JPH04299855A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH04299855A
JPH04299855A JP6424791A JP6424791A JPH04299855A JP H04299855 A JPH04299855 A JP H04299855A JP 6424791 A JP6424791 A JP 6424791A JP 6424791 A JP6424791 A JP 6424791A JP H04299855 A JPH04299855 A JP H04299855A
Authority
JP
Japan
Prior art keywords
conductivity type
layer
opposite conductivity
buried layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6424791A
Other languages
Japanese (ja)
Inventor
Kazuo Adachi
足達 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6424791A priority Critical patent/JPH04299855A/en
Publication of JPH04299855A publication Critical patent/JPH04299855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the area occupied by two diodes for electrostaticbreakdown preventing use and to enhance an integration density by a method wherein the two diodes connected individually to a corresponding power supply and to a corresponding substrate are formed inside the same region. CONSTITUTION:A buried layer 2 of an opposite conductivity type is formed in one main face of a semiconductor substrate 1 of one conductivity type; a buried layer 13 of one conductivity type is formed at the inside of the buried layer 2 of the opposite conductivity type; an epitaxial layer 3 of the opposite conductivity type is formed on the whole surface. A ring-shaped insulating isolation layer 4, of one conductivity type, which reaches the buried layer 13 of one conductivity type from the surface of the epitaxial layer 3 of the opposite conductivity type and which is connected to an internal circuit and to a bonding pad 10 is formed; a diffusion layer 6, of the opposite conductivity type, which is connected to a power-supply circuit is formed at the inside of the insulating isolation layer 4 of one conductivity type on the surface of said epitaxial layer 3 of the opposite conductivity type. In addition, a diffusion layer 6 which comes into contact with the outside of the insulating isolation layer 4 of one conductivity type on the surface of said epitaxial layer 3 of the opposite conductivity type and which is connected to the internal circuit and the bonding pad 10 is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体集積回路用の静電
破壊保護ダイオードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic breakdown protection diode for semiconductor integrated circuits.

【0002】0002

【従来の技術】従来技術による静電破壊防止用保護ダイ
オードについて、図3(a),(b)を参照して説明す
る。
2. Description of the Related Art A conventional protection diode for preventing electrostatic damage will be explained with reference to FIGS. 3(a) and 3(b).

【0003】P型半導体基板1に高濃度N型埋込層2が
形成され、その上にN型エピタキシャル層3が成長され
ている。
A heavily doped N-type buried layer 2 is formed in a P-type semiconductor substrate 1, and an N-type epitaxial layer 3 is grown thereon.

【0004】P型半導体基板1に達するP型絶縁分離層
4が形成され、高濃度P型拡散層5および高濃度N型拡
散層6が形成されている。
A P-type insulating isolation layer 4 reaching the P-type semiconductor substrate 1 is formed, and a high concentration P-type diffusion layer 5 and a high concentration N-type diffusion layer 6 are formed.

【0005】電源に対してはトランジスタのコレクタ6
−ベース5間接合からなるCBダイオード11を用い、
基板に対しては高濃度N型埋込層2とP型半導体基板1
との間の接合からなるC−Subダイオード12を用い
て、2つのダイオードで静電破壊保護を行なっていた。
For the power supply, the transistor collector 6
- Using a CB diode 11 consisting of a 5-base junction,
For the substrate, there is a high concentration N type buried layer 2 and a P type semiconductor substrate 1.
A C-Sub diode 12 consisting of a junction between the two diodes was used to protect against electrostatic discharge damage.

【0006】[0006]

【発明が解決しようとする課題】従来は対電源(CBダ
イオード)および対基板(C−Subダイオード)に各
々保護ダイオードを接続している。そのため保護ダイオ
ードを接続するボンディングパッドが増えるにつれて、
保護ダイオードが半導体集積回路のチップ面積に占める
割合が増大する。
Conventionally, protection diodes are connected to the power source (CB diode) and the substrate (C-Sub diode), respectively. Therefore, as the number of bonding pads connecting protection diodes increases,
The ratio of protection diodes to the chip area of semiconductor integrated circuits is increasing.

【0007】高集積化とボンディング技術の進歩につれ
て、この傾向が益々顕著になってきた。
[0007] This trend has become more and more pronounced with the advancement of high integration and bonding technology.

【0008】従来は隣接ボンディングパッド間の隙間に
保護ダイオードを配置していた。最近はボンディング技
術の進歩によりボンディングパッドの間隔が狭くなり、
保護ダイオードはボンディングパッドの内側(チップ内
周)に配置せざるを得なくなっている。
Conventionally, protection diodes have been placed in gaps between adjacent bonding pads. Recently, due to advances in bonding technology, the spacing between bonding pads has become narrower.
The protection diode must be placed inside the bonding pad (inner periphery of the chip).

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置は、
一導電型半導体基板の一主面に逆導電型埋込層が形成さ
れ、該逆導電型埋込層の内側に一導電型埋込層が形成さ
れ、全面に一導電型エピタキシャル層が形成され、前記
逆導電型エピタキシャル層の表面から前記一導電型埋込
層に達して内部回路およびボンディングパッドに接続さ
れる環状の一導電型絶縁分離層が形成され、前記逆導電
型エピタキシャル層表面の前記一導電型絶縁分離層の内
側に電源回路に接続される逆導電型拡散層が形成され、
前記逆導電型エピタキシャル層表面の前記一導電型絶縁
分離層の外側に接して内部回路およびボンディングパッ
ドに接続される逆導電型拡散層が形成されているもので
ある。
[Means for Solving the Problems] A semiconductor device of the present invention includes:
A buried layer of opposite conductivity type is formed on one main surface of a semiconductor substrate of one conductivity type, a buried layer of one conductivity type is formed inside the buried layer of opposite conductivity type, and an epitaxial layer of one conductivity type is formed on the entire surface. , a ring-shaped insulating isolation layer of one conductivity type is formed from the surface of the opposite conductivity type epitaxial layer to the one conductivity type buried layer and connected to the internal circuit and the bonding pad; A reverse conductivity type diffusion layer connected to the power supply circuit is formed inside the one conductivity type insulating separation layer,
A reverse conductivity type diffusion layer is formed on the surface of the reverse conductivity type epitaxial layer in contact with the outside of the one conductivity type insulating separation layer and connected to an internal circuit and a bonding pad.

【0010】0010

【実施例】本発明の一実施例について、図1(a),(
b)および図2(a)〜(d)を参照して説明する。
[Example] An example of the present invention is shown in FIGS. 1(a) and (
b) and FIGS. 2(a) to 2(d).

【0011】この保護ダイオードは図1(a),(b)
に示すように、高濃度P型絶縁分離層4および高濃度N
型拡散層6を結合する開口8の電極はボンディングパッ
ド10および内部回路に接続される。内側の高濃度N型
拡散層6の開口9に形成された電極は電源ラインに接続
される。
This protection diode is shown in FIGS. 1(a) and (b).
As shown in FIG.
The electrode of the opening 8 that couples the mold diffusion layer 6 is connected to a bonding pad 10 and an internal circuit. An electrode formed in the opening 9 of the inner heavily doped N-type diffusion layer 6 is connected to a power supply line.

【0012】つぎに本発明の一実施例について製造工程
順に説明する。
Next, an embodiment of the present invention will be explained in the order of manufacturing steps.

【0013】はじめに図2(a)に示すように、P型半
導体基板1に拡散技術により高濃度N型埋込層2を形成
する。
First, as shown in FIG. 2(a), a heavily doped N-type buried layer 2 is formed in a P-type semiconductor substrate 1 by a diffusion technique.

【0014】つぎに図2(b)に示すように、高濃度N
型埋込層2の内側に拡散技術により高濃度P型埋込層1
3を形成する。
Next, as shown in FIG. 2(b), high concentration N
A high concentration P-type buried layer 1 is formed inside the type buried layer 2 by diffusion technology.
form 3.

【0015】つぎに図2(c)に示すように、P型半導
体基板1上にN型エピタキシャル層3を成長し、高濃度
P型埋込層13の外周および高濃度N型埋込層2の外側
に高濃度P型絶縁分離層4を形成する。つぎに1200
℃の高温熱処理により、高濃度P型埋込層13またはP
型半導体基板1に達するまで高濃度P型埋込層13を押
し込み拡散する。
Next, as shown in FIG. 2C, an N-type epitaxial layer 3 is grown on the P-type semiconductor substrate 1, and the outer periphery of the heavily doped P-type buried layer 13 and the heavily doped N-type buried layer 2 are grown. A highly doped P-type insulating isolation layer 4 is formed on the outside of the wafer. Next 1200
℃ high-temperature heat treatment, the high concentration P-type buried layer 13 or P
The high concentration P type buried layer 13 is pushed in and diffused until it reaches the type semiconductor substrate 1.

【0016】つぎに図2(d)に示すように、高濃度N
型拡散層6を形成し、開口7,8,9に接続する電極を
形成する。
Next, as shown in FIG. 2(d), high concentration N
A mold diffusion layer 6 is formed, and electrodes connected to the openings 7, 8, and 9 are formed.

【0017】[0017]

【発明の効果】従来互いに単独で形成されていた2つの
静電破壊保護用ダイオードを、同一領域内に形成するこ
とができた。ダイオードの占有面積を縮小することによ
り、半導体集積回路の集積度を向上させることができた
[Effects of the Invention] Two electrostatic breakdown protection diodes, which were conventionally formed independently, can now be formed in the same area. By reducing the area occupied by the diode, it was possible to improve the degree of integration of the semiconductor integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す平面図および断面図で
ある。
FIG. 1 is a plan view and a sectional view showing an embodiment of the present invention.

【図2】本発明の一実施例を工程順に示す断面図である
FIG. 2 is a cross-sectional view showing an embodiment of the present invention in the order of steps.

【図3】従来技術による静電破壊保護ダイオードの平面
図および断面図である。
FIG. 3 is a plan view and a cross-sectional view of an electrostatic discharge protection diode according to the prior art.

【符号の説明】[Explanation of symbols]

1    P型半導体基板 2    高濃度N型埋込層 3    N型エピタキシャル層 4    高濃度P型絶縁分離層 5    高濃度P型拡散層 6    高濃度N型拡散層 7    基板コンタクト 8,9    開口 10    ボンディングパッド 11    CBダイオード 12    C−Subダイオード 13    高濃度P型埋込層 1 P-type semiconductor substrate 2 High concentration N-type buried layer 3 N-type epitaxial layer 4 High concentration P-type insulation separation layer 5 Highly concentrated P-type diffusion layer 6 Highly concentrated N-type diffusion layer 7 Board contact 8,9 Opening 10 Bonding pad 11 CB diode 12 C-Sub diode 13 High concentration P-type buried layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一導電型半導体基板の一主面に逆導電
型埋込層が形成され、該逆導電型埋込層の内側に一導電
型埋込層が形成され、全面に一導電型エピタキシャル層
が形成され、前記逆導電型エピタキシャル層の表面から
前記一導電型埋込層に達して内部回路およびボンディン
グパッドに接続される環状の一導電型絶縁分離層が形成
され、前記逆導電型エピタキシャル層表面の前記一導電
型絶縁分離層の内側に電源回路に接続される逆導電型拡
散層が形成され、前記逆導電型エピタキシャル層表面の
前記一導電型絶縁分離層の外側に接して内部回路および
ボンディングパッドに接続される逆導電型拡散層が形成
されている半導体集積回路。
Claim 1: A buried layer of opposite conductivity type is formed on one main surface of a semiconductor substrate of one conductivity type, a buried layer of one conductivity type is formed inside the buried layer of opposite conductivity type, and a buried layer of one conductivity type is formed on the entire surface. An epitaxial layer is formed, and a ring-shaped insulating separation layer of one conductivity type is formed that reaches from the surface of the opposite conductivity type epitaxial layer to the one conductivity type buried layer and is connected to an internal circuit and a bonding pad; A reverse conductivity type diffusion layer connected to a power supply circuit is formed inside the one conductivity type insulation separation layer on the surface of the epitaxial layer, and a reverse conductivity type diffusion layer connected to the outside of the one conductivity type insulation separation layer on the surface of the opposite conductivity type epitaxial layer is formed inside the one conductivity type insulation separation layer. A semiconductor integrated circuit in which a reverse conductivity type diffusion layer is formed which is connected to a circuit and a bonding pad.
JP6424791A 1991-03-28 1991-03-28 Semiconductor integrated circuit Pending JPH04299855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6424791A JPH04299855A (en) 1991-03-28 1991-03-28 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6424791A JPH04299855A (en) 1991-03-28 1991-03-28 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH04299855A true JPH04299855A (en) 1992-10-23

Family

ID=13252636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6424791A Pending JPH04299855A (en) 1991-03-28 1991-03-28 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH04299855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299477A (en) * 1999-04-12 2000-10-24 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299477A (en) * 1999-04-12 2000-10-24 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS6159852A (en) Manufacture of semiconductor device
JPH03224263A (en) Static charge protective construction for cmos integrated circuit
TWI278061B (en) SOI semiconductor device and method for producing the same
JPH04299855A (en) Semiconductor integrated circuit
JP3211871B2 (en) I / O protection circuit
KR0175699B1 (en) Semiconductor device with a high voltage and high frequency and method for manufacturing the same
JPS6394667A (en) Semiconductor integrated circuit
JPH01171262A (en) Semiconductor integrated circuit
JP3182663B2 (en) Photodiode array and method of manufacturing the same
JP2001223277A (en) I/o protective circuit
KR100332473B1 (en) Semiconductor device and device isolation method using it
JPS61172347A (en) Manufacture of semiconductor integrated circuit device
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
JPH0629466A (en) Semiconductor integrated circuit
JPH05347356A (en) Semiconductor integrated circuit
JPS63204628A (en) Semiconductor integrated circuit device
JPH045862A (en) Semiconductor input/output protecting circuit
JPH0369155A (en) Input protecting device of semiconductor integrated circuit
JPS5835363B2 (en) Manufacturing method for semiconductor devices
JPS6124825B2 (en)
JPS6042845A (en) Manufacture of semiconductor integrated circuit device
JPH07130759A (en) Semiconductor integrated circuit device
JPH06209093A (en) Semiconductor integrated circuit
JPS61253852A (en) Semiconductor device and manufacture thereof
JPS60187048A (en) Semiconductor device