JPH04284371A - Positive electrode container for sodium-sulfur battery and manufacture thereof - Google Patents

Positive electrode container for sodium-sulfur battery and manufacture thereof

Info

Publication number
JPH04284371A
JPH04284371A JP3074164A JP7416491A JPH04284371A JP H04284371 A JPH04284371 A JP H04284371A JP 3074164 A JP3074164 A JP 3074164A JP 7416491 A JP7416491 A JP 7416491A JP H04284371 A JPH04284371 A JP H04284371A
Authority
JP
Japan
Prior art keywords
sodium
container
positive electrode
sulfur battery
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3074164A
Other languages
Japanese (ja)
Other versions
JP2520986B2 (en
Inventor
Takashi Ando
安藤 孝志
Yoshihiko Kurashima
吉彦 蔵島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3074164A priority Critical patent/JP2520986B2/en
Publication of JPH04284371A publication Critical patent/JPH04284371A/en
Application granted granted Critical
Publication of JP2520986B2 publication Critical patent/JP2520986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a positive electrode container for sodium-sulfur battery at low cost, which has excellent corrosion resistance so that the container is used safely for a long period of time. CONSTITUTION:An anti-corrosion coating 2, the thickness of which is not less than 100-200mum, the porosity of which is not more than 5%, and the surface roughness of which is 5-15mum, is formed by plasma flame coating on the inside surface of a metallic container main body 1 of a bottomed cylinder shape for housing a positive electrode active material 3. The anti-corrosion coating of a positive electrode container for sodium-sulfur battery is formed in atmosphere by inserting a plasma flame coating gun inside of a rotated container main body, and by moving the gun in the axial direction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は密閉型高温二次電池の単
電池の陽極容器となる耐蝕性に優れたナトリウム−硫黄
電池用陽極容器とその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode container for a sodium-sulfur battery having excellent corrosion resistance, which serves as an anode container for a unit cell of a sealed high-temperature secondary battery, and a method for manufacturing the same.

【0002】0002

【従来の技術】密閉型高温二次電池としては、負極活物
質にナトリウム、正極活物質に硫黄を用いたナトリウム
−硫黄電池を収納ケース内において複数個連結し、30
0 〜350℃の高温で作動させるものが知られている
。そして、前記の正極活物質を収納する陽極容器として
鉄やアルミニウムに代表される金属製の筒状容器が広く
用いられている。
[Prior Art] As a sealed high-temperature secondary battery, a plurality of sodium-sulfur batteries using sodium as the negative electrode active material and sulfur as the positive electrode active material are connected in a storage case.
There are known devices that operate at high temperatures of 0 to 350°C. A cylindrical container made of metal, typified by iron or aluminum, is widely used as an anode container for storing the above-mentioned positive electrode active material.

【0003】ところが、この陽極容器の内部には侵蝕性
の強い硫黄が貯蔵されているうえに電池作動時には多硫
化ナトリウムも発生し、これら硫黄や多硫化ナトリウム
によって容器が内面より侵蝕され硫黄等の漏洩事故が起
こる場合がある。このため、クロマイジング処理やメッ
キ処理により耐蝕被膜を形成して腐食の防止が図られて
きたが、いずれの処理おいても十分な耐蝕性を付与する
ことができず、この結果、長期間に亘って安全に使用す
ることができないという問題点があり、また処理コスト
が高く経済的に生産することができないという問題点も
あった。
However, highly corrosive sulfur is stored inside this anode container, and sodium polysulfide is also generated during battery operation, and these sulfur and sodium polysulfides erode the container from the inside, causing sulfur and other Accidental leakage may occur. For this reason, efforts have been made to prevent corrosion by forming corrosion-resistant coatings through chromizing and plating treatments, but none of these treatments can provide sufficient corrosion resistance, and as a result, There is a problem that it cannot be used safely, and there is also a problem that processing costs are high and it cannot be economically produced.

【0004】0004

【発明が解決しようとする課題】本発明は上記のような
従来の問題点を解決して、硫黄や多硫化ナトリウムに対
して優れた耐蝕性を発揮して長期間に亘って安全に使用
することができる耐蝕性に優れたナトリウム−硫黄電池
用陽極容器とその製造法を提供することを目的として完
成されたものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional problems, exhibits excellent corrosion resistance against sulfur and sodium polysulfide, and can be used safely for a long period of time. This was completed with the aim of providing an anode container for a sodium-sulfur battery with excellent corrosion resistance and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、陽極活物質を収納する有底筒状
の金属製陽極容器の内面に、膜厚が100〜200μm
、気孔率5%以下、面粗度5〜15μmのプラズマ溶射
による耐蝕被膜が形成されていることを特徴とするナト
リウム−硫黄電池用陽極容器を第1の発明とし、有底筒
状の容器本体を回転させつつ該容器本体の開口より内部
にプラズマ溶射ガンを挿入して軸方向に移動させながら
大気下で容器本体の内面にプラズマ溶射による耐蝕被膜
を溶射形成することを特徴とするナトリウム−硫黄電池
用陽極容器の製造法を第2の発明とするものである。
[Means for Solving the Problems] The present invention, which has been made to solve the above-mentioned problems, provides a film with a thickness of 100 to 200 μm on the inner surface of a bottomed cylindrical metal anode container housing an anode active material.
The first invention is an anode container for a sodium-sulfur battery, characterized in that a corrosion-resistant coating is formed by plasma spraying with a porosity of 5% or less and a surface roughness of 5 to 15 μm, and a bottomed cylindrical container body. A sodium-sulfur container characterized in that a corrosion-resistant coating is formed by plasma spraying on the inner surface of the container body in the atmosphere while a plasma spray gun is inserted into the interior through the opening of the container body and moved in the axial direction while rotating the container body. A second invention is a method for manufacturing an anode container for a battery.

【0006】なお、従来においてはナトリウム−硫黄電
池の陽極容器の内面は硫黄や多硫化ナトリウムのような
侵蝕性の強い物質に高温で長期にわかって曝されるため
に、プラズマ溶射による陽極容器内面への被膜形成は形
成される被膜が多孔質となり長期間の耐久性を維持する
ことが不適であるとの理由で、実用化することは一般に
は考えられていなかった。しかしながら、本発明者は陽
極容器の内面にプラズマ溶射によって膜厚、気孔率、面
粗度が特定の条件にある被膜にすることによって十分実
用的に長期間の耐久性を維持できる被膜が形成できるこ
とを見出し、本発明を完成するに至ったのである。
[0006] Conventionally, the inner surface of the anode container of a sodium-sulfur battery is exposed to highly corrosive substances such as sulfur and sodium polysulfide at high temperatures for a long period of time. It has not been generally considered to put this coating into practical use because the resulting coating becomes porous and is therefore unsuitable for maintaining long-term durability. However, the inventor of the present invention has discovered that by plasma spraying the inner surface of the anode container, it is possible to form a coating that has a specific thickness, porosity, and surface roughness that can maintain long-term durability for practical use. They discovered this and completed the present invention.

【0007】[0007]

【実施例】次に、本発明を図示の単電池を実施例として
詳細に説明する。ナトリウム−硫黄電池の単電池の陽極
容器として使用される有底筒状の容器本体1はAl、A
l合金、Fe系合金、Ni系合金或いはこれらのクラッ
ド材等の金属からなるものであり、特に軽量性および加
工性に優れたAlやAl合金が好ましく、その厚さは1
〜5mm程度とするのを普通とするが、その内面に後述
するような耐蝕被膜2をプラズマ溶射により形成すると
きの変形防止と経済性を考慮すれば1.5〜2.2mm
の範囲が好ましい。また、プラズマ溶射により形成され
る耐蝕被膜2は硫黄への耐蝕性に優れたCo−Cr−W
系のコバルト合金であるステライト、Fe系合金、Mo
、W、Nb等の溶射材料からなる平均粒径が10〜40
μmのものであり、特に耐蝕性向上のためにはステライ
ト合金が好ましく、その厚みは100μmより薄い場合
には長期間にわたる十分な耐蝕性を得ることができず、
また200μmより厚くすることは経済的に不利となる
から100〜200μmが好ましい。なお、3は正極活
物質である硫黄、4は固体電解質管5により隔離された
負極活物質である金属ナトリウムである。
[Example] Next, the present invention will be explained in detail using the illustrated cell as an example. A bottomed cylindrical container body 1 used as an anode container for a unit cell of a sodium-sulfur battery is made of Al, A
It is made of metal such as L alloy, Fe-based alloy, Ni-based alloy, or cladding material of these materials. In particular, Al and Al alloy, which are excellent in lightness and workability, are preferable, and the thickness is 1.
It is normal that the thickness is approximately 5 mm, but it is 1.5 to 2.2 mm in consideration of deformation prevention and economic efficiency when forming a corrosion-resistant coating 2 as described later on the inner surface by plasma spraying.
A range of is preferred. In addition, the corrosion-resistant coating 2 formed by plasma spraying is made of Co-Cr-W, which has excellent corrosion resistance to sulfur.
stellite, which is a cobalt alloy of the system, Fe-based alloy, Mo
, W, Nb, etc., with an average particle size of 10 to 40
In particular, stellite alloy is preferable for improving corrosion resistance, and if the thickness is less than 100 μm, sufficient corrosion resistance cannot be obtained for a long period of time.
Moreover, since it is economically disadvantageous to make the thickness thicker than 200 μm, the thickness is preferably 100 to 200 μm. Note that 3 is sulfur which is a positive electrode active material, and 4 is metallic sodium which is a negative electrode active material isolated by a solid electrolyte tube 5.

【0008】また、耐蝕被膜2の気孔率は耐蝕性を向上
させるためには5%以下に抑える必要があり、また、被
膜表面の面粗度は5〜15μmの範囲内の極めて平滑な
表面とする必要がある。一方、プラズマ溶射が施される
容器本体1の内面の面粗度も耐蝕被膜2の接着強度を向
上させるとともに、部分的に薄い箇所のない均一な膜厚
の耐蝕被膜を得るために2〜15μmの範囲内、好まし
くは5〜8μmの平滑な面とするのがよい。なお、この
ような凹凸がなく極めて平滑な被膜表面を有する耐蝕被
膜2は、薄膜部がないので硫黄等により一部が優先的に
腐食されることもなく長期間にわたって優れた耐久性を
発揮することとなる。
In addition, the porosity of the corrosion-resistant coating 2 must be suppressed to 5% or less in order to improve its corrosion resistance, and the surface roughness of the coating must be extremely smooth within the range of 5 to 15 μm. There is a need to. On the other hand, the surface roughness of the inner surface of the container body 1 to which plasma spraying is applied is 2 to 15 μm in order to improve the adhesive strength of the corrosion-resistant coating 2 and to obtain a corrosion-resistant coating with a uniform thickness without any thin areas. It is preferable to have a smooth surface within the range of 5 to 8 μm, preferably 5 to 8 μm. In addition, the corrosion-resistant coating 2, which has an extremely smooth coating surface without such irregularities, has no thin film portion, so it exhibits excellent durability over a long period of time without being preferentially corroded by sulfur or the like. It happens.

【0009】次に、前記のような耐蝕性に優れたナトリ
ウム−硫黄電池用陽極容器を設備が簡単な大気下におけ
る製造する耐蝕性に優れたナトリウム−硫黄電池用陽極
容器の製造法について説明すると、内面を面粗度が所定
範囲内の平滑面に仕上げられ有底筒状の容器本体1を常
法により製作したらこれを約200℃に予熱したうえ図
2に示すように把持具6によりに縦型に保持し、該把持
具6を回転させて容器本体1に100〜700rpm 
の回転を付与する。そして、この回転する容器本体1内
に、出力7〜50KWのプラズマ溶射ガン7のノズルを
挿入し、このプラズマ溶射ガン7をトラバース速度2〜
15mm/secで容器本体1の軸方向へ上下動させな
がらノズルの先端から噴射されるステライト等の溶射材
料8を約200℃の温度域にある容器本体1の内面に均
一にプラズマ溶射して該容器本体1の内面にプラズマ溶
射による耐蝕被膜2を溶射形成する。この場合、プラズ
マ溶射ガン7のノズルと容器本体1の内面との間には、
プラズマ溶射による耐蝕被膜2が均一な厚みとなるよう
5〜30mm、好ましくは15〜20mmの間隔が形成
されるように調整しておく。
Next, a method for manufacturing an anode container for a sodium-sulfur battery with excellent corrosion resistance, which is performed under atmospheric conditions with simple equipment, will be explained. After a bottomed cylindrical container body 1 with an inner surface finished with a smooth surface roughness within a predetermined range is manufactured by a conventional method, it is preheated to about 200°C and then held by a gripper 6 as shown in FIG. Hold it vertically and rotate the gripper 6 to apply it to the container body 1 at 100 to 700 rpm.
Gives rotation. Then, a nozzle of a plasma spray gun 7 with an output of 7 to 50 KW is inserted into the rotating container body 1, and the plasma spray gun 7 is moved at a traverse speed of 2 to 50 KW.
While moving up and down in the axial direction of the container body 1 at a rate of 15 mm/sec, a thermal spraying material 8 such as stellite is injected from the tip of the nozzle and uniformly plasma-sprayed onto the inner surface of the container body 1 at a temperature of about 200°C. A corrosion-resistant coating 2 is formed on the inner surface of the container body 1 by plasma spraying. In this case, there is a gap between the nozzle of the plasma spray gun 7 and the inner surface of the container body 1.
The spacing is adjusted to be 5 to 30 mm, preferably 15 to 20 mm, so that the corrosion-resistant coating 2 formed by plasma spraying has a uniform thickness.

【0010】また、前記したようなプラズマ溶射処理条
件を満たしたうえ、プラズマ溶射ガン7で溶射する溶射
材料を平均粒径が10〜70μmのものとして、内径5
6mm、高さ370 mmのAl合金よりなる容器本体
1に対し大気下でステライトを出力12.5KWのプラ
ズマ溶射ガンで溶射したところ、図3に示すとおりであ
って、溶射材料の平均粒径を10〜40μmとしたとき
は気孔率が4%以下の優れた耐蝕被膜が得られることが
確認できた。
[0010] In addition to satisfying the above-mentioned plasma spraying processing conditions, the spray material to be sprayed by the plasma spray gun 7 has an average particle size of 10 to 70 μm, and the inner diameter is 5 μm.
When Stellite was sprayed in the atmosphere using a plasma spray gun with an output of 12.5 KW onto a container body 1 made of an Al alloy with a diameter of 6 mm and a height of 370 mm, the results were as shown in Figure 3, and the average particle size of the sprayed material was It was confirmed that when the thickness was 10 to 40 μm, an excellent corrosion-resistant coating with a porosity of 4% or less could be obtained.

【0011】また、アルミニウム合金からなる外径60
mm、内径56mm、高さ370 mmの有底筒状の容
器本体を約200℃に予熱後、300rpm で回転し
つつ該容器本体内でプラズマ溶射ガン(出力7.5KW
)を溶射距離18mmを常に維持しながら8mm/se
c のトラバース速度で軸方向に移動させ大気下で平均
粒径が20μmのステライト粉末をプラズマ溶射したも
のは、内面に溶射形成されたプラズマ溶射による耐蝕被
膜の膜厚が各部文とも約100μmと均一であり、気孔
率が約2.5%、面粗度7μmの極めて緻密かつ平滑な
表面を有するもので、単電池としては理論上10年程度
の耐久性を確保できるものと思われる。
[0011] Also, an outer diameter 60 made of aluminum alloy
After preheating a bottomed cylindrical container body with an inner diameter of 56 mm and a height of 370 mm to approximately 200°C, a plasma spray gun (output 7.5 KW) was heated inside the container body while rotating at 300 rpm.
) at 8mm/se while always maintaining a spraying distance of 18mm.
When moving in the axial direction at a traverse speed of c and plasma sprayed with stellite powder with an average particle size of 20 μm in the atmosphere, the thickness of the corrosion-resistant coating formed by plasma spraying on the inner surface is uniform at about 100 μm on each part. It has an extremely dense and smooth surface with a porosity of approximately 2.5% and a surface roughness of 7 μm, and is thought to be able to theoretically ensure durability of about 10 years as a single cell.

【0012】0012

【発明の効果】以上の説明からも明らかなように、第1
の発明は、陽極容器の内面が膜厚が100〜200μm
、気孔率5%以下、面粗度5〜15μmの極めて緻密で
表面が平滑且つ均一な厚みの耐蝕被膜により一連に覆わ
れているので、硫黄や多硫化ナトリウムに対して優れた
耐蝕性を発揮することはもちろんのこと、耐蝕被膜の厚
みにむらがなく薄膜部がないので一部が優先的に腐食さ
れることもなく優れた耐久性を発揮し、長期間に亘って
安全に使用することができるものであり、また、第2の
発明は前記した第1の発明を大気下において簡単な設備
で安価に量産できるという特長がある。よって、本発明
は従来の問題点を一掃した耐蝕性に優れたナトリウム−
硫黄電池用陽極容器とその製造法として、産業の発展に
寄与するところは極めて大である。
[Effect of the invention] As is clear from the above explanation, the first
In the invention, the inner surface of the anode container has a film thickness of 100 to 200 μm.
It is covered with a series of extremely dense, smooth and uniformly thick corrosion-resistant coatings with a porosity of 5% or less and a surface roughness of 5 to 15 μm, so it exhibits excellent corrosion resistance against sulfur and sodium polysulfide. Not only that, but the thickness of the corrosion-resistant coating is even and there are no thin film parts, so some parts will not be preferentially corroded, demonstrating excellent durability and ensuring safe use over a long period of time. Moreover, the second invention has the advantage that the above-described first invention can be mass-produced at low cost with simple equipment in the atmosphere. Therefore, the present invention is a sodium-based material with excellent corrosion resistance that eliminates the conventional problems.
The anode container for sulfur batteries and its manufacturing method will greatly contribute to the development of industry.

【0013】[0013]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1の発明であるナトリウム−硫黄電池の実施
例を示す切欠正面図である。
FIG. 1 is a cutaway front view showing an embodiment of a sodium-sulfur battery according to the first invention.

【図2】第2の発明の実施状態の一例を示す要部の一部
切欠正面図である。
FIG. 2 is a partially cutaway front view of a main part showing an example of an implementation state of the second invention.

【図3】溶射材料の粒径と気孔率との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between particle size and porosity of a thermal spray material.

【符号の説明】[Explanation of symbols]

1  容器本体 2  耐蝕被膜 1 Container body 2 Corrosion-resistant coating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  陽極活物質を収納する有底筒状の金属
製陽極容器の内面に、膜厚が100〜200μm、気孔
率5%以下、面粗度5〜15μmのプラズマ溶射による
耐蝕被膜が形成されていることを特徴とするナトリウム
−硫黄電池用陽極容器。
Claim 1: A corrosion-resistant coating formed by plasma spraying with a film thickness of 100 to 200 μm, a porosity of 5% or less, and a surface roughness of 5 to 15 μm is applied to the inner surface of a bottomed cylindrical metal anode container that houses the positive electrode active material. An anode container for a sodium-sulfur battery, characterized in that:
【請求項2】  有底筒状の容器本体を回転させつつ該
容器本体の開口より内部にプラズマ溶射ガンを挿入して
軸方向に移動させながら大気下で容器本体の内面にプラ
ズマ溶射による耐蝕被膜を溶射形成することを特徴とす
るナトリウム−硫黄電池用陽極容器の製造法。
2. A corrosion-resistant coating is applied to the inner surface of the container body by plasma spraying in the atmosphere while rotating the bottomed cylindrical container body, inserting a plasma spray gun into the interior through the opening of the container body, and moving the gun in the axial direction. 1. A method for producing an anode container for a sodium-sulfur battery, comprising spraying the anode container.
JP3074164A 1991-03-12 1991-03-12 Anode container for sodium-sulfur battery and its manufacturing method Expired - Fee Related JP2520986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074164A JP2520986B2 (en) 1991-03-12 1991-03-12 Anode container for sodium-sulfur battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074164A JP2520986B2 (en) 1991-03-12 1991-03-12 Anode container for sodium-sulfur battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH04284371A true JPH04284371A (en) 1992-10-08
JP2520986B2 JP2520986B2 (en) 1996-07-31

Family

ID=13539243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074164A Expired - Fee Related JP2520986B2 (en) 1991-03-12 1991-03-12 Anode container for sodium-sulfur battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2520986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607787A (en) * 1993-05-04 1997-03-04 Programme 3 Patent Holdings High temperature storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170467A (en) * 1986-01-22 1987-07-27 Nippon Kokan Kk <Nkk> Method for coating inside and outside of pipe
JPH02142065A (en) * 1988-11-22 1990-05-31 Ngk Insulators Ltd Sodium-sulphur cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170467A (en) * 1986-01-22 1987-07-27 Nippon Kokan Kk <Nkk> Method for coating inside and outside of pipe
JPH02142065A (en) * 1988-11-22 1990-05-31 Ngk Insulators Ltd Sodium-sulphur cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607787A (en) * 1993-05-04 1997-03-04 Programme 3 Patent Holdings High temperature storage battery

Also Published As

Publication number Publication date
JP2520986B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US5716422A (en) Thermal spray deposited electrode component and method of manufacture
BRPI0617694A2 (en) method for forming an electrocatalytic surface on an electrode and its electrode
CN108832089A (en) A kind of molybdenum disulfide cladding nickle cobalt lithium manganate composite material and preparation method and application
GB1582845A (en) Electrochemical cells
JPH04284371A (en) Positive electrode container for sodium-sulfur battery and manufacture thereof
JP3172121B2 (en) Thermal spraying method for inner peripheral surface of hollow cylindrical tube
US3631835A (en) Magnesium bimetal and system for flame spraying metals on magnesium substrate
JPS5825076A (en) Airtight negative terminal inserting member and electrochemical generator using same membr
JPH04349343A (en) Container having sprayed coating inside for sodium-sulfur battery and spraying method to inside of container
JP2919163B2 (en) Anode container for sodium-sulfur battery
CN104947150B (en) A kind of preparation method of aluminium electroloysis cermet composite anode shell
JPH07105971A (en) Positive electrode vessel for sodium-sulfur battery and manufacture of vessel
CN108520962A (en) A kind of sodium-sulphur battery TiN plus plate current-collecting bodies and preparation method thereof
JP3205441B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
JP2854226B2 (en) Anode container for sodium-sulfur battery and method for producing the same
JPS61264659A (en) Sodium-sulfur battery cathode case and its manufacture
JP3133926B2 (en) Method for producing anode container for sodium-sulfur battery
JP3617628B2 (en) Anode container for sodium-sulfur battery
JP2815531B2 (en) Method for producing anode container for sodium-sulfur battery
CN114520390A (en) Processing technology of liquid metal battery anode current collector and liquid metal battery
JP3615163B2 (en) Anode container for sodium-sulfur battery
JP2969050B2 (en) Sodium-sulfur battery
JP2758756B2 (en) Anode container in sodium-sulfur battery
JPH0410178B2 (en)
RU2469U1 (en) CURRENT POSITION OF A POSITIVE ALKALINE ELECTRODE ELECTRODE OF A CYLINDRICAL FORM

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees