JPH0248511B2 - - Google Patents

Info

Publication number
JPH0248511B2
JPH0248511B2 JP60142498A JP14249885A JPH0248511B2 JP H0248511 B2 JPH0248511 B2 JP H0248511B2 JP 60142498 A JP60142498 A JP 60142498A JP 14249885 A JP14249885 A JP 14249885A JP H0248511 B2 JPH0248511 B2 JP H0248511B2
Authority
JP
Japan
Prior art keywords
powder
weight
parts
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60142498A
Other languages
Japanese (ja)
Other versions
JPS627670A (en
Inventor
Teruyasu Tamamizu
Yukifumi Sakai
Hiroshi Tashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP60142498A priority Critical patent/JPS627670A/en
Priority to US06/877,918 priority patent/US4771021A/en
Publication of JPS627670A publication Critical patent/JPS627670A/en
Publication of JPH0248511B2 publication Critical patent/JPH0248511B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体拡散炉の構成部材の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing components of a semiconductor diffusion furnace.

従来の技術 特公昭54−10825号公報は半導体拡散炉の構成
部材を示している。この従来例にあつては、0.1
〜8μの平均粒径を有する微粒と、30〜170μの平
均粒径を有する粗粒からなるSiC粉末の焼結体に
よつて焼結SiCマトリツクスが形成されている。
Prior Art Japanese Patent Publication No. 54-10825 shows constituent members of a semiconductor diffusion furnace. In this conventional example, 0.1
A sintered SiC matrix is formed of a sintered body of SiC powder consisting of fine particles having an average particle size of ~8μ and coarse particles having an average particle size of 30 to 170μ.

発明が解決しようとする問題点 前述の半導体拡散炉の構成部材にあつては、特
に微粒のSiC粉末が0.1〜8μの平均粒径を有するた
め、粉末全体としてみたときSiC粉末の表面積が
非常に大きくなり、その結果として、不純物が混
入しやすい。通常は、粗粒のSiC粉末を粉砕する
のであるが、そのような粉砕工程において不純物
が入りやすいのである。この時、不純物の混入を
避けるためには、特別な処理操作が必要であり、
生産コストを高くする欠点がある。
Problems to be Solved by the Invention In the components of the semiconductor diffusion furnace mentioned above, the surface area of the SiC powder is extremely large when viewed as a whole because the fine SiC powder has an average particle size of 0.1 to 8μ. As a result, impurities are likely to be mixed in. Usually, coarse-grained SiC powder is pulverized, but impurities are likely to enter in such a pulverization process. At this time, special processing operations are required to avoid contamination with impurities.
It has the disadvantage of increasing production costs.

発明の目的 この発明は前述のような従来技術の欠点を解消
して、処理操作が比較的容易で、しかも物理特性
の優れた半導体拡散炉構成部材の製造方法を提供
することを目的としている。
OBJECTS OF THE INVENTION It is an object of the present invention to overcome the drawbacks of the prior art as described above, and to provide a method for manufacturing semiconductor diffusion furnace components that are relatively easy to process and have excellent physical properties.

発明の要旨 この目的を達成するために、この発明は30〜
170μの平均粒径を有するSiC粉末50〜90重量部
と、0.1〜8μの平均粒径を有するC粉末3〜15重
量部と、0.1〜8μの平均粒径を有するSi粉末7〜
35重量部とを混合焼成してなる半導体拡散炉の構
成部材の製造方法を要旨としている。
SUMMARY OF THE INVENTION To achieve this objective, this invention
50 to 90 parts by weight of SiC powder having an average particle size of 170μ, 3 to 15 parts by weight of C powder having an average particle size of 0.1 to 8μ, and 7 to 90 parts by weight of Si powder having an average particle size of 0.1 to 8μ.
The gist of this article is a method for manufacturing a component of a semiconductor diffusion furnace by mixing and firing 35 parts by weight.

問題点を解決するための手段 この発明による半導体拡散炉の構成部材の製造
方法においては、SiC粉末は粗粒のみを使用し、
微粒は使用しない。すなわち、30〜170μの平均
粒径を有するSiC粉末を50〜90重量部使用するの
である。このSiC粉末に0.1〜8μの平均粒径を有す
るC粉末3〜15重量部と0.1〜8μの平均粒径を有
するSi粉末7〜35重量部を添加する。
Means for Solving the Problems In the method for manufacturing components of a semiconductor diffusion furnace according to the present invention, only coarse particles of SiC powder are used;
Do not use granules. That is, 50 to 90 parts by weight of SiC powder having an average particle size of 30 to 170 μm is used. To this SiC powder are added 3 to 15 parts by weight of C powder having an average particle size of 0.1 to 8μ and 7 to 35 parts by weight of Si powder having an average particle size of 0.1 to 8μ.

C粉末が3重量部よりも少ないと、SiCの結合
力が小さく、強度が低下する。また、C粉末が15
重量部よりも大きいと、Siの含浸前に変形をおこ
しやすくなり、強度が低下する。
If the amount of C powder is less than 3 parts by weight, the bonding force of SiC will be small and the strength will be reduced. In addition, C powder is 15
If it is larger than the weight part, deformation is likely to occur before impregnation with Si, resulting in a decrease in strength.

Si粉末が7重量部よりも少ないと、SiCの結合
力が弱まり、強度が下がる。また、Si粉末の含有
量が35重量%よりも多いと、Siの含浸が困難とな
り、材質の均一性に欠けやすくなる。
When the amount of Si powder is less than 7 parts by weight, the bonding force of SiC is weakened and the strength is reduced. Furthermore, if the content of Si powder is more than 35% by weight, it becomes difficult to impregnate Si, and the material tends to lack uniformity.

C粉末とSi粉末の全体量が多すぎると、焼成時
に体積の減少が生じ変形の問題が起る。
If the total amount of C powder and Si powder is too large, the volume will decrease during firing, causing a problem of deformation.

前述のようなSiC粉末、C粉末およびSi粉末に
有機バインダーを加えて混練造粒し、ラバープレ
スにより成型してから焼成し、Siを含浸してケイ
化するのが一般的な製造方法である。また、HCl
によりパージをして純化を行なうと、より高品質
のものがえられる。
A common manufacturing method is to add an organic binder to the SiC powder, C powder, and Si powder as described above, knead and granulate it, mold it using a rubber press, and then sinter it to impregnate it with Si and silicify it. . Also, HCl
By purging and purifying, higher quality products can be obtained.

実施例 30〜170μの平均粒径を有するSiC粉末70重量部
と、0.1〜8μの平均粒径を有するC粉末9重量部
と、0.1〜8μの平均粒径を有するSi粉末21重量部
と、有機バインダーとしてアルコール10重量部を
配合混練し、周知のやり方で造粒する。このよう
な造粒物を乾燥させてからラバープレスにより半
導体炉芯管の形状に成型する。しかるのち1200℃
の温度で焼成し、塩酸ガスと少量の水蒸気とによ
り1000℃の温度でパージを行なつて純化させてか
らSiを1700℃の温度で含浸してケイ化させる。最
後に必要に応じて研磨等の最終仕上げを行なう。
Example 70 parts by weight of SiC powder with an average particle size of 30-170μ, 9 parts by weight of C powder with an average particle size of 0.1-8μ, and 21 parts by weight of Si powder with an average particle size of 0.1-8μ. 10 parts by weight of alcohol as an organic binder are mixed and kneaded, and granulated using a well-known method. After drying such granules, they are molded into the shape of a semiconductor furnace tube using a rubber press. Afterwards 1200℃
The material is calcined at a temperature of 1,000°C, purified by purging with hydrochloric acid gas and a small amount of water vapor at a temperature of 1,000°C, and then impregnated with Si at a temperature of 1,700°C to silicify. Finally, perform final finishing such as polishing if necessary.

以上の方法で製造された半導体拡散炉の構成部
材の物理特性を測定したところ、嵩密度が3.08
で、強度が250MPaであつた。
When we measured the physical properties of the components of the semiconductor diffusion furnace manufactured by the above method, we found that the bulk density was 3.08.
The strength was 250MPa.

発明の効果 SiC粉末は粗粒のみを使用し、従来のように微
粒のものを使用しないので、処理操作が極めて容
易になるばかりでなく、不純物の混入を防ぎやす
くなる。C粉末とSi粉末は微粒のものを使用する
が、このようなC粉末やSi粉末は、SiC粉末に比
較して粉砕が容易であり、製造コストの低減をは
かれるばかりでなく、不純物の混入を効果的に防
止できるのである。
Effects of the Invention Since SiC powder uses only coarse particles and does not use fine particles as in the past, processing operations are not only extremely easy, but also it is easier to prevent contamination with impurities. Fine C powder and Si powder are used, but such C powder and Si powder are easier to crush than SiC powder, which not only reduces manufacturing costs but also prevents contamination with impurities. It can be effectively prevented.

Claims (1)

【特許請求の範囲】[Claims] 1 30〜170μの平均粒径を有するSiC粉末50〜90
重量部と、0.1〜8μの平均粒径を有するC粉末3
〜15重量部と、0.1〜8μの平均粒径を有するSi粉
末7〜35重量部とを混合焼成してなる半導体拡散
炉の構成部材の製造方法。
1 SiC powder 50-90 with an average particle size of 30-170μ
parts by weight and C powder 3 having an average particle size of 0.1 to 8μ
15 parts by weight of Si powder and 7 to 35 parts by weight of Si powder having an average particle size of 0.1 to 8μ are mixed and fired.
JP60142498A 1985-07-01 1985-07-01 Constitutional member for semiconductor diffusion furnace Granted JPS627670A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60142498A JPS627670A (en) 1985-07-01 1985-07-01 Constitutional member for semiconductor diffusion furnace
US06/877,918 US4771021A (en) 1985-07-01 1986-06-24 Semi-conductor diffusion furnace components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142498A JPS627670A (en) 1985-07-01 1985-07-01 Constitutional member for semiconductor diffusion furnace

Publications (2)

Publication Number Publication Date
JPS627670A JPS627670A (en) 1987-01-14
JPH0248511B2 true JPH0248511B2 (en) 1990-10-25

Family

ID=15316730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142498A Granted JPS627670A (en) 1985-07-01 1985-07-01 Constitutional member for semiconductor diffusion furnace

Country Status (1)

Country Link
JP (1) JPS627670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421415U (en) * 1990-06-12 1992-02-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190249059A1 (en) * 2016-06-13 2019-08-15 Teijin Limited Silicon carbide production method and silicon carbide composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421415U (en) * 1990-06-12 1992-02-24

Also Published As

Publication number Publication date
JPS627670A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US7820138B2 (en) Indium oxide powder and method for producing same
JPS5939719B2 (en) Nuclear fuel body and its manufacturing method
JPH0380749B2 (en)
JPH0248511B2 (en)
JPS6212667A (en) Manufacture of member for semiconductor
EP0587953A1 (en) Method for manufacturing sintered parts
US3679383A (en) Process for the manufacture of shaped articles of zirconium corundum
US3010839A (en) Method of making silicon monoxide articles
JPS62207703A (en) Production of powdery aluminum nitride
JPH0310592B2 (en)
JPS6212668A (en) Constitutional member for semiconductor diffusion oven
JP2505179B2 (en) High-strength atmospheric pressure sintered silicon nitride sintered body and method for producing the same
JPS6229386B2 (en)
JPH0483759A (en) Production of sintered composite boron nitride
JPS647030B2 (en)
JPH075927B2 (en) Debindering method for aluminum matrix composite material
JPH075928B2 (en) Manufacturing method of preform molding for molding aluminum-based composite material
KR910003901B1 (en) Manufacture method of sic sintering material
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body
JP2000211979A (en) Production of silica porous body
JPH0483752A (en) Mixture of sinterable substance
JPH01261277A (en) Granulated powder for production of silicon nitride sintered form
JPH038780A (en) Sintered fine particle of ceramics and production thereof
KR20190126579A (en) Silver - ceramic composites for silver art clay and producing method of same
JPH04308005A (en) Production of metal molded with iron powder