JPS61264659A - Sodium-sulfur battery cathode case and its manufacture - Google Patents

Sodium-sulfur battery cathode case and its manufacture

Info

Publication number
JPS61264659A
JPS61264659A JP60106188A JP10618885A JPS61264659A JP S61264659 A JPS61264659 A JP S61264659A JP 60106188 A JP60106188 A JP 60106188A JP 10618885 A JP10618885 A JP 10618885A JP S61264659 A JPS61264659 A JP S61264659A
Authority
JP
Japan
Prior art keywords
nozzle
plasma
cooling base
sprayed
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60106188A
Other languages
Japanese (ja)
Inventor
Hiroyasu Komata
小俣 裕保
Koichi Takeda
紘一 武田
Hideo Takato
高藤 英生
Seisaburo Abe
阿部 征三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60106188A priority Critical patent/JPS61264659A/en
Publication of JPS61264659A publication Critical patent/JPS61264659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/145Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance anti-corrosion characteristic by providing a particular alloy layer sprayed at a low pressure to the surface of basic material. CONSTITUTION:A layer consisting of Cr, Cr-Fe or TiN sprayed at a low pressure is formed on the surface of basis material. The plasma is generated by supplying Argon gas into the arc 27 form the operation gas supply device 17 and a voltage is also applied across a nozzle 8 and a cooling base material 25. Thereby, the plasma jet 29 is sprayed toward the surface of cooling base material from the nozzle 8. Under this condition, the power of a raw material of the jar is supplied to the nozzle 8 from the supply hole 9. Particles of powder of jar material sprayed into the nozzle 8 becomes fine melted drops by the heat of plasma and it is accumulated on the surface of cooling base material 25 and the accumulated drops are condensed and thereby a cylindrical mold 31 is formed at the surface of cooling base material. Since the cathode jar is formed by plasma spraying within a low pressure ambience, comparatively economical material having excellent anti-corrosion characteristic can be used.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はナトリウム−硫黄電池を構成する陽極容器お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an anode container constituting a sodium-sulfur battery and a method for manufacturing the same.

(従来の技術) ナトリウム−硫黄電池は陰極活物質に溶融ナトリウム、
陽極活物資に溶融硫黄および多硫化ナトリウムを、また
電解質としてナトリウムイオンを透過するセラミックス
またはガラスをそれぞれ使用している。ナトリウム−硫
黄電池は通常300〜350℃で作動・し、高いエネル
ギ密度をもっている。現在、高性能の二次電池として電
力負荷調整用あるいは電気自動車電源用に各国で開発が
進められているが、多硫化ナトリウムに対し十分な耐食
性を示す陽極容器を必要とすることが開発の大きなネッ
クとなっている。
(Prior technology) Sodium-sulfur batteries use molten sodium as the cathode active material.
Molten sulfur and sodium polysulfide are used as the anode active materials, and ceramics or glass that transmit sodium ions are used as the electrolyte. Sodium-sulfur batteries typically operate at 300-350°C and have high energy density. Currently, development is progressing in various countries as a high-performance secondary battery for use in power load adjustment or as a power source for electric vehicles, but a major development challenge lies in the need for an anode container that exhibits sufficient corrosion resistance against sodium polysulfide. It has become a bottleneck.

すなわち、多硫化ナトリウムは強い腐食作用をもち、ス
テンレス鋼などで作られた陽極容器を腐食して硫化物を
生じる。腐食が進むと、陽極活物質中の硫黄が硫化のた
めに消費され、陽極活物質として作用する硫黄の量が減
る。このため、電池容量が減少して電池の寿命が短くな
る。また、局部的な腐食が生じると陽極容器に穴があき
、陽極活物質が流出して電池の寿命を短くすることもあ
る。したがって、陽極容器は陽極活物質に対し優れた耐
食性を示さなければならない、また、十分な機械的強度
、加工性、さらに陽極集電時における良好な71!気伝
導性も必要である。このような要求にかなうものとして
、現在No、 Cr、 0r−Fe、クロマイジング鋼
またはTiNなどの材料が取り上げられている。
That is, sodium polysulfide has a strong corrosive effect and corrodes an anode container made of stainless steel or the like, producing sulfides. As corrosion progresses, sulfur in the anode active material is consumed due to sulfidation, reducing the amount of sulfur that can act as the anode active material. This reduces battery capacity and shortens battery life. Additionally, if localized corrosion occurs, holes may form in the anode container, causing the anode active material to leak out and shorten the life of the battery. Therefore, the anode container must exhibit excellent corrosion resistance to the anode active material, as well as sufficient mechanical strength, workability, and good 71! during anode current collection. Air conductivity is also required. Currently, materials such as No, Cr, 0r-Fe, chromized steel, or TiN are being used as materials that meet these requirements.

(発明が解決しようとする問題点) これら材料のうち、Noは全体的な耐食性は良好である
ものの腐食の形態が孔食になり易く、そのうえ高価であ
り、Cr−Feは耐食性を増すほど、すなわちCrを増
すほど加工が困難となる。クロマイジング鋼はクロムリ
ッチ層が200μ層止りであり、クロムリッチ層のクロ
ム濃度がたかだか40%以下であるため、耐食性がやや
劣る。 CrおよびTiNによる被覆は製造中被覆層に
ピンホールクラックを生じ易く、また酸化物などの粒子
を含むことが多いため、一様かつ十分な厚さの層が得に
くい。
(Problems to be Solved by the Invention) Among these materials, No has good overall corrosion resistance, but the form of corrosion tends to be pitting corrosion, and it is also expensive, while Cr-Fe has a higher corrosion resistance. That is, as the Cr content increases, processing becomes more difficult. Chromizing steel has a chromium-rich layer of no more than 200 μm, and the chromium concentration of the chromium-rich layer is at most 40% or less, so its corrosion resistance is somewhat inferior. Coatings made of Cr and TiN tend to cause pinhole cracks in the coating layer during manufacture, and often contain particles such as oxides, making it difficult to obtain a layer of uniform and sufficient thickness.

そこで、この発明はナトリウム−硫黄電池において多硫
化ナトリウムに対し耐食性を示すに十分な厚みのCr 
、 Cr−FeまたはTtN層をもった陽極容器を、ピ
ンホールなどの欠陥を生じることなく製造することがで
きる方法を提供しようとするものである。
Therefore, the present invention aims to develop a Cr material with sufficient thickness to exhibit corrosion resistance against sodium polysulfide in a sodium-sulfur battery.
, it is an object of the present invention to provide a method by which an anode container having a Cr-Fe or TtN layer can be manufactured without producing defects such as pinholes.

(問題点を解決するための手段) この発明のナトリウム一硫黄電池陽極容器は低圧溶射さ
れたOr、 Cr−FeまたはTiNよりなる層を基体
表面に有するものである。
(Means for Solving the Problems) The sodium monosulfur battery anode container of the present invention has a low-pressure sprayed layer of Or, Cr--Fe or TiN on the surface of the base.

また、この発明のナトリウム一硫黄電池陽極容器の製造
方法は、Cr 、 0r−FeまたはTiNよりなる陽
極容器原料を、低圧雰囲気内で基体表面にプラズマ溶射
する。
Further, in the method for manufacturing a sodium monosulfur battery anode container of the present invention, an anode container raw material made of Cr, Or-Fe, or TiN is plasma sprayed onto the surface of a substrate in a low-pressure atmosphere.

陽極容器原料がCr−Feである場合、耐食性の点から
Crの含有量は80〜90Xであることが望ましい。
When the anode container raw material is Cr-Fe, the Cr content is preferably 80 to 90X from the viewpoint of corrosion resistance.

低圧雰囲気を保持するため、プラズマ溶射は密閉容器内
で行われ、密閉容器内の圧力は100 Torr(1,
333X104Pa)以下であることが望ましい、また
、密閉容器内をアルゴンなどの不活性ガスで満たしても
よい。
In order to maintain a low-pressure atmosphere, plasma spraying is performed in a closed container, and the pressure inside the container is 100 Torr (1,
333 x 104 Pa) or less, and the inside of the closed container may be filled with an inert gas such as argon.

基体は5O5304などの一般ステンレス鋼でよく、特
に限定されないがそれにより作られた箱形あるいは円筒
形の容器よりなっている。これら容器内面に陽極容器原
料を溶射する。また、銅などの易溶解金属で作った円筒
形の基体外周面に原料をプラズマ溶射する。そして、基
体を酸により腐食溶解して除去し1円筒形の陽極容器を
得るするようにしてもよい。
The substrate may be a box-shaped or cylindrical container made of, but not limited to, common stainless steel such as 5O5304. Anode container raw materials are thermally sprayed onto the inner surfaces of these containers. In addition, the raw material is plasma sprayed onto the outer peripheral surface of a cylindrical base made of easily meltable metal such as copper. Then, the substrate may be removed by corrosion and dissolution with acid to obtain a cylindrical anode container.

このようにして形成されるCr−Feなどの層あるいは
容器壁の厚みは、たとえば500〜1000μ層である
The thickness of the Cr-Fe layer or the container wall formed in this way is, for example, 500 to 1000 μm.

(作用) この発明では低圧雰囲気内で陽極容器原料をプラズマ溶
射するので、原料の溶融粒子は大気により酸化されるこ
となく基体表面に積層し、WI固する。また、原料の溶
融粒子は高速ジェットにより加速されるので、基体表面
または凝固面に高速で衝突する。したがって、ピンホー
ルや酸化膜などを生じることなく、極めて緻密かつ厚い
積層が基体表面に形成される。
(Function) In this invention, since the anode container raw material is plasma sprayed in a low-pressure atmosphere, the molten particles of the raw material are not oxidized by the atmosphere and are deposited on the surface of the substrate and hardened by WI. Further, since the molten particles of the raw material are accelerated by the high-speed jet, they collide with the substrate surface or solidification surface at high speed. Therefore, an extremely dense and thick laminated layer is formed on the substrate surface without producing pinholes or oxide films.

(実施例) 第1図はこの発明により円筒状陽極容器を製造するプラ
ズマ溶射装置の概略を模式的に示す図面である。
(Example) FIG. 1 is a drawing schematically showing the outline of a plasma spraying apparatus for manufacturing a cylindrical anode container according to the present invention.

第1図に示すようにプラズマ溶射装置は雰囲気室lを備
えており、雰囲気室lは真空ポンプ2により低圧に保持
される。
As shown in FIG. 1, the plasma spraying apparatus includes an atmosphere chamber 1, which is maintained at a low pressure by a vacuum pump 2. As shown in FIG.

雰囲気室l内にはプラズマガン5が配置されており、プ
ラズマガン5は駆動装置11により前後左右に移動し、
また水平軸周りに揺動する。プラズマガン5はタングス
テン電極6とこれの直下に配設されたノズル8とからな
っている。電極6およびノズル8はそれぞれプラズマ主
電源13の負極および陽極に接続されている。プラズマ
ガン5のノズル8には動作ガス供給装置!7が接続され
ている。また、プラズマガン5のノズル8には原料供給
孔9が設けられており、これに原料供給装置19が接続
されている。また、雰囲気室l内には工作物保持装置2
1が配置されており、工作物保持装置21は回転装置2
3によって水平軸周りに回転される。工作物保持袋fi
21には円筒状の冷却基体25が取り付けられる。冷却
基体25は基体冷却装置26からの循環冷却水により冷
却される。
A plasma gun 5 is arranged in the atmosphere chamber l, and the plasma gun 5 is moved back and forth and left and right by a drive device 11.
It also swings around the horizontal axis. The plasma gun 5 consists of a tungsten electrode 6 and a nozzle 8 disposed directly below the tungsten electrode 6. Electrode 6 and nozzle 8 are connected to a negative electrode and an anode of plasma main power source 13, respectively. The nozzle 8 of the plasma gun 5 has an operating gas supply device! 7 is connected. Further, a raw material supply hole 9 is provided in the nozzle 8 of the plasma gun 5, and a raw material supply device 19 is connected to this. In addition, a workpiece holding device 2 is provided in the atmosphere chamber l.
1 is arranged, and the workpiece holding device 21 is connected to the rotating device 2.
3 around the horizontal axis. Workpiece holding bag fi
A cylindrical cooling base 25 is attached to 21 . The cooling substrate 25 is cooled by circulating cooling water from a substrate cooling device 26 .

L記のように構成された装置において、円筒状の銅製冷
却基体25を冷却基体保持装置21に取り付け、工作物
回転装置23により低速で回転する。真空ポンプ2によ
り雰囲気室l内を100 Torr(1,333X10
’Pa)以下に減圧し、電極6とノズル8との間に所要
の電圧を印加してアーク27を発生させる。
In the apparatus configured as shown in L, a cylindrical copper cooling substrate 25 is attached to a cooling substrate holding device 21 and rotated at a low speed by a workpiece rotation device 23. The inside of the atmosphere chamber 1 is heated to 100 Torr (1,333×10
'Pa) or less, and a required voltage is applied between the electrode 6 and the nozzle 8 to generate an arc 27.

アーク27中に動作ガス供給装置17からアルゴンガス
を供給してプラズマを発生させる。また、ノズル8と冷
却基体25との間に電圧を加えるとプラズマジェット2
9がノズル8から冷却基体表面に向かって噴射される。
Argon gas is supplied from the operating gas supply device 17 into the arc 27 to generate plasma. Furthermore, when a voltage is applied between the nozzle 8 and the cooling base 25, the plasma jet 2
9 is injected from the nozzle 8 toward the surface of the cooled substrate.

このような状態でノズル8に原料供給孔9から容器原料
の粉末を供給する。
In this state, the container raw material powder is supplied to the nozzle 8 from the raw material supply hole 9.

ノズル8内に噴出した容器原料の粉末の粒子はプラズマ
の熱により微小な溶滴となって冷却基体25の表面に積
層する。積層した溶滴は凝固し、冷却基体表面に円筒状
の成形体31が形成される。
The powder particles of the container raw material ejected into the nozzle 8 turn into fine droplets due to the heat of the plasma and are deposited on the surface of the cooling base 25 . The laminated droplets solidify, and a cylindrical molded body 31 is formed on the surface of the cooled base.

所要の厚みの成形体31が得られると常温近くまで冷却
して雰囲気室1から取り出す、そして、冷却基体25と
一体となった成形体31を硝酸に浸してこれらの銅を腐
食溶解して除去する。この結果、冷却基体25が消失し
て円筒状陽極容器が得られる。
When the molded body 31 of the required thickness is obtained, it is cooled to near room temperature and taken out from the atmosphere chamber 1, and the molded body 31 integrated with the cooling base 25 is immersed in nitric acid to corrode and dissolve the copper and remove it. do. As a result, the cooling base 25 disappears and a cylindrical anode container is obtained.

ここで、製品例について説明する。Here, product examples will be explained.

材料   80% Cr−Fe 粒径 325メツシユ (44μ履以下)供給量100
 g/win 出力   80 kw 動作ガス Ar−He混合ガス 雰囲気圧 20 Torr プラズマガン移動速度 150+u+/s製品例工 製品   箱形陽極容器 冷却基体 5OS304箱形容器 厚さ11の内張り形成 製品例■ 製品   円筒形陽極容器 40層■φX400+wmQX1mst冷却基体 水冷
却銅管  40鳳脂φX40hmi100 rp■ 溶射後、硝酸により腐食溶解 以上のようにして製造した陽極容器は、いずれにもピン
ホールなどの欠陥はなかった。
Material 80% Cr-Fe Particle size 325 mesh (44μ or less) Supply amount 100
g/win Output 80 kW Operating gas Ar-He mixed gas Atmospheric pressure 20 Torr Plasma gun movement speed 150+u+/s Product example Product Box-shaped anode container cooling base 5OS304 Box-shaped container thickness 11 lining product example Product Cylindrical Anode container 40 layers ■φX400+wmQX1mst cooling base Water cooling copper tube 40 porcelain φX40hmi100 rp■ After thermal spraying, the anode containers manufactured by corrosion dissolution with nitric acid did not have any defects such as pinholes.

(発明の効果) この発明では、陽極容器を低圧雰囲気内でプラズマ溶射
によって製造し、機械加工あるいは溶接にはよらない、
したがって、加工困難であっても耐食性に優れ、比較的
安価な材料を用いることができる。また、製造中に容器
にピンホールなどの欠陥は発生しない、これより、耐食
性に優れたナトリウム一硫黄電池陽極容器を提供するこ
とができる。
(Effect of the invention) In this invention, the anode container is manufactured by plasma spraying in a low pressure atmosphere, and does not require machining or welding.
Therefore, even if it is difficult to process, it is possible to use a material that has excellent corrosion resistance and is relatively inexpensive. In addition, defects such as pinholes do not occur in the container during manufacturing, making it possible to provide a sodium-sulfur battery anode container with excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明により円筒形陽極容器を製造するプラ
ズマ溶射装置の概略を模式的に示す図面である。 1・・・雰囲気室、2・・・真空ポンプ、5・・・プラ
ズマガン、6・・・電極、8・・・ノズル、 11・・
・プラズマガン、13・・・プラズマ主電源、17・・
・動作ガス供給装置、19・・・原料供給装置、21・
・・工作物保持装置。 23・・・工作物回転装置、25・・・冷却基体、2B
・・・基体冷却装置、27・・・アーク、29・・・プ
ラズマジェット、31・・・陽極容器。
FIG. 1 is a drawing schematically showing the outline of a plasma spraying apparatus for manufacturing a cylindrical anode container according to the present invention. 1... Atmosphere chamber, 2... Vacuum pump, 5... Plasma gun, 6... Electrode, 8... Nozzle, 11...
・Plasma gun, 13...Plasma main power supply, 17...
- Operating gas supply device, 19... Raw material supply device, 21.
...Workpiece holding device. 23... Workpiece rotation device, 25... Cooling base, 2B
... Substrate cooling device, 27 ... Arc, 29 ... Plasma jet, 31 ... Anode container.

Claims (2)

【特許請求の範囲】[Claims] (1)低圧溶射されたCr、Cr−FeまたはTiNよ
りなる層を基体表面に有することを特徴とするナトリウ
ム一硫黄電池陽極容器。
(1) A sodium monosulfur battery anode container characterized by having a low-pressure sprayed layer of Cr, Cr-Fe, or TiN on the surface of the base.
(2)Cr、Cr−FeまたはTiNよりなる陽極容器
原料を、低圧雰囲気内で基体表面にプラズマ溶射するこ
とを特徴とするナトリウム−硫黄電池陽極容器の製造方
法。
(2) A method for producing an anode container for a sodium-sulfur battery, which comprises plasma spraying an anode container raw material made of Cr, Cr-Fe, or TiN onto the surface of a substrate in a low-pressure atmosphere.
JP60106188A 1985-05-20 1985-05-20 Sodium-sulfur battery cathode case and its manufacture Pending JPS61264659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106188A JPS61264659A (en) 1985-05-20 1985-05-20 Sodium-sulfur battery cathode case and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106188A JPS61264659A (en) 1985-05-20 1985-05-20 Sodium-sulfur battery cathode case and its manufacture

Publications (1)

Publication Number Publication Date
JPS61264659A true JPS61264659A (en) 1986-11-22

Family

ID=14427221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106188A Pending JPS61264659A (en) 1985-05-20 1985-05-20 Sodium-sulfur battery cathode case and its manufacture

Country Status (1)

Country Link
JP (1) JPS61264659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163077A (en) * 1992-11-16 1994-06-10 Ngk Insulators Ltd Forming method of anticorrosive film in positive electrode vessel of sodium-sulfur battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152379A (en) * 1982-03-04 1983-09-09 Nippon Steel Corp High-temperature battery
JPS59151750A (en) * 1983-02-17 1984-08-30 Toshiba Battery Co Ltd Battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152379A (en) * 1982-03-04 1983-09-09 Nippon Steel Corp High-temperature battery
JPS59151750A (en) * 1983-02-17 1984-08-30 Toshiba Battery Co Ltd Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163077A (en) * 1992-11-16 1994-06-10 Ngk Insulators Ltd Forming method of anticorrosive film in positive electrode vessel of sodium-sulfur battery

Similar Documents

Publication Publication Date Title
US10260160B2 (en) High purity metallic top coat for semiconductor manufacturing components
TWI403598B (en) Coating process for manufacture or reprocessing of sputter targets or x-ray anodes
US20070134427A1 (en) Methods and apparatus for deposition of thin films
RU2210478C2 (en) Method for making hollow metallic objects
TW201831053A (en) Plasma spraying device and method for manufacturing battery electrode
CN106834974A (en) iron-based alloy coating and method for forming the same
WO2023115929A1 (en) High-entropy metal oxide coating, preparation method therefor and use thereof
US20020022135A1 (en) Process for producing a coating on a refractory structural member
JPS61264659A (en) Sodium-sulfur battery cathode case and its manufacture
CN114250461B (en) Rotary rare earth target material and preparation method and application thereof
CN110318050A (en) A kind of aluminium base/anode oxide film composite coating and its preparation method and application
JPH0757739A (en) Manufacture of fuel electrode for high temperature type fuel cell
CN105297010A (en) Method for preparing metal glass coating by utilizing electrical sparkle deposition process
JP3205441B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
JPH06220618A (en) Vacuum film forming device and surface treatment of its component
JPS60194086A (en) Clad vessel
JP3155124B2 (en) Material for corrosion-resistant coating in anode container of sodium-sulfur battery and method of manufacturing the anode container
JP3133926B2 (en) Method for producing anode container for sodium-sulfur battery
JP2520986B2 (en) Anode container for sodium-sulfur battery and its manufacturing method
JP2011098367A (en) Flux for build-up welding and build-up welding method
JPH0722067A (en) Cathode container for sodium-sulfur battery and manufacture thereof
JP2854226B2 (en) Anode container for sodium-sulfur battery and method for producing the same
JP4234936B2 (en) Sodium-sulfur battery anode container, method for forming spray coating on inner surface of anode container, and method for determining quality of spray coating
JP3205438B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
JP3372477B2 (en) Method for manufacturing outer container of sodium-sulfur battery, outer container of sodium-sulfur battery, and sodium-sulfur battery