JPH04295100A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH04295100A
JPH04295100A JP8294891A JP8294891A JPH04295100A JP H04295100 A JPH04295100 A JP H04295100A JP 8294891 A JP8294891 A JP 8294891A JP 8294891 A JP8294891 A JP 8294891A JP H04295100 A JPH04295100 A JP H04295100A
Authority
JP
Japan
Prior art keywords
single crystal
phase transformation
mnx
manufacturing
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8294891A
Other languages
Japanese (ja)
Other versions
JP2969385B2 (en
Inventor
Koichi Onodera
小野寺 晃一
Toru Oikawa
亨 及川
Kenichi Shiraki
健一 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8294891A priority Critical patent/JP2969385B2/en
Publication of JPH04295100A publication Critical patent/JPH04295100A/en
Application granted granted Critical
Publication of JP2969385B2 publication Critical patent/JP2969385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To offer the method for massproduction of high-quality single crystals of semimagnetic semiconductors (Cd1-xMnxSe, Cd1-xMnxTe) and II-VI compd. semiconductors such as CdTe, etc. CONSTITUTION:In the production process of II-VI compd. semiconductor single crystals such as semimagnetic semiconductors (Cd1-xMnxSe, Cd1-xMnxTe), etc., a single crystal rod is first formed by Bridgman method. Their the rod is subjected to hydrostatic pressing at temp. higher than the phase transformation temp. of the material which constitutes this single crystal rod, in order to remove twin crystal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,工業的量産が可能な高
品質(双晶フリー)半磁性半導体(Cd1−X MnX
 Te,Cd1−X MnX Se)及びCdTe,Z
nSe等のII−VI族化合物半導体単結晶を製造する
方法に関する。
[Industrial Application Field] The present invention is a high-quality (twin-free) semimagnetic semiconductor (Cd1-X MnX
Te, Cd1-X MnX Se) and CdTe, Z
The present invention relates to a method of manufacturing a II-VI group compound semiconductor single crystal such as nSe.

【0002】0002

【従来の技術】従来,この種の単結晶は次の2種の方法
により製造されている。その1つは,図4(a)に概略
的に示された製造装置を用いている。Cd1−X Mn
X Te及びCd1−X MnX Se等の単結晶の製
造方法で,特に,Cd0.5 Mn0.5 Teの単結
晶の育成する場合について説明する。結晶原料(例えば
Cd,Mn,Te)を組成比に応じて透明石英管のアン
プルに真空封入(真空度≦1×10−5Torr)して
,石英るつぼ53とする。石英るつぼ53の中に予め真
空封入してある結晶原料56をブリッジマン炉等の電気
炉51の図4(b)で示すような温度分布を利用して(
融点,約1050℃)溶解し,その後,石英るつぼ53
を電気炉51の上方に配置されたるつぼ昇降機構を用い
て3〜7(mm/ hr)速度で降下させて,石英るつ
ぼ53の下端より順次結晶成長を行わせ,その後,除冷
することで単結晶55を得る。得られる単結晶は融点(
=約1050℃)から相変態点(=約850℃)までは
ウルツ鉱型構造となり,相変態点(=約850℃)以下
の温度では,せん亜鉛鉱型構造となる。尚,図4(b)
中,Hは結晶を溶融できる温度領域を示している。この
製造方法を採用すると必ず結晶成長過程で相変態点を通
過する。双晶の要因としては,相変態点を通過する際に
,全てせん亜鉛鉱型構造に遷移すれば問題ないが,一部
ウルツ鉱型構造が残存する点が双晶となると考えられ,
相変態点近傍を通過する際の存在する結晶容器や温度条
件によって発生する歪みが双晶を発生するものと推定さ
れる。すなわち,この結晶成長方法を採用する限り双晶
を発生させるものと推定される。
2. Description of the Related Art Conventionally, this type of single crystal has been produced by the following two methods. One uses a manufacturing apparatus schematically shown in FIG. 4(a). Cd1-X Mn
A method for producing single crystals such as X Te and Cd1-X MnX Se, in particular, the case of growing a single crystal of Cd0.5 Mn0.5 Te will be described. Crystal raw materials (for example, Cd, Mn, Te) are sealed in a transparent quartz tube ampoule according to the composition ratio under vacuum (degree of vacuum ≦1×10 −5 Torr) to form a quartz crucible 53 . A crystal raw material 56 that has been vacuum-sealed in advance in a quartz crucible 53 is heated using the temperature distribution shown in FIG. 4(b) in an electric furnace 51 such as a Bridgman furnace (
melting point, approximately 1050℃), and then placed in a quartz crucible 53
is lowered at a speed of 3 to 7 (mm/hr) using a crucible lifting mechanism placed above the electric furnace 51 to cause crystal growth to occur sequentially from the lower end of the quartz crucible 53, and then slowly cooled. A single crystal 55 is obtained. The single crystal obtained has a melting point (
= about 1050°C) to the phase transformation point (= about 850°C), it has a wurtzite type structure, and at temperatures below the phase transformation point (= about 850°C), it has a zincite type structure. Furthermore, Figure 4(b)
In the figure, H indicates the temperature range in which the crystal can be melted. When this manufacturing method is adopted, a phase transformation point is always passed during the crystal growth process. As for the cause of twinning, there is no problem if the entire structure transitions to the zincite structure when passing through the phase transformation point, but it is thought that points where the wurtzite structure remains partially become twinning.
It is presumed that the distortion caused by the crystal container and temperature conditions that exist when passing near the phase transformation point generates twins. In other words, it is presumed that as long as this crystal growth method is adopted, twins will occur.

【0003】一方,従来の他の製造方法は,図5(a)
に概略的に示された製造装置を用いている。この装置を
用いて,Cd0.5 Mn0.5 Te単結晶を育成し
た場合について説明する。石英るつぼ53に溶剤Te5
6と固体結晶原料(CdMnTe焼結ロッド)57´を
所定の関係になるように真空(真空度≦1×10−5T
orr)封止した入れる。その後,THM炉(図5(a
))にて溶融(融点:約800℃)した後に石英るつぼ
53を1〜5(mm/ day )で降下させて,石英
るつぼ53の下端より順次単結晶55の成長を行わせる
ものである。結晶は,融点(=800℃)では,相変態
点(=約850℃)以下なので,せん亜鉛鉱型構造とな
る。この場合は,結晶成長過程で相変態点を通過するこ
とがないので,双晶が発生することがない。しかし,育
成プロセスにおいて,固体結晶原料(CdMnTe焼結
ロッド)57´を溶剤56に溶かしながら結晶を作製す
るので,固液界面に熱的変化(メルト内に連続的温度変
動を与える)が起こり,結晶成長面全体を単結晶化する
のが困難であった(低融点の育成プロセスにおいては,
物質輸送・対流の状態が異なり極めて敏感に影響を受け
る)。また,育成速度が極めて遅い(1.0〜5.0m
m/ day )ため,工業的量産技術として発展して
いなかった。
On the other hand, another conventional manufacturing method is shown in FIG. 5(a).
The manufacturing equipment shown schematically in Figure 1 is used. A case will be described in which a Cd0.5 Mn0.5 Te single crystal is grown using this apparatus. Solvent Te5 in quartz crucible 53
6 and the solid crystal raw material (CdMnTe sintered rod) 57' are placed in a vacuum (degree of vacuum ≦1×10-5T) so that they have a predetermined relationship.
orr) sealed container. After that, the THM furnace (Fig. 5(a)
)), the quartz crucible 53 is lowered at a rate of 1 to 5 mm/day, and the single crystal 55 is grown sequentially from the lower end of the quartz crucible 53. The melting point (=800°C) of the crystal is below the phase transformation point (=about 850°C), so it has a zincite-type structure. In this case, since the phase transformation point is not passed during the crystal growth process, twins do not occur. However, in the growth process, crystals are produced while dissolving the solid crystal raw material (CdMnTe sintered rod) 57' in the solvent 56, so thermal changes occur at the solid-liquid interface (continuous temperature fluctuations within the melt). It was difficult to make the entire crystal growth surface into a single crystal (in the low melting point growth process,
The conditions of mass transport and convection are different and are extremely sensitively affected). In addition, the growth speed is extremely slow (1.0 to 5.0 m
m/day), it had not developed as an industrial mass production technology.

【0004】0004

【発明が解決しようとする課題】従来の前者の製造方法
を用いてCd1−X MnX Se及びCd1−X M
nX Te及びCdTe等のII−VI族化合物半導体
を製造した場合に,工業的には向くけれども,その結晶
性に問題,例えば,双晶に成り易い等があった。特に,
Cd1−X MnX Te単結晶の場合には,その結晶
性が短波長用光アイソレータ等のデバイスに使用できる
かどうかを左右する。 つまり,デバイス側の要求する物性を十分に満足する高
品質単結晶を作製することが大きな課題になっている。 しかしながら,双晶を有する材料を用いて半磁性半導体
のデバイスを作製した場合には,品質不良として全く使
用できない欠点があった。
[Problems to be Solved by the Invention] Using the conventional manufacturing method of the former, Cd1-X MnX Se and Cd1-X M
When II-VI group compound semiconductors such as nX Te and CdTe are manufactured, although they are suitable for industrial use, there are problems with their crystallinity, for example, they tend to form twin crystals. especially,
In the case of Cd1-X MnX Te single crystal, its crystallinity determines whether it can be used in devices such as short-wavelength optical isolators. In other words, the major challenge is to produce high-quality single crystals that fully satisfy the physical properties required by devices. However, when a semimagnetic semiconductor device is manufactured using a material with twins, there is a drawback that the device cannot be used at all due to poor quality.

【0005】一方,後者の製造方法を用いてCd1−X
 MnX Se及びCd1−X MnX Te及びCd
Te等のII−VII 族化合物半導体単結晶を製造し
た場合には,双晶になり易い等の結晶性の問題を解決す
ることが可能である。即ち,具体的には,半磁性半導体
(Cd1−X MnX Te,Cd1−X MnX S
e)を従来のブリッジマン法を用いて作製した場合には
,融点が相変態点以上にあるので凝固する際に,必ずウ
ルツ鉱型構造からせん亜鉛鉱型構造に変化する相変態点
を通過する。その際に残存する歪みが双晶の要因である
と考えられている(例えば,R. TRIBOURET
 et al,Journal of Cristal
 Growth 101 (1990) 131−13
4)。  しかし,後者の従来の製造方法においては,
相変態点より高い温度から凝固する過程で相変態点を通
過する際に,すべてせん亜鉛鉱型構造に遷移すれば問題
ないが,一部ウルツ鉱型からせん亜鉛鉱型構造に変化す
る相変態点より低い温度から凝固させるので双晶を回避
させることが可能となる。しかし,量産技術という点か
らは,育成日数がかかるので問題となっている。
On the other hand, using the latter production method, Cd1-X
MnX Se and Cd1-X MnX Te and Cd
When a single crystal of a II-VII group compound semiconductor such as Te is produced, it is possible to solve crystallinity problems such as the tendency to form twins. That is, specifically, semimagnetic semiconductors (Cd1-X MnX Te, Cd1-X MnX S
When e) is produced using the conventional Bridgman method, the melting point is above the phase transformation point, so when it solidifies, it always passes through the phase transformation point where the wurtzite structure changes to the zincite structure. do. It is believed that the residual strain at that time is the cause of twins (for example, R. TRIBOURET
et al, Journal of Crystal
Growth 101 (1990) 131-13
4). However, in the latter conventional manufacturing method,
There is no problem if the entire structure changes to the splenite structure when passing through the phase transformation point during the solidification process from a temperature higher than the phase transformation point. Since the solidification is performed at a temperature lower than the point, it is possible to avoid twin crystals. However, from the point of view of mass production technology, it is a problem because it takes many days to train.

【0006】そこで,本発明の技術的課題は,半磁性半
導体(Cd1−X MnX Se,Cd1−X MnX
 Te)及びCdTe等のII−VII 族化合物半導
体の高品質単結晶を量産することができる単結晶の製造
方法を提供することにある。
Therefore, the technical problem of the present invention is to solve the problem of semimagnetic semiconductors (Cd1-X MnX Se, Cd1-X MnX
An object of the present invention is to provide a single crystal manufacturing method that can mass produce high quality single crystals of II-VII group compound semiconductors such as Te) and CdTe.

【0007】[0007]

【課題を解決するための手段】本発明によれば,半磁性
半導体(Cd1−XMnX Te,Cd1−X MnX
 Se)等のII−VI族化合物半導体単結晶を製造す
る方法において,ブリッジマン法を用いて単結晶ロッド
を作製した後に,双晶を除去するために,当該単結晶ロ
ッドを構成する物質の相変態点以上の温度にて,熱間静
水圧プレス(HOTISOSTATICPRESS ,
以下HIPと呼ぶ) 処理することを特徴とする単結晶
の製造方法が得られる。本発明によれば,前記単結晶の
製造方法において,前記熱間静水圧プレス処理する際に
,単結晶ロッドを同一組成の粉体で覆うことを特徴とす
る単結晶の製造方法が得られる。 本発明によれば,前記単結晶の製造方法において,前記
熱間静水圧プレス処理する際に,雰囲気条件をArガス
中,圧力条件を500〜1200kg/ cm2 ,温
度を880〜980℃とすることを特徴とする単結晶の
製造方法が得られる。
[Means for Solving the Problems] According to the present invention, semimagnetic semiconductors (Cd1-XMnX Te, Cd1-X MnX
In a method for producing single crystals of II-VI group compound semiconductors such as At a temperature above the transformation point, hot isostatic press (HOTISOSTATIC PRESS,
A method for producing a single crystal is obtained, which is characterized by a treatment (hereinafter referred to as HIP). According to the present invention, there is obtained a single crystal manufacturing method characterized in that the single crystal rod is covered with powder having the same composition during the hot isostatic pressing treatment. According to the present invention, in the method for producing a single crystal, when performing the hot isostatic pressing treatment, the atmosphere condition is Ar gas, the pressure condition is 500 to 1200 kg/cm2, and the temperature is 880 to 980°C. A method for producing a single crystal is obtained.

【0008】[0008]

【作用】本発明においては,一旦ブリッジマン法で作製
した単結晶ロッドを相変態点以上の温度でHIP処理を
行い,外圧がかかった状態で,相変態点を通過させるこ
とにより全てせん亜鉛鉱型構造に遷移させることにより
,半磁性半導体(Cd1−X MnX Te,Cd1−
X MnXTe)高品質単結晶の量産が可能となる。
[Operation] In the present invention, the single crystal rod produced by the Bridgman method is subjected to HIP treatment at a temperature above the phase transformation point, and then the rod is passed through the phase transformation point under external pressure, so that all of the rods are made of zinc ore. By transitioning to the type structure, semimagnetic semiconductors (Cd1-X MnX Te, Cd1-
It becomes possible to mass produce high quality single crystals (XMnXTe).

【0009】[0009]

【実施例】以下に本発明の実施例について,図面を参照
して説明する。図1は本発明の実施例に係る単結晶の製
造方法を示す図で,図2は図1の製造方法におけるHI
P装置の構成を示す図である。本発明の実施例に係る単
結晶の製造方法として,Cd0.5 Mn0.5 Te
単結晶を育成した場合について説明する。図1に示すよ
うに,従来の技術でのべた製造方法を用いて双晶入りの
CdMnTe単結晶を育成し,その後,CdMnTe単
結晶体を取り出す。次に,図2に示したHIP装置の所
定の位置に置く。CdMnTe単結晶体12は,同一組
成の溶融CdMnTe焼結粉11に埋没させて,耐火性
を有するるつぼ8に充填し,支持台13上に載置してあ
る。また,この炉内のるつぼ周囲には,加熱用の加熱ヒ
ータ14が配置されている。この状態で温度及び圧力を
所定温度で上昇させる。温度が880〜980℃の範囲
で,30分以上保持した後に,装置の能力範囲で急冷す
る。また,炉上方の導入口から雰囲気ガスとしてArガ
ス10を導入する。この製造工程は,双晶入りのCdM
nTe単結晶を相変態点以上の温度に上げて,圧力をか
けた状態で相変態点を通過させる。以上の製造方法によ
って得られた試料■〜■の結晶性試験結果を表1及び図
3に示す。また,比較の為に,従来法により作製した試
料■の結晶性試験結果を付記した。尚,図3中の○△×
は表1中の評価に対応している。
Embodiments Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a method for manufacturing a single crystal according to an embodiment of the present invention, and FIG. 2 is a diagram showing the HI in the manufacturing method of FIG.
It is a figure showing the composition of P device. As a method for manufacturing a single crystal according to an embodiment of the present invention, Cd0.5 Mn0.5 Te
The case where a single crystal is grown will be explained. As shown in FIG. 1, a twinned CdMnTe single crystal is grown using a conventional manufacturing method, and then the CdMnTe single crystal is taken out. Next, place it in the predetermined position of the HIP device shown in FIG. The CdMnTe single crystal 12 is buried in molten CdMnTe sintered powder 11 of the same composition, filled in a refractory crucible 8, and placed on a support stand 13. Further, a heating heater 14 for heating is arranged around the crucible in this furnace. In this state, the temperature and pressure are increased to a predetermined temperature. After maintaining the temperature in the range of 880 to 980°C for 30 minutes or more, it is rapidly cooled within the capacity of the equipment. Furthermore, Ar gas 10 is introduced as an atmospheric gas from an inlet above the furnace. This manufacturing process uses twinned CdM
The temperature of the nTe single crystal is raised to a temperature higher than the phase transformation point, and the temperature is passed through the phase transformation point while applying pressure. Table 1 and FIG. 3 show the crystallinity test results of samples ① to ② obtained by the above manufacturing method. Also, for comparison, the crystallinity test results of sample ① prepared by the conventional method are attached. In addition, ○△× in Figure 3
corresponds to the evaluation in Table 1.

【0010】表1及び図3から,相変態点以上の温度で
かつ溶融しない温度は,880〜980℃の範囲が好ま
しいことが判る。一方,圧力≦500kg/ cm2 
では,CdMnTe単結晶の昇華が起こりやすくなり,
結晶内部にボイド等の欠陥が発生し,光学特性が大幅に
劣化し,圧力≧1200kg/ cm2 では,ストレ
スが強すぎてCdMnTeにクラック等の歪みが入るの
で,圧力は500〜1200kg/ cm2 の範囲に
あることが好ましい。本発明者らは,双晶の要因を相変
態点を通過する際に,全てせん亜鉛鉱型構造に遷移すれ
ば問題ないが,一部ウルツ鉱型構造が残存する点が双晶
となると考えている。即ち,本発明の単結晶の製造方法
は,相変態点を通過する際に発生する潜熱の影響の結果
である熱歪みが単結晶成長を阻害するのを,等方的な圧
力を加えることで阻止することにより,双晶を低減する
ことができる。以上,本発明の実施例に係る単結晶の製
造方法を採用した結果として,結晶性の問題(双晶)が
解決し,Cd1−X MnX Te及びCd1−X M
nX Se等の高品質の量産が可能となった。
From Table 1 and FIG. 3, it can be seen that the temperature above the phase transformation point and not melting is preferably in the range of 880 to 980°C. On the other hand, pressure≦500kg/cm2
In this case, sublimation of the CdMnTe single crystal becomes more likely to occur,
Defects such as voids will occur inside the crystal, resulting in a significant deterioration of optical properties. If the pressure is 1200 kg/cm2, the stress will be too strong and distortion such as cracks will occur in the CdMnTe, so the pressure should be in the range of 500 to 1200 kg/cm2. It is preferable that the The present inventors believe that the cause of twinning is that there is no problem if all the structure transitions to the zincite structure when passing through the phase transformation point, but points where the wurtzite structure remains partially become twins. ing. That is, the method for producing a single crystal of the present invention prevents thermal strain, which is a result of the influence of latent heat generated when passing through a phase transformation point, from inhibiting single crystal growth, by applying isotropic pressure. By preventing this, twinning can be reduced. As described above, as a result of adopting the single crystal manufacturing method according to the embodiment of the present invention, the crystallinity problem (twinning) is solved, and Cd1-X MnX Te and Cd1-X M
It has become possible to mass produce high quality materials such as nX Se.

【0011】[0011]

【表1】[Table 1]

【0012】0012

【発明の効果】以上説明したように,本発明はブリッジ
マン法により単結晶ロッドを作製し,その単結晶ロッド
を相変態点以上の温度で,HIP処理を行うことにより
,高品質の単結晶の量産が可能な単結晶の製造方法を提
供することができる。
[Effects of the Invention] As explained above, the present invention produces a single crystal rod by the Bridgman method, and performs HIP treatment on the single crystal rod at a temperature higher than the phase transformation point, thereby producing a high quality single crystal. It is possible to provide a method for manufacturing a single crystal that allows mass production of.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例に係る単結晶の製造方法を示す
図である。
FIG. 1 is a diagram showing a method for manufacturing a single crystal according to an example of the present invention.

【図2】図1の製造方法におけるHIP装置の構成を示
す図である。
FIG. 2 is a diagram showing the configuration of a HIP device in the manufacturing method of FIG. 1;

【図3】本発明の実施例に係るHIP装置の圧力と温度
との関係を示す図である。
FIG. 3 is a diagram showing the relationship between pressure and temperature of the HIP apparatus according to the embodiment of the present invention.

【図4】(a)は従来の単結晶製造装置の一例を示す図
である。 (b)は(a)の単結晶製造装置の炉内温度分布を示す
図である。
FIG. 4(a) is a diagram showing an example of a conventional single crystal manufacturing apparatus. (b) is a diagram showing the temperature distribution in the furnace of the single crystal production apparatus of (a).

【図5】(a)は従来の単結晶製造装置の他の例を示す
図である。 (b)は(a)の単結晶製造装置の炉内温度分布を示す
図である。
FIG. 5(a) is a diagram showing another example of a conventional single crystal manufacturing apparatus. (b) is a diagram showing the temperature distribution in the furnace of the single crystal production apparatus of (a).

【符号の説明】[Explanation of symbols]

1  石英るつぼに真空封入する工程 2  ブリッジマン法で結晶育成する工程3  HIP
処理工程 8  るつぼ 9  断熱層 10  ガス 11  CdMnTe焼結粉 12  双晶有りのCdMnTe単結晶13  支持台 14  ヒータ 51  電気炉 52  るつぼ昇降機構 53  石英るつぼ 54  メルト 54´  メルト 55  単結晶 56  原料 56´  原料 57´  固体結晶原料
1 Step of vacuum sealing in a quartz crucible 2 Step of crystal growth using Bridgman method 3 HIP
Treatment step 8 Crucible 9 Heat insulating layer 10 Gas 11 CdMnTe sintered powder 12 CdMnTe single crystal with twins 13 Support stand 14 Heater 51 Electric furnace 52 Crucible lifting mechanism 53 Quartz crucible 54 Melt 54' Melt 55 Single crystal 56 Raw material 56' Raw material 57' Solid crystal raw material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  半磁性半導体(Cd1−X Mnx 
Te,Cd1−X MnX Se)等のII−VI族化
合物半導体単結晶を製造する方法において,ブリッジマ
ン法を用いて単結晶ロッドを作製した後に,双晶を除去
するために,当該単結晶ロッドを構成する物質の相変態
点以上の温度にて熱間静水圧プレス処理することを特徴
とする単結晶の製造方法。
[Claim 1] Semimagnetic semiconductor (Cd1-X Mnx
In a method for manufacturing a II-VI group compound semiconductor single crystal such as Te, Cd1-X MnX Se), after a single crystal rod is produced using the Bridgman method, the single crystal rod is A method for producing a single crystal, comprising hot isostatic pressing at a temperature higher than the phase transformation point of a substance constituting the crystal.
【請求項2】  請求項1の単結晶の製造方法において
,前記熱間静水圧プレス処理する際に,前記単結晶ロッ
ドを同一組成の粉体で覆うことを特徴とする単結晶の製
造方法。
2. The method for producing a single crystal according to claim 1, wherein the single crystal rod is covered with powder having the same composition during the hot isostatic pressing treatment.
【請求項3】  請求項2の単結晶の製造方法において
,前記熱間静水圧プレス処理する際に,雰囲気条件をA
rガス中で,圧力を500〜1200kg/cm2 ,
温度を880〜980℃とすることを特徴とする単結晶
の製造方法。
3. In the method for producing a single crystal according to claim 2, when performing the hot isostatic pressing treatment, the atmospheric conditions are set to A.
In r gas, the pressure is 500 to 1200 kg/cm2,
A method for producing a single crystal, characterized in that the temperature is 880 to 980°C.
JP8294891A 1991-03-25 1991-03-25 Single crystal manufacturing method Expired - Fee Related JP2969385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8294891A JP2969385B2 (en) 1991-03-25 1991-03-25 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8294891A JP2969385B2 (en) 1991-03-25 1991-03-25 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH04295100A true JPH04295100A (en) 1992-10-20
JP2969385B2 JP2969385B2 (en) 1999-11-02

Family

ID=13788444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8294891A Expired - Fee Related JP2969385B2 (en) 1991-03-25 1991-03-25 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2969385B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017538A1 (en) * 1993-12-22 1995-06-29 Tokin Corporation Magneto-optical device and method for production thereof
WO2000018990A1 (en) * 1998-09-30 2000-04-06 Mitsubishi Materials Silicon Corporation Method for removing defects of single crystal material and single crystal material from which defects are removed by the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017538A1 (en) * 1993-12-22 1995-06-29 Tokin Corporation Magneto-optical device and method for production thereof
WO2000018990A1 (en) * 1998-09-30 2000-04-06 Mitsubishi Materials Silicon Corporation Method for removing defects of single crystal material and single crystal material from which defects are removed by the method
US6447600B1 (en) 1998-09-30 2002-09-10 Mitsubishi Materials Silicon Corporation Method of removing defects of single crystal material and single crystal material from which defects are removed by the method
KR100423016B1 (en) * 1998-09-30 2004-03-12 미쯔비시 마테리알 실리콘 가부시끼가이샤 Method for Removing Defects of Single Crystal Material and Single Crystal Material from Which Defects are Removed by the Method

Also Published As

Publication number Publication date
JP2969385B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
JPH04295100A (en) Production of single crystal
CN113337888A (en) Preparation method of cerium antimonide single crystal
Pandey A new method for the growth of Pb1− xSnxTe single crystals
JP3030584B2 (en) Method and apparatus for producing compound semiconductor single crystal
JP3152322B2 (en) Twinless (Nd, La) GaO3 single crystal and method for producing the same
JPH0259489A (en) Production of compound semiconductor single crystal
JPH06125148A (en) Low-resistance semiconductor crystal substrate and manufacture thereof
JP2929006B1 (en) Manufacturing method of high quality crystal sheet material
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH07233000A (en) Magneto-optical element and its manufacture
JP2781857B2 (en) Single crystal manufacturing method
JP3651855B2 (en) Method for producing CdTe crystal
JPH0543400A (en) Production of gaas single crystal
JPH0341432B2 (en)
JPH04167421A (en) Apparatus for manufacturing semiconductor single crystal
JPH10182298A (en) Production of semimagnetic semiconductor polycrystal
JPH0432800B2 (en)
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal
JPH03137085A (en) Production of ii-vi compound semiconductor crystal
JPS63185885A (en) Crystal growing device of horizontal type
JPH06157184A (en) Crystal growth ampoule
JPH01282200A (en) Heat treatment vessel
JPH02129099A (en) Growth of znse single crystal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990728

LAPS Cancellation because of no payment of annual fees