JP3205441B2 - Anode container for sodium-sulfur battery and method for manufacturing the same - Google Patents

Anode container for sodium-sulfur battery and method for manufacturing the same

Info

Publication number
JP3205441B2
JP3205441B2 JP21434893A JP21434893A JP3205441B2 JP 3205441 B2 JP3205441 B2 JP 3205441B2 JP 21434893 A JP21434893 A JP 21434893A JP 21434893 A JP21434893 A JP 21434893A JP 3205441 B2 JP3205441 B2 JP 3205441B2
Authority
JP
Japan
Prior art keywords
corrosion
resistant coating
sodium
anode container
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21434893A
Other languages
Japanese (ja)
Other versions
JPH0765859A (en
Inventor
吉彦 蔵島
孝志 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP21434893A priority Critical patent/JP3205441B2/en
Publication of JPH0765859A publication Critical patent/JPH0765859A/en
Application granted granted Critical
Publication of JP3205441B2 publication Critical patent/JP3205441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 この発明は、電力貯蔵用などと
して利用されるナトリウム−硫黄電池の陽極容器及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode container of a sodium-sulfur battery used for power storage and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】 従来、ナトリウム−硫黄電池の陽極容
器においては、多硫化ナトリウムに対する耐食性を高め
るために、容器本体の内周面に耐食皮膜を形成してい
る。この種の従来構成としては、例えば特開昭62−2
76767号公報の従来技術として示されているよう
に、クロム−ニッケル−コバルト−モリブデン系の合金
よりなる耐食皮膜を形成したものが知られている。
2. Description of the Related Art Conventionally, in an anode container of a sodium-sulfur battery, a corrosion-resistant film is formed on an inner peripheral surface of a container body in order to enhance corrosion resistance to sodium polysulfide. For example, Japanese Patent Application Laid-Open No. Sho 62-2
As shown in the prior art of JP-A-76767, there has been known a corrosion-resistant film formed of a chromium-nickel-cobalt-molybdenum alloy.

【0003】[0003]

【発明が解決しようとする課題】 ところが、この従来
技術においては、耐食皮膜の合金組成がクロム−ニッケ
ル−コバルト−モリブデンからなっており、このような
成分を組合せた合金組成では充放電サイクルに伴って電
池容量が急激に低下するという問題があった。
However, in this prior art, the alloy composition of the corrosion-resistant coating is made of chromium-nickel-cobalt-molybdenum. Thus, there is a problem that the battery capacity is rapidly reduced.

【0004】この発明は、このような従来の技術に存在
する問題点に着目してなされたものである。その目的と
するところは、充放電サイクルに伴って電池容量が急激
に低下するおそれを防止することができるナトリウム−
硫黄電池の陽極容器及びその製造方法を提供することに
ある。
The present invention has been made by paying attention to such problems existing in the conventional technology. The purpose is to reduce the possibility of a sudden decrease in battery capacity with a charge-discharge cycle.
An object of the present invention is to provide an anode container for a sulfur battery and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】 上記の目的を達成する
ために、請求項1に記載のナトリウムー硫黄電池の陽極
容器の発明では、金属材料よりなる筒状の容器本体の内
周面に耐食皮膜を形成してなるナトリウムー硫黄電池の
陽極容器において、前記耐食皮膜はクロム−ニッケルを
ベースにしてモリブデンを含む合金よりなることを特徴
とするものである。
In order to achieve the above object, in the invention of the anode container for a sodium-sulfur battery according to the first aspect, a corrosion-resistant coating is formed on an inner peripheral surface of a cylindrical container body made of a metal material. Wherein the corrosion-resistant coating is made of an alloy containing molybdenum based on chromium-nickel.

【0006】また、請求項2に記載の発明では、請求項
1に記載の発明において、前記耐食皮膜中のクロムの含
有量が60〜95重量%であることを特徴とするもので
ある。
According to a second aspect of the present invention, in the first aspect of the invention, the chromium content in the corrosion-resistant coating is 60 to 95% by weight.

【0007】さらに、請求項3に記載の発明では、請求
項1に記載の発明において、前記耐食皮膜は他の元素と
してケイ素、マンガン、鉄、リン、硫黄、炭素、酸素の
内の少なくとも1つを含む合金よりなることを特徴とす
るものである。
According to a third aspect of the present invention, in the first aspect of the invention, the corrosion-resistant coating is at least one of silicon, manganese, iron, phosphorus, sulfur, carbon, and oxygen as another element. Characterized by comprising an alloy containing

【0008】また、請求項4に記載の発明では、請求項
1に記載の発明において、前記耐食皮膜中に酸素を含
み、その酸素の含有量を5重量%以下に設定したことを
特徴とするものである。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the corrosion-resistant coating contains oxygen, and the oxygen content is set to 5% by weight or less. Things.

【0009】加えて、請求項5に記載のナトリウム−硫
黄電池の陽極容器の製造方法の発明では、金属材料より
なる筒状の容器本体の内周面に耐食皮膜を形成するナト
リウム−硫黄電池の陽極容器の製造方法において、クロ
ム−ニッケルをベースにしてモリブデンを含む合金粉末
を容器本体の内周面にプラズマ溶射して、耐食皮膜を形
成することを特徴とするものである。
In addition, according to the invention of a method for manufacturing an anode container for a sodium-sulfur battery according to claim 5, a sodium-sulfur battery having a corrosion-resistant film formed on the inner peripheral surface of a cylindrical container body made of a metal material. In a method for manufacturing an anode container, an alloy powder containing chromium-nickel and containing molybdenum is plasma-sprayed on the inner peripheral surface of the container body to form a corrosion-resistant coating.

【0010】また、請求項6に記載の発明では、請求項
5に記載の発明において、前記プラズマ溶射は、一次ガ
スとしてアルゴンガスを使用し、二次ガスとして水素ガ
スを使用することを特徴とするものである。
According to a sixth aspect of the present invention, in the fifth aspect of the invention, the plasma spraying uses an argon gas as a primary gas and a hydrogen gas as a secondary gas. Is what you do.

【0011】[0011]

【作用】 陽極容器の内周面に設けられる耐食皮膜は、
クロム−ニッケルをベースにしてモリブデンを含む合金
により形成されている。そのため、このような成分を組
合せた合金よりなる耐食皮膜は各金属成分の相乗作用に
より、電池の充放電サイクルに伴って電池容量が急激に
低下するおそれを防止することができる。
[Action] The corrosion-resistant coating provided on the inner peripheral surface of the anode container is
It is formed of an alloy containing molybdenum based on chromium-nickel. Therefore, the corrosion-resistant coating made of an alloy in which such components are combined can prevent the possibility that the battery capacity is rapidly reduced with the charge / discharge cycle of the battery due to the synergistic action of each metal component.

【0012】しかも、耐食皮膜中のクロムの含有量を6
0〜95重量%に設定したり、耐食皮膜中に他の元素と
してケイ素、マンガン、鉄、リン、硫黄、炭素、酸素の
内の少なくとも1つを含む合金より構成したりすること
ができる。加えて、耐食皮膜中に酸素を含み、その酸素
の含有量を5重量%以下に設定することができる。これ
らの場合、ナトリウム−硫黄電池の電池容量の低下をよ
り効果的に防止することができる。
Further, the content of chromium in the corrosion resistant film is 6
It can be set to 0 to 95% by weight or can be composed of an alloy containing at least one of silicon, manganese, iron, phosphorus, sulfur, carbon, and oxygen as other elements in the corrosion resistant film. In addition, the corrosion resistant film contains oxygen, and the content of oxygen can be set to 5% by weight or less. In these cases, a decrease in the battery capacity of the sodium-sulfur battery can be more effectively prevented.

【0013】また、この発明の陽極容器の製造方法によ
れば、前記のような合金粉末が容器本体の内周面にプラ
ズマ溶射して耐食皮膜が形成される。さらに、プラズマ
溶射の際に一次ガスとしてアルゴンガスを使用し、二次
ガスとして水素ガスを使用する。そのため、耐食皮膜用
材料を用いて耐食皮膜を形成する際に、その耐食皮膜中
に酸素が取り込まれるおそれを防止することができる。
According to the anode container manufacturing method of the present invention, the above-mentioned alloy powder is plasma-sprayed on the inner peripheral surface of the container body to form a corrosion-resistant coating. Further, argon gas is used as a primary gas and hydrogen gas is used as a secondary gas during plasma spraying. Therefore, when forming a corrosion-resistant film using the material for a corrosion-resistant film, it is possible to prevent the possibility that oxygen is taken into the corrosion-resistant film.

【0014】[0014]

【実施例】 以下、この発明を具体化したナトリウム−
硫黄電池の陽極容器及びその製造方法の一実施例を、図
面に基づいて詳細に説明する。さて、この実施例の製造
方法においては、図1に示すように、溶射ガン1を使用
して、アルミニウムまたはアルミニウム合金等の非鉄金
属材料よりなる円筒状の容器本体2の内周面に、大気中
または不活性ガス中で耐食皮膜用材料3をプラズマ溶射
して、耐食皮膜4を形成する。この耐食皮膜用材料3
は、クロム−ニッケルをベースにしてモリブデンを含
み、他の元素としてケイ素、マンガン、鉄、リン、硫
黄、炭素、酸素の内の少なくとも1つを含む合金によ
り、粉末状に形成されている。そして、この耐食皮膜用
材料3中のクロムの含有量は60〜95重量%に設定さ
れ、モリブデンの含有量は1〜20重量%に設定されて
いる。
Hereinafter, sodium-embodiment embodying the present invention will be described.
An embodiment of an anode container of a sulfur battery and a method of manufacturing the same will be described in detail with reference to the drawings. In the manufacturing method according to this embodiment, as shown in FIG. 1, an air spray gun 1 is used to apply air to the inner peripheral surface of a cylindrical container body 2 made of a non-ferrous metal material such as aluminum or an aluminum alloy. The corrosion-resistant coating material 3 is plasma-sprayed inside or in an inert gas to form a corrosion-resistant coating 4. This corrosion resistant coating material 3
Is formed in a powder form by an alloy containing molybdenum based on chromium-nickel and containing at least one of silicon, manganese, iron, phosphorus, sulfur, carbon and oxygen as other elements. The content of chromium in the corrosion-resistant coating material 3 is set to 60 to 95% by weight, and the content of molybdenum is set to 1 to 20% by weight.

【0015】また、前記耐食皮膜用材料3は、予め不活
性ガスまたは真空中で所定の粒径となるように粉砕され
る。それにより、この耐食皮膜用材料3の粉砕時に、粉
末中に酸素が取り込まれるのが防止され、粉末中の酸素
含有量は5重量%以下となるように抑えて設定される。
そして、この粉末の粒径は、5〜100μmの範囲内で
選択され、望ましくは10〜45μmの範囲内で設定さ
れる。
The corrosion-resistant coating material 3 is pulverized in an inert gas or vacuum in advance to have a predetermined particle size. Thereby, at the time of pulverizing the corrosion-resistant coating material 3, oxygen is prevented from being taken into the powder, and the oxygen content in the powder is set to be suppressed to 5% by weight or less.
The particle size of the powder is selected within the range of 5 to 100 μm, and is desirably set within the range of 10 to 45 μm.

【0016】さらに、前記容器本体2としては、長さL
1が300〜600mm、外径L2が40〜150m
m、厚さL3が0.5〜5.0mmのものまで適用可能
であり、内周面の粗度がRa:5〜20μmとなるよう
ブラスト処理される。そして、この容器本体2が80〜
400℃の温度で予熱されるとともに、100〜600
rpmの速度で回転されながら、溶射距離L4が10〜
40mmの状態において、溶射ガン1が3〜30mm/
秒の速度で往復または一方向に移動される。これによ
り、容器本体2の内周面に、厚さL5が20〜200μ
mの耐食皮膜4が形成される。
Further, the container body 2 has a length L
1 is 300 to 600 mm, outer diameter L2 is 40 to 150 m
m and a thickness L3 of 0.5 to 5.0 mm can be applied, and blast processing is performed so that the roughness of the inner peripheral surface is Ra: 5 to 20 μm. And this container body 2 is 80 ~
Preheated at a temperature of 400 ° C.
While rotating at a speed of rpm, the spray distance L4 is 10
In a state of 40 mm, the spraying gun 1 is 3 to 30 mm /
It is reciprocated or moved in one direction at a speed of seconds. Thereby, the thickness L5 is 20 to 200 μm on the inner peripheral surface of the container body 2.
m of the corrosion-resistant film 4 is formed.

【0017】一方、前記のプラズマ溶射には、一次ガス
としてアルゴンガスが使用され、二次ガスとして水素ガ
スが添加使用される。そして、このガスの供給量は、ア
ルゴンガスが20〜60リットル/分、水素ガスが0.
2〜5.0リットル/分の範囲内で設定され、電流は1
80〜280Aの範囲内で設定される。また、粉末状の
耐食皮膜用材料3を供給するためのキャリアガスとして
はアルゴンガスが使用され、その供給量は8〜30リッ
トル/分の範囲内で設定される。
On the other hand, in the plasma spraying, an argon gas is used as a primary gas, and a hydrogen gas is added and used as a secondary gas. The supply amount of this gas is 20 to 60 liters / minute for the argon gas and 0.1 g for the hydrogen gas.
It is set within the range of 2 to 5.0 l / min, and the current is 1
It is set within the range of 80 to 280A. Argon gas is used as a carrier gas for supplying the powdery corrosion-resistant coating material 3, and the supply amount is set within a range of 8 to 30 liters / minute.

【0018】ちなみに、表1に示す実施例及び比較例で
は、容器本体2として、長さL1が430mm、外径L
2が50mm、厚さL3が1.2mm、内面粗度がR
a:5〜7μmのものが使用されている。また、予熱温
度が250℃、回転速度が280rpm、溶射距離L4
が17.0mm、移動速度が15mm/秒に設定され、
厚さL5が40μmの耐食皮膜4が形成されている。さ
らに、プラズマ溶射時におけるアルゴンガスの供給量が
32リットル/分、水素ガスの供給量が1.5リットル
/分、電流が230A、キャリアガスの供給量が12リ
ットル/分に設定されている。
In the examples and comparative examples shown in Table 1, the container body 2 has a length L1 of 430 mm and an outer diameter L.
2 is 50 mm, thickness L3 is 1.2 mm, and inner surface roughness is R
a: 5 to 7 μm is used. The preheating temperature is 250 ° C., the rotation speed is 280 rpm, and the spraying distance L4
Is set to 17.0 mm, the moving speed is set to 15 mm / sec,
The corrosion resistant film 4 having a thickness L5 of 40 μm is formed. Further, the supply rate of argon gas during plasma spraying is set at 32 liters / minute, the supply rate of hydrogen gas is set at 1.5 liters / minute, the current is set at 230 A, and the supply rate of carrier gas is set at 12 liters / minute.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】耐食皮膜用材料3の合金組成を変更した実
施例1〜11について、耐食皮膜用材料3中の酸素含有
量を種々変化させて、耐食皮膜4中の酸素含有量を調べ
たところ、表1に示すような結果を得ることができた。
このように、酸素含有量が5重量%以下に設定されたク
ロム−ニッケルをベースとし、モリブデンを含有した合
金よりなる耐食皮膜用材料3を使用した場合(実施例1
〜3)、その耐食皮膜4の酸素含有量も5重量%以下に
抑えることができる。
In Examples 1 to 11 in which the alloy composition of the corrosion-resistant coating material 3 was changed, the oxygen content in the corrosion-resistant coating 4 was examined by changing the oxygen content in the corrosion-resistant coating material 3 variously. The results as shown in Table 1 were obtained.
As described above, when the corrosion-resistant coating material 3 made of an alloy containing molybdenum based on chromium-nickel whose oxygen content is set to 5% by weight or less is used (Example 1).
3), the oxygen content of the corrosion-resistant coating 4 can be suppressed to 5% by weight or less.

【0022】そして、前記実施例1〜11と、従来例
(クロム−ニッケル製、SUS304ステンレス鋼製、
ニッケル製)とについて、充放電サイクルに対する電池
容量の変化を実測したところ、図2に示すような結果が
得られた。この実測結果から明らかなように、クロム−
ニッケルをベースとしてモリブデンを含む合金を用いた
場合には、従来例に比べて電池容量の低下は極めて少な
いことがわかった。
Examples 1 to 11 and conventional examples (chromium-nickel, SUS304 stainless steel,
When the change in battery capacity with respect to the charge / discharge cycle was actually measured, the results shown in FIG. 2 were obtained. As is clear from the measurement results,
It was found that when an alloy containing molybdenum based on nickel was used, the decrease in battery capacity was extremely small as compared with the conventional example.

【0023】さらに、クロム−ニッケルをベースとして
モリブデンを含み、ケイ素やマンガン等の他の元素を添
加した合金よりなる耐食皮膜用材料3を使用し、かつそ
の耐食皮膜用材料3及び耐食皮膜4中の酸素含有量を5
重量%以下に設定した実施例1〜3によれば、従来例に
比較し、充放電サイクルの初期において電池容量が急激
に低下するのを最も効果的に防止できることが判った。
Further, a material 3 for corrosion-resistant coating made of an alloy containing chromium-nickel and containing molybdenum and added with other elements such as silicon and manganese is used. Oxygen content of 5
It was found that according to Examples 1 to 3 in which the content was set to be equal to or less than the weight%, it was possible to most effectively prevent the battery capacity from rapidly decreasing at the beginning of the charge / discharge cycle, as compared with the conventional example.

【0024】また、耐食皮膜用材料3中のケイ素の含有
量に対する耐食皮膜4内の気孔率の変化を実測したとこ
ろ、図3に示すような結果が得られた。この実測結果か
ら明らかなように、耐食皮膜用材料3中のケイ素の含有
量が1.5重量%付近を越えると、耐食皮膜4中の未溶
解粒子が増加して、気孔率が急増することが分かった。
そして、この耐食皮膜材料3中のケイ素の含有量を1.
5重量%以下に設定することにより、耐食皮膜4中の気
孔率を7%以下に抑えて設定することができた。
Further, when the change of the porosity in the corrosion-resistant coating 4 with respect to the content of silicon in the corrosion-resistant coating material 3 was actually measured, the result shown in FIG. 3 was obtained. As is clear from the measurement results, when the content of silicon in the corrosion-resistant coating material 3 exceeds about 1.5% by weight, undissolved particles in the corrosion-resistant coating 4 increase and the porosity sharply increases. I understood.
Then, the content of silicon in the corrosion-resistant coating material 3 was set to 1.
By setting the content to 5% by weight or less, the porosity in the corrosion resistant film 4 could be set to 7% or less.

【0025】さらに、耐食皮膜用材料3中のケイ素の含
有量に対する耐食皮膜4のクラック発生数の変化を実測
したところ、図4に示すような結果が得られた。これは
合金組成の異なった材料3により耐食皮膜4を形成して
なる試験片に荷重をかけて曲げ試験を行い、この試験片
の耐食皮膜4に発生したクラックの数をX線で観察して
プロットした。この実測結果から明らかなように、耐食
皮膜用材料3中のケイ素の含有量が1.5重量%付近を
越えると、耐食皮膜4のクラック発生数が急増すること
が分かった。
Further, when the change in the number of cracks generated in the corrosion-resistant coating 4 with respect to the silicon content in the corrosion-resistant coating material 3 was actually measured, the results shown in FIG. 4 were obtained. In this test, a test piece formed by forming a corrosion-resistant coating 4 from materials 3 having different alloy compositions is subjected to a bending test by applying a load, and the number of cracks generated in the corrosion-resistant coating 4 of this test piece is observed by X-ray. Plotted. As is clear from the actual measurement results, it was found that when the silicon content in the corrosion-resistant coating material 3 exceeded about 1.5% by weight, the number of cracks generated in the corrosion-resistant coating 4 rapidly increased.

【0026】しかも、耐食皮膜用材料3中の酸素含有量
に対する溶射効率の変化を実測したところ、図5に示す
ような結果が得られた。この実測結果から明らかなよう
に、耐食皮膜用材料3中の酸素含有量が5重量%を越え
ると、溶射効率が急激に低下することが分かった。これ
は耐食皮膜用材料3中の酸素含有量が多くなると、粉末
の表面が酸化されて、ぬれ性が悪くなるとともに融点が
高くなるためである。
In addition, when the change in the thermal spraying efficiency with respect to the oxygen content in the corrosion-resistant coating material 3 was actually measured, the results shown in FIG. 5 were obtained. As is clear from the actual measurement results, it was found that when the oxygen content in the corrosion-resistant coating material 3 exceeded 5% by weight, the thermal spraying efficiency was sharply reduced. This is because when the oxygen content in the corrosion-resistant coating material 3 increases, the surface of the powder is oxidized, so that the wettability deteriorates and the melting point increases.

【0027】また、耐食皮膜用材料3中の酸素含有量に
対する耐食皮膜4内の酸化皮膜量の変化を実測したとこ
ろ、図6に示すような結果が得られた。この実測結果か
ら明らかなように、耐食皮膜用材料3中の酸素含有量が
5重量%を越えると、耐食皮膜4内の酸化皮膜量が急増
することが分かった。
When the change in the amount of the oxide film in the corrosion-resistant coating 4 with respect to the oxygen content in the corrosion-resistant coating material 3 was actually measured, the results shown in FIG. 6 were obtained. As is apparent from the actual measurement results, it was found that when the oxygen content in the corrosion-resistant coating material 3 exceeded 5% by weight, the amount of the oxide film in the corrosion-resistant coating 4 rapidly increased.

【0028】さらに、耐食皮膜用材料3の粉末粒径に対
する溶射効率の変化を実測したところ、図7に示すよう
な結果が得られた。この実測結果から明らかなように、
耐食皮膜用材料3の粉末粒径を10〜45μmに設定し
た場合に、溶射効率が最良となることが分かった。これ
は粉末粒径を5〜25μmに設定した場合、粉末の流動
性が悪くて溶け過ぎヒュームになり、粉末粒径を10〜
75μmあるいは10〜106μmに設定した場合に
は、未溶解粒子が残存して溶けないで落下するためであ
る。
Further, when the change in the thermal spraying efficiency with respect to the powder particle size of the corrosion-resistant coating material 3 was actually measured, the results shown in FIG. 7 were obtained. As is clear from the measurement results,
It was found that when the powder particle size of the corrosion-resistant coating material 3 was set to 10 to 45 μm, the spraying efficiency was the best. This is because when the powder particle size is set to 5 to 25 μm, the powder has poor fluidity and becomes excessively melted, resulting in fumes.
If the thickness is set to 75 μm or 10 to 106 μm, undissolved particles remain and do not melt and fall.

【0029】しかも、耐食皮膜4の厚さL5と、溶射後
の皮膜4の剥離状態と、皮膜4の円周方向の残留応力と
の関係を調べたところ、表2に示すような結果が得られ
た。これは厚さの異なる耐食皮膜4を形成した複数の試
料の耐食皮膜面に微少X線を照射して、その格子定数の
変化から求めた。この結果から明らかなように、耐食皮
膜4の厚さL5が240μm以下であれば、容器本体2
に対する耐食皮膜4の密着性が確保できて、溶射後に耐
食皮膜4が剥離しにくくなるとともに、耐食皮膜4の円
周方向の残留応力の増加がないことが判明した。
Further, when the relationship between the thickness L5 of the corrosion-resistant coating 4, the peeling state of the coating 4 after thermal spraying, and the residual stress in the circumferential direction of the coating 4 was examined, the results shown in Table 2 were obtained. Was done. This was determined by irradiating micro X-rays on the corrosion-resistant coating surfaces of a plurality of samples on which the corrosion-resistant coatings 4 having different thicknesses were formed, and by changing the lattice constant. As is clear from this result, when the thickness L5 of the corrosion resistant film 4 is 240 μm or less, the container body 2
It has been found that the adhesion of the corrosion-resistant coating 4 to the corrosion-resistant coating 4 can be ensured, the corrosion-resistant coating 4 is less likely to peel off after thermal spraying, and that the circumferential residual stress of the corrosion-resistant coating 4 does not increase.

【0030】なお、この発明は前記実施例の構成に限定
されるものではなく、例えば以下に示すようにこの発明
の趣旨から逸脱しない範囲で、各部の構成を任意に変更
して具体化することも可能である。 (a)プラズマ溶射を大気中で行うこと。 (b)耐食皮膜4の厚みを下部ほど厚くすること。 (c)容器本体2を楕円筒状又は角筒状に形成するこ
と。
The present invention is not limited to the structure of the above-described embodiment. For example, as shown below, the structure of each part may be arbitrarily changed and embodied without departing from the spirit of the present invention. Is also possible. (A) Performing plasma spraying in the atmosphere. (B) Increasing the thickness of the corrosion resistant film 4 toward the lower part. (C) The container main body 2 is formed in an elliptical cylindrical shape or a rectangular cylindrical shape.

【0031】[0031]

【発明の効果】 この発明は、以上説明したように構成
されているため、充放電サイクルに伴って電池容量が急
激に低下するおそれを確実に防止することができるとい
う優れた効果を奏する。
Since the present invention is configured as described above, the present invention has an excellent effect that it is possible to reliably prevent the possibility that the battery capacity is drastically reduced with the charge / discharge cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明を具体化したナトリウム−硫黄電池
における陽極容器の製造方法の一実施例を示す断面図で
ある。
FIG. 1 is a sectional view showing one embodiment of a method for manufacturing an anode container in a sodium-sulfur battery embodying the present invention.

【図2】 この実施例の方法により耐食皮膜を形成した
場合の試料と、比較例として従来の方法により耐食皮膜
を形成した場合の試料とについて、充放電サイクルに対
する電池容量の変化を実測した結果を示すグラフであ
る。
FIG. 2 shows the results of actually measuring the change in battery capacity with respect to charge / discharge cycles for a sample in which a corrosion-resistant film was formed by the method of this example and a sample in which a corrosion-resistant film was formed by a conventional method as a comparative example. FIG.

【図3】 耐食皮膜中のケイ素の含有量に対する耐食皮
膜内の気孔率の変化を実測した結果を示すグラフであ
る。
FIG. 3 is a graph showing the results of a measurement of a change in porosity in a corrosion-resistant film with respect to a content of silicon in the corrosion-resistant film.

【図4】 耐食皮膜中のケイ素の含有量に対する耐食皮
膜のクラック発生数の変化を実測した結果を示すグラフ
である。
FIG. 4 is a graph showing the results of actually measuring the change in the number of cracks generated in the corrosion-resistant film with respect to the content of silicon in the corrosion-resistant film.

【図5】 耐食皮膜用材料中の酸素含有量に対する溶射
効率の変化を実測した結果を示すグラフである。
FIG. 5 is a graph showing the results obtained by actually measuring the change in the spraying efficiency with respect to the oxygen content in the corrosion-resistant coating material.

【図6】 耐食皮膜用材料中の酸素含有量に対する耐食
皮膜内の酸化皮膜量の変化を実測した結果を示すグラフ
である。
FIG. 6 is a graph showing the results of actually measuring the change in the amount of an oxide film in a corrosion-resistant film with respect to the oxygen content in the material for the corrosion-resistant film.

【図7】 耐食皮膜用材料の粉末粒径に対する溶射効率
の変化を実測した結果を示すグラフである。
FIG. 7 is a graph showing the results of actually measuring the change in the thermal spraying efficiency with respect to the powder particle size of the corrosion-resistant coating material.

【符号の説明】[Explanation of symbols]

1…溶射ガン、2…容器本体、3…耐食皮膜用材料、4
…耐食皮膜。
DESCRIPTION OF SYMBOLS 1 ... Thermal spray gun, 2 ... Container body, 3 ... Corrosion-resistant coating material, 4
... Corrosion-resistant coating.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−57778(JP,A) 特開 平7−37615(JP,A) 特開 平4−269464(JP,A) 特開 平2−142065(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 H01M 10/38 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-57778 (JP, A) JP-A-7-37615 (JP, A) JP-A-4-269464 (JP, A) JP-A-2- 142065 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/39 H01M 10/38

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属材料よりなる筒状の容器本体の内周
面に耐食皮膜を形成してなるナトリウムー硫黄電池の陽
極容器において、 前記耐食皮膜はクロム−ニッケルをベースにしてモリブ
デンを含む合金よりなることを特徴とするナトリウム−
硫黄電池の陽極容器。
1. An anode container for a sodium-sulfur battery having a corrosion-resistant film formed on the inner peripheral surface of a cylindrical container body made of a metal material, wherein the corrosion-resistant film is made of an alloy containing chromium-nickel and containing molybdenum. Characterized by becoming-
Anode container for sulfur batteries.
【請求項2】 前記耐食皮膜中のクロムの含有量が60
〜95重量%であることを特徴とする請求項1に記載の
ナトリウム−硫黄電池の陽極容器。
2. The chromium content in the corrosion resistant film is 60.
The anode container of the sodium-sulfur battery according to claim 1, wherein the content is about 95% by weight.
【請求項3】 前記耐食皮膜は他の元素としてケイ素、
マンガン、鉄、リン、硫黄、炭素、酸素の内の少なくと
も1つを含む合金よりなることを特徴とする請求項1に
記載のナトリウム−硫黄電池の陽極容器。
3. The corrosion-resistant film according to claim 1, wherein the other element is silicon,
The anode container of a sodium-sulfur battery according to claim 1, wherein the anode container is made of an alloy containing at least one of manganese, iron, phosphorus, sulfur, carbon, and oxygen.
【請求項4】 前記耐食皮膜中に酸素を含み、その酸素
の含有量を5重量%以下に設定したことを特徴とする請
求項1に記載のナトリウム−硫黄電池の陽極容器。
4. The anode container for a sodium-sulfur battery according to claim 1, wherein the corrosion-resistant coating contains oxygen, and the content of oxygen is set to 5% by weight or less.
【請求項5】 金属材料よりなる筒状の容器本体の内周
面に耐食皮膜を形成するナトリウム−硫黄電池の陽極容
器の製造方法において、 クロム−ニッケルをベースにしてモリブデンを含む合金
粉末を容器本体の内周面にプラズマ溶射して、耐食皮膜
を形成することを特徴とするナトリウム−硫黄電池の陽
極容器の製造方法。
5. A method for manufacturing an anode container for a sodium-sulfur battery, wherein a corrosion-resistant film is formed on the inner peripheral surface of a cylindrical container body made of a metal material, wherein the alloy powder containing molybdenum based on chromium-nickel A method for manufacturing an anode container of a sodium-sulfur battery, comprising forming a corrosion-resistant film by plasma spraying an inner peripheral surface of a main body.
【請求項6】 前記プラズマ溶射は、一次ガスとしてア
ルゴンガスを使用し、二次ガスとして水素ガスを使用す
ることを特徴とする請求項5に記載のナトリウム−硫黄
電池の陽極容器の製造方法。
6. The method as claimed in claim 5, wherein the plasma spraying uses an argon gas as a primary gas and a hydrogen gas as a secondary gas.
JP21434893A 1993-08-30 1993-08-30 Anode container for sodium-sulfur battery and method for manufacturing the same Expired - Fee Related JP3205441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21434893A JP3205441B2 (en) 1993-08-30 1993-08-30 Anode container for sodium-sulfur battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21434893A JP3205441B2 (en) 1993-08-30 1993-08-30 Anode container for sodium-sulfur battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0765859A JPH0765859A (en) 1995-03-10
JP3205441B2 true JP3205441B2 (en) 2001-09-04

Family

ID=16654284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21434893A Expired - Fee Related JP3205441B2 (en) 1993-08-30 1993-08-30 Anode container for sodium-sulfur battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3205441B2 (en)

Also Published As

Publication number Publication date
JPH0765859A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
EP1127653A2 (en) Flux-containing compositions for brazing aluminum, films and brazing method thereby
US3540863A (en) Art of protectively metal coating columbium and columbium - alloy structures
JPS5890393A (en) Mickel base welding rod
US6607787B2 (en) Process for producing a coating on a refractory structural member
JP5081481B2 (en) Copper foil with excellent wettability and method for producing the same
US2855333A (en) Welding electrode
JP3205441B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
KR910006945B1 (en) Coating composition for preventing high temperature oxidation for electrodes
JP2000034581A (en) Production of metal member excellent in oxidation resistance
JP3155124B2 (en) Material for corrosion-resistant coating in anode container of sodium-sulfur battery and method of manufacturing the anode container
Yolshina et al. Development of an electrode for lead-acid batteries possessing a high electrochemical utilization factor and invariable cycling characteristics
JP3205438B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
JPS62142736A (en) Zn alloy for hot dipping having high corrosion resistance, high workability, and high heat resistance
GB1571136A (en) Consumable arc-welding electrodes
JP2001293593A (en) Pasty composition for aluminum brazing, coating film thereof and brazing method
US2983632A (en) Electric arc welding electrode
JPH083718A (en) Production of thermal spraying-coated metallic member
JPS62502975A (en) Cr↓2O↓3 protective coating and its manufacturing method
JPH0722067A (en) Cathode container for sodium-sulfur battery and manufacture thereof
JP3892773B2 (en) MIG welding wire of titanium and titanium alloy and manufacturing method thereof
EP3154737B1 (en) Shielded metal arc welding stick electrode
JPS59179292A (en) Coated arc welding electrode for steel for low temperature service
Xu et al. Wetting of liquid Zinc-aluminum-magnesium alloy on steel substrate during hot-dipping: Understanding the role of the flux
JP3068721B2 (en) Anode container for sodium-sulfur battery
US1898933A (en) Wim-ding rod

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees