JPH04298607A - Evaporator for non-azeotropic mixture - Google Patents

Evaporator for non-azeotropic mixture

Info

Publication number
JPH04298607A
JPH04298607A JP8991991A JP8991991A JPH04298607A JP H04298607 A JPH04298607 A JP H04298607A JP 8991991 A JP8991991 A JP 8991991A JP 8991991 A JP8991991 A JP 8991991A JP H04298607 A JPH04298607 A JP H04298607A
Authority
JP
Japan
Prior art keywords
evaporator
liquid
temperature
azeotropic mixture
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8991991A
Other languages
Japanese (ja)
Other versions
JP2520987B2 (en
Inventor
Hiroyuki Sumitomo
住友 博之
Akira Horiguchi
章 堀口
Tatsuo Yamazaki
山崎 起男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP3089919A priority Critical patent/JP2520987B2/en
Publication of JPH04298607A publication Critical patent/JPH04298607A/en
Application granted granted Critical
Publication of JP2520987B2 publication Critical patent/JP2520987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To operate an evaporator at the optimum condition so as to maintain the maximum performance by adjusting the amount of circulation liquid so that the difference in temperature between at the inlet and outlet of hot water becomes equal to the difference in boiling point temperature between at the inlet and outlet of non-azeotropic mixture by adjusting the level of evaporation liquid. CONSTITUTION:The amount of circulation liquid changes by modifying the level of evaporation liquid, that is, the liquid level of non-azeotropic mixture in an evaporator 2 by adjusting power of a circulation pump 8 or opening degree of a valve 18. Since the difference in temperature of hot water becomes equal to the difference in boiling point temperature of non-azeotropic mixture, it is possible to operate the evaporator at the optimum condition and maintain the maximum performance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ヒートポンプやバイ
ナリーサイクルのような低沸点媒体システムにおいて作
動流体として用いられる非共沸混合物用の蒸発器に関す
る。
BACKGROUND OF THE INVENTION This invention relates to evaporators for non-azeotropic mixtures used as working fluids in low-boiling media systems such as heat pumps and binary cycles.

【0002】0002

【従来の技術】低沸点媒体システムの一例として図4に
示されるバイナリー発電システムについて述べると、蒸
発器2、タービン4、凝縮器6および媒体ポンプ8が直
列に接続されて閉じたループ10を構成している。そし
て、その閉ループ10内を循環する作動流体は、まず蒸
発器2で熱源流体から熱を奪って蒸発し、発生した蒸気
はタービン4に供給される。この蒸気はタービン4内で
膨張して発電機12を駆動する仕事をする。タービン4
から排出された蒸気は凝縮器6で冷却水に熱を奪われて
凝縮する。凝縮液は媒体ポンプ8で再び蒸発器2に送ら
れる。
2. Description of the Related Art Regarding a binary power generation system shown in FIG. 4 as an example of a low boiling point medium system, an evaporator 2, a turbine 4, a condenser 6 and a medium pump 8 are connected in series to form a closed loop 10. are doing. The working fluid circulating in the closed loop 10 first removes heat from the heat source fluid in the evaporator 2 and evaporates, and the generated steam is supplied to the turbine 4. This steam expands within the turbine 4 and performs work to drive the generator 12. turbine 4
The steam discharged from the condenser 6 receives heat from the cooling water and condenses. The condensate is sent again to the evaporator 2 by means of a medium pump 8.

【0003】ところで、このようなバイナリーサイクル
やヒートポンプ等の熱サイクルでは、効率の向上のため
作動流体に非共沸の混合物を用いてローレンツサイクル
を構成させることがある。たとえばバイナリーサイクル
は基本的にランキンサイクルであって、作動流体が単一
成分からなるときは図5に示すようにTS線図の■’−
■、■−■が等温変化を示す。ところが、作動流体とし
て非共沸混合物(フロンR123 とR22の混合など
)を使用すると、図6に示すように、同一圧力でも飽和
温度が変化し、蒸発器2では蒸発温度が上がり、凝縮器
6では凝縮温度が下がる。これによりローレンツサイク
ルが形成され、システム効率が向上する。
By the way, in thermal cycles such as binary cycles and heat pumps, a Lorentz cycle is sometimes constructed by using a non-azeotropic mixture as a working fluid in order to improve efficiency. For example, a binary cycle is basically a Rankine cycle, and when the working fluid consists of a single component, the TS diagram shows ■'-
■, ■−■ indicate isothermal change. However, when a non-azeotropic mixture (such as a mixture of Freon R123 and R22) is used as the working fluid, the saturation temperature changes even at the same pressure, and the evaporation temperature in the evaporator 2 increases, as shown in FIG. The condensing temperature decreases. This creates a Lorentz cycle and improves system efficiency.

【0004】図7は最も簡単な二成分の液体−蒸気系の
温度−組成の関係を横軸に低沸成分のモル分率をとって
示したものである。GとLは単一相で、それぞれ気相と
液相、L+Gの領域は液体と蒸気が共存する二相領域で
ある。もし低沸成分の60モル%(モル分率=0.60
)の液体混合物の温度を、定圧下で上昇させたとすると
、この系の変化は直線ab’cd”e に沿って考える
ことができる。 低温では液相のみが存在するが、b’点で蒸気相が現わ
れる。この蒸気相の組成はb”点で与えられ、2つの共
役相は図上の平衡連結線b”b’で結ばれている。さら
に温度を上げると、もっと多くの蒸気が生成するが、そ
の場合、蒸気中の低沸成分の濃度が高いので、液相では
この成分が相対的に減少し、液体の組成はb’c’d’
に沿って変化し、一方、蒸気の組成はb”c”d”に沿
って変化する。温度t℃では、二相領域にある系の全組
成はc点で表されるが、蒸気組成、液体組成はそれぞれ
c点を通る平衡連結線の両端、c”点とc’点で与えら
れる。二相の相対的な量は、物理学のてこの原理から求
められる。すなわち、蒸気と液体のモル数の比はcc’
と c”c の長さの比で表される。さらに温度を上げ
るとますます蒸気が生成し、d”点になると液相はほと
んどなくなり、これ以上温度が高くなると、液相が消え
て蒸気相(d”点)のみが残る。これ以上は温度を(d
”e に沿って)上げてもなにも起らない。
FIG. 7 shows the temperature-composition relationship of the simplest two-component liquid-vapor system, with the mole fraction of the low boiling component plotted on the horizontal axis. G and L are single phases, a gas phase and a liquid phase, respectively, and the L+G region is a two-phase region where liquid and vapor coexist. If 60 mol% of low-boiling components (mol fraction = 0.60
) is raised under constant pressure, the change in this system can be thought of along the straight line ab'cd''e. At low temperatures, only the liquid phase exists, but at point b', vapor phase appears. The composition of this vapor phase is given by point b'', and the two conjugate phases are connected by the equilibrium connection line b''b' on the diagram.If the temperature is further increased, more vapor is produced. However, in that case, since the concentration of low-boiling components in the vapor is high, this component is relatively reduced in the liquid phase, and the liquid composition becomes b'c'd'
while the composition of the vapor varies along b"c"d". At temperature t°C, the total composition of the system in the two-phase region is represented by point c, but the vapor composition, The liquid composition is given by points c'' and c', respectively, at both ends of the equilibrium connection line passing through point c. The relative amounts of the two phases are determined by the lever principle of physics. That is, the ratio of moles of vapor and liquid is cc'
It is expressed as the ratio of the length of c" and c".As the temperature is further increased, more and more vapor is generated, and when the temperature reaches point d, the liquid phase almost disappears.If the temperature is increased any higher, the liquid phase disappears and vapor is formed. Only the phase (d” point) remains. Beyond this point, the temperature should be changed to (d” point).
”), nothing happens.

【0005】[0005]

【発明が解決しようとする課題】ローレンツサイクルで
は、温水の温度変化と非共沸混合物の沸点温度差が等し
いときが蒸発器の最適条件となる。したがって、この発
明の目的は、そのような蒸発器の最適条件を維持するこ
とにある。
In the Lorentz cycle, the optimum condition for the evaporator is when the temperature change of hot water is equal to the difference in boiling point temperature of the non-azeotropic mixture. The aim of the invention is therefore to maintain optimal conditions in such an evaporator.

【0006】[0006]

【課題を解決するための手段】この発明は、蒸発液位を
調節することにより、温水の温度差と非共沸混合物の温
度差が等しくなるように循環液量を調整するようにした
[Means for Solving the Problems] According to the present invention, by adjusting the evaporation liquid level, the amount of circulating liquid is adjusted so that the temperature difference between the hot water and the non-azeotropic mixture becomes equal.

【0007】[0007]

【作用】蒸発液位を下げると循環液量が減るので、非共
沸混合物の蒸発器入口温度が下がって沸点温度差が小さ
くなる。逆に、蒸発液位を上げると循環液量が増えるの
で非共沸混合物の蒸発器入口温度が上がって沸点温度差
が大きくなる。このようにして蒸発液位を調節すること
により、非共沸混合物の温度差が温水の温度差に等しく
なるように循環液量を調整して最適条件で蒸発器の運転
をすることができる。
[Operation] Lowering the evaporation level reduces the amount of circulating liquid, which lowers the evaporator inlet temperature of the non-azeotropic mixture and reduces the boiling point temperature difference. Conversely, when the evaporation liquid level is raised, the amount of circulating liquid increases, so the evaporator inlet temperature of the non-azeotropic mixture increases, and the boiling point temperature difference increases. By adjusting the evaporation liquid level in this way, the amount of circulating liquid can be adjusted so that the temperature difference of the non-azeotropic mixture is equal to the temperature difference of hot water, and the evaporator can be operated under optimal conditions.

【0008】[0008]

【実施例】図4に示されるバイナリー発電システムに適
用した場合を例にとって説明すると、図1に示すように
、蒸発器2の出口にミストセパレータ14を設け、その
気相はタービン4に接続し、液相は蒸発器2の入口側に
設けたタンク16に接続する。蒸発器2を出た作動流体
はミストセパレータ14で蒸気と蒸発残液に分離され、
蒸発残液はタンク16に戻される。蒸気はタービン4に
供給されて仕事をし、その後、凝縮器6で冷却水に熱を
奪われて凝縮し、凝縮液は循環ポンプ8でタンク16に
戻される。
[Embodiment] To explain the application to the binary power generation system shown in FIG. 4 as an example, as shown in FIG. , the liquid phase is connected to a tank 16 provided on the inlet side of the evaporator 2. The working fluid exiting the evaporator 2 is separated into vapor and evaporation residual liquid by the mist separator 14.
The evaporation residual liquid is returned to the tank 16. The steam is supplied to the turbine 4 to do work, and then is condensed in the condenser 6, where cooling water removes heat, and the condensed liquid is returned to the tank 16 by the circulation pump 8.

【0009】循環ポンプ8の動力またはバルブ18の開
度を加減して蒸発液位すなわち蒸発器2内における非共
沸混合物の液レベルを変更することによって、循環液量
が変化する。この循環液量が変化すると、蒸発器2にお
ける蒸発温度が変化する。図2および図3に従って具体
的に説明すると、非共沸混合物の蒸発器入口温度がT2
 で出口温度がTE のとき温水の温度差ΔTW と非
共沸混合物の沸点温度差ΔTR が等しくなる(ΔTR
 =ΔTW )と仮定すれば、ΔTW >ΔTR にな
ったときは、蒸発液位を下げて循環液量を減らすことに
より、非共沸混合物の蒸発器入口温度がT2 からT1
 方向へ下がって沸点温度差ΔTR が大きくなるので
ΔTR =ΔTW の条件を満足させることができる。 また、ΔTW <ΔTR のときは、蒸発液位を上げて
循環液量を増やすことにより、非共沸混合物の蒸発器入
口温度がT2 からT3 方向へ上がって沸点温度差Δ
TR が小さくなるのでΔTW =ΔTR の条件を満
足させることができる。このように、蒸発液位を調節し
て循環液量を調整することにより、ΔTW =ΔTR 
の条件を満足させ、蒸発器を最適条件で運転することが
できる。
By adjusting the power of the circulation pump 8 or the opening degree of the valve 18 to change the evaporation liquid level, that is, the liquid level of the non-azeotropic mixture in the evaporator 2, the amount of circulating liquid is changed. When the amount of circulating liquid changes, the evaporation temperature in the evaporator 2 changes. To explain specifically according to FIGS. 2 and 3, the evaporator inlet temperature of the non-azeotropic mixture is T2
When the outlet temperature is TE, the temperature difference ΔTW of hot water and the boiling point temperature difference ΔTR of the non-azeotropic mixture become equal (ΔTR
= ΔTW ), when ΔTW > ΔTR, the evaporator inlet temperature of the non-azeotropic mixture will decrease from T2 to T1 by lowering the evaporating liquid level and reducing the amount of circulating liquid.
Since the boiling point temperature difference ΔTR increases as the temperature decreases in the direction, the condition ΔTR =ΔTW can be satisfied. In addition, when ΔTW <ΔTR, by raising the evaporating liquid level and increasing the amount of circulating liquid, the evaporator inlet temperature of the non-azeotropic mixture increases from T2 to T3, and the boiling point temperature difference Δ
Since TR becomes small, the condition of ΔTW =ΔTR can be satisfied. In this way, by adjusting the evaporation liquid level and the circulating liquid amount, ΔTW = ΔTR
The evaporator can be operated under optimal conditions by satisfying the following conditions.

【0010】0010

【発明の効果】以上のように、この発明は、蒸発液位を
調節することによって、温水の温度差ΔTW と非共沸
混合物の沸点温度差ΔTR が等しくなるように循環液
量を調整するようにしたものであるから、容易にΔTW
 =ΔTR の条件を満足させて蒸発器を最適条件で運
転し、最大性能を維持することができる。
As described above, the present invention adjusts the amount of circulating liquid so that the temperature difference ΔTW of hot water and the boiling point temperature difference ΔTR of the non-azeotropic mixture become equal by adjusting the evaporation liquid level. Therefore, ΔTW can be easily
By satisfying the condition of =ΔTR, the evaporator can be operated under optimal conditions and maximum performance can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例を示すフローシートである。FIG. 1 is a flow sheet showing an example of the present invention.

【図2】非共沸混合物の気液平衡線図である。FIG. 2 is a vapor-liquid equilibrium diagram of a non-azeotropic mixture.

【図3】蒸発器における温度勾配線図である。FIG. 3 is a temperature gradient diagram in an evaporator.

【図4】バイナリー発電システムのフローシートである
FIG. 4 is a flow sheet of a binary power generation system.

【図5】ランキンサイクルのTS線図である。FIG. 5 is a TS diagram of the Rankine cycle.

【図6】ローレンツサイクルのTS線図である。FIG. 6 is a TS diagram of a Lorentz cycle.

【図7】二成分系混合媒体の温度−組成図である。FIG. 7 is a temperature-composition diagram of a binary mixed medium.

【符号の説明】[Explanation of symbols]

2  蒸発器 4  タービン 6  凝縮器 8  循環ポンプ 12  発電機 14  ミストセパレータ 16  タンク 18  バルブ 2 Evaporator 4 Turbine 6 Condenser 8 Circulation pump 12 Generator 14 Mist separator 16 Tank 18 Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  蒸発液位を調節することにより、温水
の温度差と非共沸混合物の沸点温度差が等しくなるよう
に循環液量を調節することを特徴とする非共沸混合物用
蒸発器。
1. An evaporator for non-azeotropic mixtures, characterized in that the circulating liquid amount is adjusted by adjusting the evaporation liquid level so that the temperature difference of hot water and the boiling point temperature difference of the non-azeotropic mixture are equalized. .
JP3089919A 1991-03-27 1991-03-27 Evaporator for non-azeotropic mixture Expired - Fee Related JP2520987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089919A JP2520987B2 (en) 1991-03-27 1991-03-27 Evaporator for non-azeotropic mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089919A JP2520987B2 (en) 1991-03-27 1991-03-27 Evaporator for non-azeotropic mixture

Publications (2)

Publication Number Publication Date
JPH04298607A true JPH04298607A (en) 1992-10-22
JP2520987B2 JP2520987B2 (en) 1996-07-31

Family

ID=13984116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089919A Expired - Fee Related JP2520987B2 (en) 1991-03-27 1991-03-27 Evaporator for non-azeotropic mixture

Country Status (1)

Country Link
JP (1) JP2520987B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723765A (en) * 1977-08-12 1982-02-08 Union Carbide Corp Solar heat type air heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723765A (en) * 1977-08-12 1982-02-08 Union Carbide Corp Solar heat type air heater

Also Published As

Publication number Publication date
JP2520987B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
JP2008088892A (en) Non-azeotropic mixture medium cycle system
JP2007262909A (en) Power system
JP4885467B2 (en) Absorption heat pump
US4779424A (en) Heat recovery system utilizing non-azeotropic medium
JP2513936B2 (en) Low boiling medium system
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JP3169441B2 (en) Oil absorption type heat cycle
JP2513940B2 (en) Low boiling medium system
JP2513941B2 (en) Low boiling medium system
JP2650660B2 (en) Control method of thermal cycle using non-azeotropic mixed medium as working fluid
US4827877A (en) Heat recovery system utilizing non-azeotropic medium
JP2513939B2 (en) Low boiling medium system
JP2513937B2 (en) Non-azeotrope condenser
JP2551703B2 (en) Circulating method of working fluid in low boiling medium system
JP2513935B2 (en) Low boiling medium system
JP2513938B2 (en) Low boiling medium system
JP2650664B2 (en) Mixed media evaporator
JP3244087B2 (en) Heat pump for mixed media
JPH05280306A (en) Lorentz cycle system
US4785876A (en) Heat recovery system utilizing non-azetotropic medium
JP2513949B2 (en) Low boiling medium gas absorber
JPS6193212A (en) Condenser for non-azeotropic mixture
JPS5928725B2 (en) power plant
JPH0559907A (en) Absorbed liquid cooler
JP2513950B2 (en) Absorber integrated condenser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees