JPH02129099A - Growth of znse single crystal - Google Patents

Growth of znse single crystal

Info

Publication number
JPH02129099A
JPH02129099A JP28077788A JP28077788A JPH02129099A JP H02129099 A JPH02129099 A JP H02129099A JP 28077788 A JP28077788 A JP 28077788A JP 28077788 A JP28077788 A JP 28077788A JP H02129099 A JPH02129099 A JP H02129099A
Authority
JP
Japan
Prior art keywords
growth
znse
single crystal
crucible
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28077788A
Other languages
Japanese (ja)
Other versions
JPH0535720B2 (en
Inventor
Tadashi Koyama
小山 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP28077788A priority Critical patent/JPH02129099A/en
Publication of JPH02129099A publication Critical patent/JPH02129099A/en
Publication of JPH0535720B2 publication Critical patent/JPH0535720B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a large single crystal in a short time while inhibiting twin- generation by carrying out growth of a ZnSe single crystal from a Zn-Se-based fused liquid of a specified composition ratio. CONSTITUTION:The growth of the subject Zn-Se single crystal is carried out by using an equipment capable of applying the order of 100-2000 atmospheric pressure of an inert gas such as Ar and keeping a Zn-Se fused liquid composed of 57.5-92.5mol.% Se and 7.5-42.5-mol.% Zn at 1100-1420 deg.C in a vessel made of a dense carbon material, boron nitride, etc.

Description

【発明の詳細な説明】[Detailed description of the invention] 【壇業上の利用分野】[Field of professional use]

本発明は、半導体工業等において使用されるZnSe単
結晶の結晶成長方法に間するものである。
The present invention relates to a method for growing ZnSe single crystals used in the semiconductor industry and the like.

【従来の技11iI ZnSeは青色の発光業子の材料である。素子作製はM
OVPE (メタルオーガニック ベイパーフエイズエ
ビタキシイ)やMBE(モレキュラビームエビタキシイ
)などのエピタキシャル成長によって行われろ、エピタ
キシャル成長に於て最も重要なことは、成長結晶と基板
の格子定数を同じにするか、もしくは近い値にすること
である。 結晶系が同じで格子定数が近いものとしてGaASがあ
る。しかしながらZ 11 S eとGaAsとの間に
はt)、26%の格子不整合が存在する。GaAs0上
にZnSeを成長させた場合に、この格子不整合のため
にミスフィツト転位が発生することが報告されている。 また成長中に基FA構成元素であろGaが、ZnSe中
にビ散してしまい好ましくない。さらに両者の熱膨張係
数が違うためエピタキシャル成長後に、歪が残ってしま
う。このような不都合を闘消するためにはエピタキシャ
ル成長する材料と同じ材料を使えば解決できる。この意
味でZnSe基板を使ったホモエピタキシャル成長が重
要になってくる。 結晶基板を得ろ方法としては高圧溶融法がある。 (例えばJ、Cry、Grow、  主4.467(1
97B) )この方法はZnSe粉末をカーボンなとの
坩堝にいれ加熱し溶融するのであるが、ZnSeは高温
で分解反応が起こるためアルゴンなどの不活性ガスを印
加しながら溶融を行う、その圧力は100気圧程度の圧
力である。原料を溶融後徐々に坩堝を低温部分に移動さ
せることにより単結晶化することができ、比較的短い時
間で大型の単結晶が得られる。 またセレンの溶媒を用いて1100℃以下の温度で溶液
成長をさせる方法がある。 (例えばJ。 ApρI、Phys、  i7.2210 (1985
))この方法は石英管中に溶融セレンとZnSeをいれ
、石英管の高温部に原料ZnSeを置き低温部に種結晶
を配置し溶解度の差を利用して連続的に単結晶を成長さ
せるものである。 【発明が解決しようとする課H】 ZnSeは1620℃で溶融するが1420℃において
結晶系が変わる。すなわち高温鋼では六方晶系に属する
ウルツ鉱型、それ以下では立方晶系のジンクブレンド型
になる。前記のZnSe結晶の成長法ではこの転移温度
を固相状態で通過するため、双晶が高密度に導入されて
しまう、その結果としてエピタキシャル成長用の基板と
して使用できる部分は限られてしまい歩止まりが非常に
悪いという重大な欠点があった。また溶液成長法におい
ては低温であるために、ZnSeの溶解度が低く結晶成
長速度が遅く大型の結晶ができにくいという欠点があっ
た。
[Conventional technique 11iI ZnSe is a blue luminescent material. Element fabrication is M
The most important thing in epitaxial growth is to make the lattice constant of the growing crystal and the substrate the same, or The idea is to set the values close to each other. GaAS has the same crystal system and similar lattice constants. However, there is a 26% lattice mismatch between Z 11 S e and GaAs. It has been reported that when ZnSe is grown on GaAs0, misfit dislocations occur due to this lattice mismatch. Moreover, during growth, Ga, which is a constituent element of the base FA, is dispersed into ZnSe, which is not preferable. Furthermore, since the thermal expansion coefficients of the two are different, distortion remains after epitaxial growth. In order to overcome these inconveniences, it is possible to solve the problem by using the same material as that used for epitaxial growth. In this sense, homoepitaxial growth using a ZnSe substrate becomes important. A high pressure melting method is available as a method for obtaining a crystal substrate. (For example, J, Cry, Grow, main 4.467 (1
97B)) In this method, ZnSe powder is placed in a crucible of carbon and heated to melt it. However, since ZnSe undergoes a decomposition reaction at high temperatures, melting is performed while applying an inert gas such as argon, and the pressure is The pressure is about 100 atmospheres. Single crystallization can be achieved by melting the raw material and gradually moving the crucible to a low-temperature section, and a large single crystal can be obtained in a relatively short time. There is also a method of performing solution growth at a temperature of 1100° C. or lower using a selenium solvent. (e.g. J. ApρI, Phys, i7.2210 (1985
)) In this method, molten selenium and ZnSe are placed in a quartz tube, the raw material ZnSe is placed in the high temperature part of the quartz tube, a seed crystal is placed in the low temperature part, and single crystals are continuously grown using the difference in solubility. It is. Issue H to be Solved by the Invention ZnSe melts at 1620°C, but its crystal system changes at 1420°C. That is, high-temperature steels have a wurtzite type, which belongs to a hexagonal system, and lower temperatures have a zinc blend type, which has a cubic system. In the above-mentioned method for growing ZnSe crystals, this transition temperature is passed through in a solid state, so twins are introduced at a high density.As a result, the area that can be used as a substrate for epitaxial growth is limited and the yield is reduced. It had a very serious drawback. Further, in the solution growth method, since the temperature is low, the solubility of ZnSe is low and the crystal growth rate is slow, making it difficult to form large crystals.

【!!題を解決するための手段】[! ! Measures to solve the problem】

本発明は前記問題点を解決するためになされたものであ
って、Seが57.5〜92.5mol%、Znが7.
5〜42.5mol%のZn−9e系@液を形成し、該
融液を用いてZnSe単結晶の成長を行なうZnSe単
結晶の成長方法である。 本発明は、Loret+zの相図(Physics a
nd Chewstry  of   It−Vl  
compound、North  Ho!1and、1
967)に基ずきセレンの割合が亜鉛に対して57.5
ないし92.5モルパーセントになる範囲内で混合し、
充填した原料全てが液相になる25度まで一旦昇温し、
冷却過程に生成するZnSeを結晶成長に利用する。該
ZnSe析出は結晶系転移の生ずる1420℃の温度以
下においても生じ、該組成では1100℃以上の温度で
生じる。 また該結晶成長は、不活性ガスが100から2000気
圧程度の圧力がかかる装置で行うことが好ましい。 また成長容器としては石英を用いず、**性の保てるカ
ーボン材料か、窒化ホウ素の容器を用いろことが好まし
い、またこの温度域ではセレンの蒸気圧が約40から2
50電圧に達するため、セレンの蒸発を防ぐことが好ま
しい、該セレンの蒸発を防ぐ方法としては、坩堝を封止
する方法、成長温度において予想されろ蒸気圧以上の不
活性ガスの圧を印加する方法等が例示できる。 原料を所定の温度、圧力で完全に溶融した後、坩堝を徐
々に冷却する0例えば坩堝の底部から冷却して行くと、
溶解度が変化するため、坩堝底部からZnSeが析出し
だし連続的に行うことにより、大型の単結晶が得られる
The present invention was made to solve the above-mentioned problems, and contains 57.5 to 92.5 mol % of Se and 7.
This is a method for growing a ZnSe single crystal, in which a 5 to 42.5 mol % Zn-9e-based @ solution is formed, and the ZnSe single crystal is grown using the melt. The present invention is based on the phase diagram of Loret+z (Physics a
nd Chewstry of It-Vl
compound, North Ho! 1 and, 1
967), the ratio of selenium to zinc is 57.5
to 92.5 mole percent,
Once the temperature is raised to 25 degrees, where all the filled raw materials become liquid phase,
ZnSe generated during the cooling process is used for crystal growth. The ZnSe precipitation occurs even at temperatures below 1420°C where crystal system transition occurs, and for this composition occurs at temperatures above 1100°C. Further, it is preferable that the crystal growth is performed in an apparatus in which an inert gas is applied with a pressure of about 100 to 2000 atmospheres. In addition, it is preferable to use a container made of carbon material or boron nitride, which maintains its properties, instead of using quartz as the growth container.Also, in this temperature range, the vapor pressure of selenium is approximately 40 to 2.
50 voltage, it is preferable to prevent the evaporation of selenium. Methods for preventing the evaporation of selenium include sealing the crucible and applying an inert gas pressure higher than the expected vapor pressure at the growth temperature. Methods etc. can be exemplified. After the raw materials are completely melted at a predetermined temperature and pressure, the crucible is gradually cooled. For example, if cooling starts from the bottom of the crucible,
Since the solubility changes, ZnSe begins to precipitate from the bottom of the crucible, and by carrying out the process continuously, a large single crystal can be obtained.

【作用】[Effect]

従来の結晶成長法のWj融法では、ZnSeを融点であ
る11520℃で溶融し除冷をするという方法をとるた
め、結晶転移点を通過してしまい双晶の発生はやむを得
なりかた。また溶液法では温度が比較的低いために充分
な溶解度が得られずに大型結晶が得られかつがた。 本発明に依れば、結晶成長温度が転移点以下におさえら
れ、かつ転移点以下の温度で成長を行っているために双
晶発生が極力抑えられる。また成長温度が1100℃以
上となっているために、溶媒であるセレンへのZnSe
の溶解度が充分であるために比較的短時間で大型の単結
晶が得られる。
In the WJ melting method, which is a conventional crystal growth method, ZnSe is melted at the melting point of 11,520° C. and slowly cooled, so that the crystal transition point is passed and the generation of twins is unavoidable. In addition, in the solution method, the temperature is relatively low, so sufficient solubility cannot be obtained, and large crystals cannot be obtained. According to the present invention, since the crystal growth temperature is kept below the transition point and the crystal growth is performed at a temperature below the transition point, the occurrence of twin crystals can be suppressed as much as possible. In addition, since the growth temperature is 1100°C or higher, ZnSe
Because of its sufficient solubility, large single crystals can be obtained in a relatively short time.

【実施例】 原料として6ナイン程度の純度のセしンと亜鉛を用意す
る。セレンのモルパーセントが75%、亜鉛が25%の
割合で混合する。原料が粉末であったとしても、このま
までは坩堝への充填率が低くなるので、−旦円II+影
の石英アンプルにいれ真空封入する。このときの石英ア
ンプルの形状は、成長に用いる坩堝と同じにしその直径
を若干ちいさめにする。封入した石英アンプルを縦型の
電気炉にいれセレン、亜鉛を溶融する。このとき反応し
てZnSeが生成することがあるが特に問題はない、充
分にアンプルを加熱し原料の均一度、充填度を高める。 加熱後アンプルを電気炉から取り出し、アンプルを開封
し原料を取り出す、取り出した原料を今度はカーボンま
たは窒化ホウ素製の坩堝に入れる。この原料割合では1
300℃に加熱をすると、相図より系は全部)α相のみ
となり、ZnSeとしての割合は50モル%となる。坩
堝を第1図に示す温度分布を持つ成長装置の中に配置し
、その雰囲×をアルゴンなどの不活性ガスとする。また
その圧力は、少なくとも1300℃でのセレンの蒸気圧
である124%圧以上にする。 このとき、セレン溶媒の蒸発をできるだけ防ぐ方法とし
ては、坩堝を封止する方法、セレン雰囲電とする方法も
考えられる。溶融した原料を含む坩堝を回転を加えなが
ら、徐々に炉の低)H部に移動する、こうすることによ
り坩堝底部ではZnSeの過飽和が起こりZnSe結晶
が析出しだす、そのときの移動速度は0. 1から5m
m/h rの速度で行う。坩堝移動を坩堝全体にわたっ
て行い完全に低温部への移動が終わったら室温まで冷却
し坩堝を取り出す。残ったセレン金属をNaOH水溶液
などで除去すると双晶密度の低い大型の単結晶が得られ
た。
[Example] Sensine and zinc having a purity of about 6 nines are prepared as raw materials. The molar percentage of selenium is 75% and the ratio of zinc is 25%. Even if the raw material is a powder, the filling rate in the crucible will be low if it remains as it is, so it is placed in a quartz ampoule with a shadow of -Danen II and sealed in a vacuum. The shape of the quartz ampoule at this time is the same as that of the crucible used for growth, and its diameter is slightly smaller. The sealed quartz ampoule is placed in a vertical electric furnace to melt selenium and zinc. At this time, ZnSe may be generated by reaction, but there is no particular problem.The ampoule is sufficiently heated to increase the uniformity and filling degree of the raw material. After heating, the ampoule is taken out of the electric furnace, the ampoule is opened, and the raw material is taken out.The taken out raw material is then placed in a crucible made of carbon or boron nitride. At this raw material ratio, 1
When heated to 300° C., the phase diagram shows that the entire system becomes only the α phase, and the proportion of ZnSe is 50 mol %. The crucible is placed in a growth apparatus having the temperature distribution shown in FIG. 1, and the atmosphere is an inert gas such as argon. Further, the pressure is at least 124% pressure, which is the vapor pressure of selenium at 1300°C. At this time, as a method of preventing evaporation of the selenium solvent as much as possible, a method of sealing the crucible and a method of creating a selenium atmosphere can be considered. The crucible containing the molten raw material is rotated and gradually moved to the lower H part of the furnace. By doing this, supersaturation of ZnSe occurs at the bottom of the crucible and ZnSe crystals begin to precipitate. At that time, the moving speed is 0. 1 to 5m
Perform at a speed of m/hr. The crucible is moved over the entire crucible, and when the crucible has completely moved to the low temperature section, it is cooled to room temperature and the crucible is taken out. When the remaining selenium metal was removed with an aqueous NaOH solution, a large single crystal with a low twin density was obtained.

【発明の効果】【Effect of the invention】

本発明に依れば従来不十分であった、ZnSeの単結晶
成長に於て充分な大きさと成長速度を持ち、なおかつ双
晶密度がきわめて低い単結晶を得ることが可能となった
。 4、  r:!J面の簡単な説明 第1図は、実施例において使用した単結晶成長装置の概
略を示す断面図である。 成長容器   (2)カーボンヒーターサセプター  
(4)カーボン坩堝 ZnSe単結晶 ZnSe+セレン融液 炉内温度プロファイル 温度 図
According to the present invention, it has become possible to obtain a single crystal of ZnSe that has a sufficient size and growth rate and has an extremely low twin crystal density, which has been insufficient in the past. 4. r:! Brief Explanation of J-plane FIG. 1 is a cross-sectional view schematically showing the single crystal growth apparatus used in the examples. Growth container (2) Carbon heater susceptor
(4) Carbon crucible ZnSe single crystal ZnSe + selenium melt furnace temperature profile temperature diagram

Claims (1)

【特許請求の範囲】[Claims] (1)Seが57.5〜92.5mol%、Znが7.
5〜42.5mol%のZn−Se系融液を形成し、該
融液を用いてZnSe単結晶の成長を行なうZnSe単
結晶の成長方法。
(1) Se: 57.5 to 92.5 mol%, Zn: 7.
A method for growing a ZnSe single crystal, in which a Zn-Se based melt of 5 to 42.5 mol % is formed and a ZnSe single crystal is grown using the melt.
JP28077788A 1988-11-07 1988-11-07 Growth of znse single crystal Granted JPH02129099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28077788A JPH02129099A (en) 1988-11-07 1988-11-07 Growth of znse single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28077788A JPH02129099A (en) 1988-11-07 1988-11-07 Growth of znse single crystal

Publications (2)

Publication Number Publication Date
JPH02129099A true JPH02129099A (en) 1990-05-17
JPH0535720B2 JPH0535720B2 (en) 1993-05-27

Family

ID=17629815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28077788A Granted JPH02129099A (en) 1988-11-07 1988-11-07 Growth of znse single crystal

Country Status (1)

Country Link
JP (1) JPH02129099A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679151A (en) * 1995-03-16 1997-10-21 Kabushiki Kaisha Kobe Seiko Sho Method for growing single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183400A (en) * 1981-05-07 1982-11-11 Semiconductor Res Found Method and apparatus for liquid-phase growth of 2-6 compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183400A (en) * 1981-05-07 1982-11-11 Semiconductor Res Found Method and apparatus for liquid-phase growth of 2-6 compound

Also Published As

Publication number Publication date
JPH0535720B2 (en) 1993-05-27

Similar Documents

Publication Publication Date Title
JP4561000B2 (en) Method for producing silicon carbide (SiC) single crystal
Cardetta et al. Melt growth of single crystal ingots of GaSe by Bridgman-Stockbarger's method
US20060048701A1 (en) Method of growing group III nitride crystals
JPS63230599A (en) Production of znse single crystal
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JPH02129099A (en) Growth of znse single crystal
CN111349968B (en) Synthesis method of selenium cadmium sulfide polycrystal
JP2555847B2 (en) Low resistance semiconductor crystal substrate and manufacturing method thereof
JPH07206597A (en) Method for producing znse bulk single crystal
US3615205A (en) Method for the synthesis and growth of high purity iii{14 v semiconductor compositions in bulk
US8449672B2 (en) Method of growing group III nitride crystals
JP2585629B2 (en) ZnSe single crystal preparation method
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JP4778150B2 (en) Manufacturing method of ZnTe-based compound semiconductor single crystal and ZnTe-based compound semiconductor single crystal
JP2000327496A (en) Production of inp single crystal
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
KR920010134B1 (en) As gas pressure controlling method of epitaxial growing process
JPS6065794A (en) Production of high-quality gallium arsenide single crystal