
Conventionally, ceramic filters are made by impregnating a material such as a polymer foam with ceramic slurry, degreasing and eliminating the polymer foam material, forming a ceramic matrix, and sintering it. was building.

(発明か解決しようとする課題) 従来の技術では、気孔率か70〜90vo1%と高くす
ることはてきるが、曲げ強度、圧縮強度か小さく、また
フィルターの気孔をミクロンオーターにすることは困難
である。
(Problem to be solved by the invention) With conventional technology, it is possible to increase the porosity to 70 to 90 VO1%, but the bending strength and compressive strength are low, and it is difficult to make the pores of the filter micron size. It is.

本発明は、以上の様な従来の問題点を解決し、フィルタ
ーの曲げ強度、圧縮強度か大きく、またフィルター内て
連続気孔を形成するとともに、その気孔径かミクロンオ
ーターであるフィルターを造ることが容易となり、耐熱
性、耐薬品性に優れたセラミックスフィルターを製造す
るためのセラミックス原料となるセラミックス焼結微粒
体およびその製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and makes it possible to manufacture filters with large bending strength and compressive strength, continuous pores in the filter, and micron-sized pores. The object of the present invention is to provide ceramic sintered fine particles that can be used as a ceramic raw material for easily manufacturing a ceramic filter having excellent heat resistance and chemical resistance, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、上記目的の解決のため種々検討した結果、
セラミックスフィルター焼結体の原料としてセラミック
ス微粉末の代わりに適当な粒径な持った本発明であるセ
ラミックス焼結微粒体を再度顆粒化して用いることか良
いことを見出した。
As a result of various studies to solve the above object, the inventor has found that
It has been found that it is better to re-granulate and use the ceramic sintered fine particles of the present invention having an appropriate particle size instead of the ceramic fine powder as a raw material for the ceramic filter sintered body.

本発明の要旨は、セラミックス粉末に焼結助剤として成
形助剤を添加し顆粒化した後、顆粒状のまま焼結したこ
とを特徴とするセラミックス焼結微粒体であり、そのセ
ラミックスか炭化珪素、アルミナ、窒化珪素、ジルコニ
ア、サイアロンの何れかであるセラミックス焼結微粒体
およびそれらの製造方法として、平均粒径10 gtx
以下のセラミックス粉末に焼結助剤および成形助剤を添
加し、混合し顆粒化後、顆粒状のまま焼結する製造方法
である。
The gist of the present invention is a ceramic sintered fine granule characterized by adding a forming aid as a sintering aid to ceramic powder, granulating it, and then sintering the granular form, and the ceramic or silicon carbide. , alumina, silicon nitride, zirconia, sialon, and their production method, with an average particle size of 10 gtx
This is a production method in which a sintering aid and a forming aid are added to the following ceramic powder, mixed and granulated, and then sintered in the granulated form.

本発明のセラミックス焼結微粒体で所定の粒径を持った
ものを後に詳説する様に再度、顆粒化して生成形体を造
りそれを焼結することにより、多孔質焼結体の気孔径を
任意に選択することかてき、所定の気孔径にすることか
容易になる。すなわち、本発明のセラミックス焼結微粒
体は球形をしているため、そのセラミックス焼結微粒体
の直径をRとするとそれによって造られる多孔質焼結体
の気孔径rは約0.16Rとなることになり、フィルタ
ー等の多孔質焼結体の気孔径を所定のものにすることか
容易にできることになる。
The ceramic sintered fine particles of the present invention having a predetermined particle size are granulated again to form a formed body and sintered, as will be explained in detail later.The porous sintered body can have an arbitrary pore size. This makes it easy to select a desired pore size. That is, since the ceramic sintered fine particles of the present invention have a spherical shape, if the diameter of the ceramic sintered fine particles is R, the pore diameter r of the porous sintered body made thereby is about 0.16R. This means that the pore diameter of a porous sintered body such as a filter can be easily adjusted to a predetermined value.

本発明であるセラミックス焼結微粒体は10gm以下の
平均粒径なもつセラミックス粉末を原料とする。平均粒
径を10gn以下てなければならないのは焼結微粒体か
wi密な組織のものてあり、高強度をもつものでなけれ
ばならないからである。このセラミックス粉末に焼結助
剤および成形助剤を添加し、更に適当量の水または有機
溶剤を混合し、スラリー化して噴霧乾燥して顆粒化する
か、−船釣な造粒機にて顆粒化する。
The ceramic sintered fine particles of the present invention are made from ceramic powder having an average particle size of 10 gm or less. The reason why the average particle size must be 10 gn or less is because the material must be a sintered fine grain or a dense structure and must have high strength. A sintering aid and a forming aid are added to this ceramic powder, and an appropriate amount of water or an organic solvent is added to form a slurry, which is then spray-dried to form granules, or by a boat granulator. become

この際の焼結助剤は、炭化珪素の場合には通常C,B、
A文等か1アルミナの場合にはMgO等か、窒化珪素の
場合にはアルミナ、イツトリアか、サイアロンの場合に
もイツトリアか一般的には用いられジルコニアの場合に
は無添加である。また成形助剤としては水を使用する場
合はPEG、PVA等か、有機溶剤を使用する場合には
PVB等が用いられる。
In the case of silicon carbide, the sintering aid at this time is usually C, B,
In the case of A-type or the like, MgO or the like is generally used in the case of alumina, alumina or yttria in the case of silicon nitride, or yttria in the case of sialon, and no additives are used in the case of zirconia. Further, as a molding aid, PEG, PVA, etc. are used when water is used, or PVB etc. are used when an organic solvent is used.

顆粒化後、顆粒状の形態のまま焼結し、本発明品を得る
。この際の焼結温度は、「通常行なわれる焼結温度」よ
り100℃位低目かよい。その理由は、本発明の焼結顆
粒の微粒体を再度焼結助剤および成形助剤を添加して顆
粒化後、その顆粒をプレス等て成形する折、その顆粒が
潰れず顆粒の形状を維持てきることと、その後の成形体
の再度の焼結時にその顆粒か再焼結する必要かあるため
である。前述の「通常行なわれる焼結温度」および焼結
時雰囲気は表・lの通りである。
After granulation, the product is sintered in the granular form to obtain the product of the present invention. The sintering temperature at this time may be about 100°C lower than the "normally performed sintering temperature". The reason for this is that when the fine particles of the sintered granules of the present invention are granulated by adding a sintering aid and a forming aid again, and then the granules are molded using a press, etc., the granules do not collapse and the shape of the granules is maintained. This is because the granules need to be maintained and the granules need to be re-sintered when the molded body is subsequently sintered again. The above-mentioned "normally performed sintering temperature" and atmosphere during sintering are as shown in Table 1.

(以下余白) 表引 本発明のセラミックス焼結微粒体を用いて多孔質焼結体
を造゛るには、多孔質焼結体の所定の気孔径に見合った
適性粒径な持ったセラミックス焼結微粒体に前述と同様
の焼結助剤および成形助剤を添加し、水又は有機溶剤も
入れボールミル等て十分に混合したスラリーを噴霧乾燥
等により再度顆粒化し、その顆粒を用いてラバープレス
またはフレス成形機により成形体を造り、その成形体を
必要によっては生加工し、脱脂、焼結することにより、
フィルタ一部材等の多孔質焼結体を容易に造れる。
(The following is a blank space) In order to create a porous sintered body using the ceramic sintered fine particles of the present invention, a ceramic sintered body having an appropriate particle size commensurate with the predetermined pore size of the porous sintered body is used. Add the same sintering aid and molding aid as mentioned above to the compacted particles, add water or an organic solvent, and thoroughly mix the slurry using a ball mill, etc., then granulate it again by spray drying, etc., and use the granules to make a rubber press. Or, by making a molded body using a Fres molding machine, raw processing the molded body as necessary, degreasing, and sintering the molded body.
Porous sintered bodies such as filter members can be easily produced.

なお、この場合の焼結温度等は表・lに示した「通常行
なわれる焼結温度」等による。
Incidentally, the sintering temperature in this case is based on the "normally performed sintering temperature" etc. shown in Table 1.

また、このセラミックス焼結微粒体は、既に焼結しであ
るため、ラバープレスまたはプレス成形機により加圧さ
れても潰れたり破壊することはない。
Moreover, since the ceramic sintered fine particles have already been sintered, they will not be crushed or destroyed even if they are pressurized by a rubber press or a press molding machine.

高度の機能特性を利用したセラミックス多孔質焼結体の
機能作用を示す細孔は主として0.O2N200 gm
の広範囲に及ぶ。よって、本発明のセラミ・シクス焼結
微粒体の粒径Rはその所定の気孔径rに対し、前述の0
.16て割った値となる。すなわち20μlの気孔径を
造りたければ125gm径のセラミックス焼結微粒体か
必要となる。
The pores that exhibit the functional effects of ceramic porous sintered bodies that utilize advanced functional properties are mainly 0. O2N200gm
Covers a wide range of areas. Therefore, the particle size R of the ceramic six sintered fine particles of the present invention is equal to the above-mentioned 0 for the predetermined pore size r.
.. The value is divided by 16. That is, if you want to create a pore size of 20 μl, you will need ceramic sintered fine particles with a diameter of 125 gm.

ただ現在の一般的な造粒技術、造粒機器からすると粗い
方は作成上問題はないか、細かい方は10 )bm径の
造粒か限界である。さらに造粒技術、造粒機器が開発さ
れれば本発明のセラミックス焼結微粒体の下限径を限定
するものではない。
However, according to the current general granulation technology and granulation equipment, there is no problem in producing coarse particles, and fine particles have a limit of 10) bm diameter. Furthermore, if granulation technology and granulation equipment are developed, the lower limit diameter of the ceramic sintered fine particles of the present invention is not limited.

また本発明の焼結微粒体を用いて成形体を造る際に用い
る顆粒造粒品の径は当然、最低の場合て、本発明の焼結
微粒体に焼結助剤および成形助剤かまふされたものの径
となり、大きい粒径のものはこれに該当する。小さい焼
結微粒体の場合には、それかいくつか集った顆粒状の造
粒品となる。
In addition, the diameter of the granulated product used when making a molded body using the sintered fine granules of the present invention is, of course, the minimum diameter of the sintered fine granules of the present invention. This is the diameter of the particles, and large particles fall under this category. In the case of small sintered fine particles, it becomes a granulated product made up of several pieces.

〔実施例〕〔Example〕

以下、本発明につき炭化珪素を例にとり、詳しく説明す
る。
Hereinafter, the present invention will be explained in detail using silicon carbide as an example.

平均粒径か0.45ルmの炭化珪素微粉末100重量部
に対し、炭化はう素粉末0.8重量部、カーボンブラッ
ク粉末2.5重量部、ポリビニルアルコール(PVA)
2.5重量部に水を添加し、ボールミル中てlO時間混
合し、40%濃度のスラリーを造り、スプレードライヤ
ーにて顆粒化した。この顆粒の平均粒径は50μlてあ
った。
For 100 parts by weight of silicon carbide fine powder with an average particle size of 0.45 μm, 0.8 parts by weight of boron carbide powder, 2.5 parts by weight of carbon black powder, and polyvinyl alcohol (PVA).
Water was added to 2.5 parts by weight and mixed for 10 hours in a ball mill to prepare a 40% slurry, which was granulated using a spray dryer. The average particle size of the granules was 50 μl.

次いでこの顆粒を800℃て1時間窒素雰囲気中で脱脂
し、更に1950℃で3時間アルゴン雰囲気中で焼結し
、平均粒径は40Kmの炭化珪素焼結微粒体を得た。
The granules were then degreased at 800° C. for 1 hour in a nitrogen atmosphere, and further sintered at 1950° C. for 3 hours in an argon atmosphere to obtain sintered silicon carbide fine particles with an average particle size of 40 km.

この炭化珪素焼結微粒体100重量部に対し。For 100 parts by weight of this sintered silicon carbide fine particles.

再度炭化はう素粉末0.8重量部、カーボンブラック粉
末2.5重量部、PVA2.5玉量部に水を添加し、ボ
ールミル中て15時間混合し、40%濃度のスラリーを
造り、スプレードライヤーにて顆粒化した。この顆粒の
平均粒径は98鉢lてあった。
Water was added again to 0.8 parts by weight of boron carbide powder, 2.5 parts by weight of carbon black powder, and 2.5 parts by weight of PVA, mixed in a ball mill for 15 hours to make a slurry with a concentration of 40%, and sprayed. It was granulated using a dryer. The average particle size of the granules was 98 liters.

次にこの顆粒を成形金型に充填し、1.5Ton/cn
′r′の圧力で加圧成形し生成形体を得た。
Next, the granules were filled into a mold and 1.5T/cn
A molded product was obtained by pressure molding at a pressure of 'r'.

更にこの生成形体を800℃で1時間窒素雰囲気中て脱
脂し、更に2050°Cて3時間アルゴン雰囲気中で焼
結し、密度2.1g/cm’、平均気孔径7.5JLa
の炭化珪素多孔質焼結体を得た。
Further, this formed body was degreased at 800°C for 1 hour in a nitrogen atmosphere, and further sintered at 2050°C for 3 hours in an argon atmosphere, resulting in a density of 2.1 g/cm' and an average pore diameter of 7.5 JLa.
A porous sintered body of silicon carbide was obtained.

その曲げ強度は25kg/mm’てあった。Its bending strength was 25 kg/mm'.

〔発明の効果〕〔Effect of the invention〕

本発明のセラミックス多孔質焼結体用セラミックス焼結
微粒体を顆粒化して用いると容易にセラミックス多孔質
焼結体を得る事か出来、フィルター等の用途に対し均一
気孔径を有する特性にて極めて優れており、更に従来品
より耐久性、信頼性を向上させることかてさ、産業上極
めて有用である。
By granulating and using the ceramic sintered fine particles for ceramic porous sintered bodies of the present invention, it is possible to easily obtain ceramic porous sintered bodies, which are extremely suitable for applications such as filters due to their uniform pore diameter properties. It is extremely useful industrially as it has improved durability and reliability compared to conventional products.

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス粉末に焼結助剤と成形助剤を添加し
顆粒化した後、顆粒状のまま焼結したことを特徴とする
セラミックス焼結微粒体。
(1) Ceramic sintered fine particles characterized by adding a sintering aid and a forming aid to ceramic powder, granulating it, and then sintering the granular form.
(2)第1請求項記載のセラミックスが炭化珪素、アル
ミナ、窒化珪素、ジルコニア、サイアロンの何れかであ
るセラミックス焼結微粒体。
(2) Ceramic sintered fine particles, wherein the ceramic according to claim 1 is any one of silicon carbide, alumina, silicon nitride, zirconia, and sialon.
(3)平均粒径10μm以下のセラミックス粉末に焼結
助剤および成形助剤を添加し、混合し顆粒化後、顆粒状
のまま焼結することを特徴とするセラミックス焼結微粒
体の製造方法。
(3) A method for producing sintered ceramic fine particles, which comprises adding a sintering aid and a forming aid to ceramic powder with an average particle size of 10 μm or less, mixing and granulating the powder, and then sintering the granular form as it is. .
JP1042311A 1989-02-22 1989-02-22 Sintered fine particle of ceramics and production thereof Pending JPH038780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042311A JPH038780A (en) 1989-02-22 1989-02-22 Sintered fine particle of ceramics and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1042311A JPH038780A (en) 1989-02-22 1989-02-22 Sintered fine particle of ceramics and production thereof

Publications (1)

Publication Number Publication Date
JPH038780A true JPH038780A (en) 1991-01-16

Family

ID=12632479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042311A Pending JPH038780A (en) 1989-02-22 1989-02-22 Sintered fine particle of ceramics and production thereof

Country Status (1)

Country Link
JP (1) JPH038780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014283A1 (en) * 1999-08-24 2001-03-01 Imerys Minerals Limited Ceramic materials
JP2006306673A (en) * 2005-04-28 2006-11-09 Citizen Fine Tech Co Ltd Method of manufacturing porous ceramic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014283A1 (en) * 1999-08-24 2001-03-01 Imerys Minerals Limited Ceramic materials
JP2006306673A (en) * 2005-04-28 2006-11-09 Citizen Fine Tech Co Ltd Method of manufacturing porous ceramic
JP4713214B2 (en) * 2005-04-28 2011-06-29 シチズンファインテックミヨタ株式会社 Method for producing porous ceramics

Similar Documents

Publication Publication Date Title
EP0360244B1 (en) Porous ceramic sinter and process for producing same
JPH0380749B2 (en)
JPH038780A (en) Sintered fine particle of ceramics and production thereof
US5854156A (en) Granulated powder for producing silicon nitride sintered body
JP2870382B2 (en) Ceramic building materials
EP0983980A1 (en) Porous ceramic sinter and process for producing the same
JPH04367578A (en) Porous sintered compact and its production
EP0704414A1 (en) Alumina fiber granules, process for producing the granules and a process for producing a porous article using the granules
JPH08301672A (en) Production of powder for porous sintered compact
JP2958472B2 (en) High strength porous member and method of manufacturing the same
KR100435006B1 (en) Method for Manufacturing Homogeneous Preform of Reaction-Bonded Silicon Carbide Using the Powders of Multimodal Particle Size Distribution
JPS61287433A (en) Production of ceramics pellet
JPH02160679A (en) Production of alumina-based porous material
JPS63151680A (en) High-strength normal pressure-sintering silicon nitride sintered body and manufacture
JPH038779A (en) Porous ceramic molded article and production thereof
JPH04338178A (en) Porous magnesia sintered body and production thereof
JP2003063874A (en) Method for manufacturing ceramic spherical body
JPH0483759A (en) Production of sintered composite boron nitride
JPH03208870A (en) Production of porous ceramic body
JPS63170254A (en) Manufacture of ceramics
JPH068201B2 (en) Manufacturing method of raw material for ceramics molded body
JPH02229713A (en) Production of alumina porous body
KR100458471B1 (en) Manufacturing method of the ceramics filter
JPH0469110B2 (en)
JPH061673A (en) Production of porous ceramic