JPH07105971A - Positive electrode vessel for sodium-sulfur battery and manufacture of vessel - Google Patents

Positive electrode vessel for sodium-sulfur battery and manufacture of vessel

Info

Publication number
JPH07105971A
JPH07105971A JP5253208A JP25320893A JPH07105971A JP H07105971 A JPH07105971 A JP H07105971A JP 5253208 A JP5253208 A JP 5253208A JP 25320893 A JP25320893 A JP 25320893A JP H07105971 A JPH07105971 A JP H07105971A
Authority
JP
Japan
Prior art keywords
film
sodium
sulfur battery
battery
anode container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5253208A
Other languages
Japanese (ja)
Other versions
JP3095593B2 (en
Inventor
Takashi Ando
孝志 安藤
Yoshihiko Kurashima
吉彦 蔵島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP05253208A priority Critical patent/JP3095593B2/en
Publication of JPH07105971A publication Critical patent/JPH07105971A/en
Application granted granted Critical
Publication of JP3095593B2 publication Critical patent/JP3095593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a positive electrode vessel for sodium-sulfur battery whose inner wall surface is lined with an anti-corrosive film by means of plasma spraying in an atmospheric condition with the fusion spray efficiency enhanced greatly, wherein the tight attaching of the film is enhanced through making the film with an extra-dense structure and accomplishment of an ultraminute content of oxides, and to produce film which excels in the anti- corrosiveness against attack of sodium polysulfide, presents less deterioration in the battery capacity, has resistance, small internal and is less likely to exfoliate from the anode vessel. CONSTITUTION:Using a thermal spraying gun 1, a fusion spray powder 3 is in the atmospheric condition put in plasma fusion spray to the inner wall surface of a cylindrical positive electrode vessel 2 of metallic make, and thereby an anti-corrosive film 4 is produced. If the power has a mean particle size between 10-20mum while the spraying distance ranges from 10 to 25mm, the resulant film will have a porosity under 0.1% to present an extra-dense structure, an ultraminute content of oxides, and a surface roughness of no more than 4.2mum. Because of reduction of pores due to extra-dense structure of the film, the internal resistance of the battery is reduced to a great extent. Also because of tight attachment of the film in good workmanship, drop of the battery capacity is reduced in heat cycles when the battery is in service, and increment of the internal resistance is inhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はナトリウム−硫黄電池用
陽極容器とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode container for sodium-sulfur batteries and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、ナトリウム−硫黄電池の陽極
容器においては、多硫化ナトリウムに対する耐食性を高
めるため、クロマイジング処理のめっき等により陽極容
器の内壁面に耐食皮膜を形成している。また特開昭61
−264659号公報には、低圧雰囲気中でプラズマ溶
射により耐食皮膜を形成する方法が開示されている。
2. Description of the Related Art Conventionally, in an anode container of a sodium-sulfur battery, a corrosion-resistant film is formed on the inner wall surface of the anode container by plating such as chromizing treatment in order to enhance the corrosion resistance to sodium polysulfide. In addition, JP-A-61
JP-A-264659 discloses a method of forming a corrosion resistant coating by plasma spraying in a low pressure atmosphere.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、このよう
なナトリウム−硫黄電池用陽極容器の皮膜をプラズマ溶
射により形成する方法を用いて実験研究を行った結果、
次のようなことを見出した。溶射による皮膜の形成は、
溶解した粒子の積層によりなるもので、その溶射用粉末
の形状と大きさ、分布等が皮膜の品質(緻密さ)に大き
く影響される。一般には、金属材料での溶射皮膜中の気
孔率は3%以上、セラミックス材料では8%以上であ
る。またこれらに使用する溶射用粉末の粒径範囲は5〜
125μmである。前記積層よりなる溶射皮膜について
は、その積層間に溶射皮膜独特の欠陥である気孔が多く
残存する。さらにプラズマ条件の変化によってより高温
となり粒子表面が著しく酸化されて、酸化皮膜が多く残
存する。この皮膜中の気孔、酸化皮膜、未溶解粒子の存
在がナトリウム−硫黄電池の長期運転において、その多
硫化ナトリウムの侵入により急激な容量劣化と内部抵抗
の増加に大きく起因する。さらには基材である金属材料
まで到達して、その金属材料をも腐食し運転不可能とな
る場合がある。
DISCLOSURE OF THE INVENTION The present inventor has conducted an experimental study using a method of forming a film of such an anode container for a sodium-sulfur battery by plasma spraying.
I found the following. The film formation by thermal spraying is
It is composed of a stack of melted particles, and the shape, size, distribution, etc. of the powder for thermal spraying are greatly affected by the quality (denseness) of the coating. Generally, the porosity in the thermal spray coating of a metal material is 3% or more, and that of a ceramic material is 8% or more. The particle size range of the thermal spraying powder used for these is 5 to
It is 125 μm. With respect to the thermal spray coating formed of the above-mentioned laminated layers, many pores, which are defects unique to the thermal spray coating, remain between the laminated layers. Furthermore, due to changes in plasma conditions, the temperature becomes higher and the particle surface is significantly oxidized, and a large amount of oxide film remains. The presence of pores, oxide film, and undissolved particles in the film largely contributes to rapid capacity deterioration and increase in internal resistance due to infiltration of sodium polysulfide during long-term operation of the sodium-sulfur battery. Furthermore, it may reach the metallic material that is the base material, corrode the metallic material, and render it inoperable.

【0004】一方、ナトリウム−硫黄電池の長期の運転
において、昇降温(熱サイクル)による皮膜のクラッ
ク、剥離等の欠陥が上記同様に大きな問題となる。この
ことはクロマイジング鋼についても同様であり、すなわ
ち、クロマイジング鋼の最外表面のクロム炭化物層の加
工によるクラックの発生等の欠陥が熱サイクルにより大
きく開口し、そのため長期運転が不可能となる。
On the other hand, in the long-term operation of the sodium-sulfur battery, defects such as cracks and peeling of the coating film due to temperature rising / falling (thermal cycle) pose the same great problems. This also applies to chromizing steel, that is, defects such as cracks caused by the processing of the chromium carbide layer on the outermost surface of the chromizing steel are largely opened by the thermal cycle, which makes long-term operation impossible. .

【0005】溶射について、その皮膜品質の善し悪し
(緻密化)に起因するパラメータは種々あるが、一般に
はプラズマ条件、一次ガス量、溶射距離が大きく起因す
ると報告されている。一方、溶射皮膜の密着性について
は、ブラストによる面粗度が主であると報告されている
が、明確ではない。また溶射方法の区別としてワークの
冷却法と予熱法があるが、使用上ならびに溶射施工上ど
ちらが有効であるかも明らかでない。特にこれら諸条件
と粉末の粒径の相関は知られていないのが現状である。
Regarding spraying, there are various parameters due to whether the coating quality is good or bad (densification), but it is generally reported that the plasma conditions, the amount of primary gas, and the spraying distance are largely responsible. On the other hand, regarding the adhesion of the thermal spray coating, it is reported that the surface roughness due to blast is mainly, but it is not clear. Also, there are two methods, one is the cooling method of the work and the other is the preheating method, but it is not clear which is more effective in use and spraying. In particular, at present, the correlation between these conditions and the particle size of powder is not known.

【0006】しかしながら、クロマイジング処理のめっ
き等により形成された耐食皮膜を有する陽極容器は皮膜
の最外表面のクロム炭化物層の加工により、皮膜表面に
はヘアクラックが存在し、ナトリウム−硫黄電池の作動
及び停止時の昇降温のくりかえしによる熱ストレスによ
り上記耐蝕皮膜の最外層のヘアクラックが成長し、多硫
化ナトリウムが上記成長したヘアクラックを通じて皮膜
中に浸入し、皮膜の硫化物化、あるいは陽極容器自体の
腐蝕、等によって電池容量の劣化、内部抵抗の増大によ
る電池のエネルギー効率の低下等種々の問題が発生し、
長期にわたり安定した運転が不可能であった。一方、低
圧雰囲気中でのプラズマ溶射は生産性が著しく低く、か
つコスト高のため、工業的な大量生産には適しない。
However, an anode container having a corrosion-resistant coating formed by chromizing treatment plating or the like has hair cracks on the coating surface due to the processing of the chromium carbide layer on the outermost surface of the coating, resulting in a sodium-sulfur battery. Hair cracks in the outermost layer of the corrosion-resistant coating grow due to thermal stress due to repeated heating / cooling during operation and shutdown, and sodium polysulfide penetrates into the coating through the grown hair cracks, sulfides the coating, or anodic container Various problems such as deterioration of battery capacity due to corrosion of itself, decrease of battery energy efficiency due to increase of internal resistance, etc.,
Stable operation was impossible for a long time. On the other hand, plasma spraying in a low-pressure atmosphere has extremely low productivity and high cost, and is not suitable for industrial mass production.

【0007】本発明の目的は上記の各種問題点を解決
し、大気雰囲気下でのプラズマ溶射によって工業的に生
産性、経済性にすぐれた皮膜の形成方法であって尚かつ
形成された皮膜が多硫化ナトリウムに対して耐食性にす
ぐれ、長期の運転においても電池容量の劣化の少ない、
内部抵抗が小さく、陽極容器からのはがれもない皮膜を
提供することにある。
An object of the present invention is to solve the above-mentioned various problems and to provide a method for forming a film which is excellent in industrial productivity and economy by plasma spraying in an air atmosphere, and the formed film is Excellent corrosion resistance to sodium polysulfide, less deterioration of battery capacity even during long-term operation,
It is to provide a film having a low internal resistance and not peeling from the anode container.

【0008】一般に、プラズマ溶射によって形成される
金属皮膜の気孔率は3%以上であって、溶射時の溶融し
た金属液粒間に積層状に気孔が残存する。更に、大気雰
囲気中で溶射した場合には溶射される高温金属液粒表面
が酸化され、酸化膜が残存する。更には、溶射時に溶射
金属粉末の一部が未溶解粒子として皮膜内及び皮膜表面
に残存する。この様な皮膜はたとえ皮膜の材質自体が多
硫化ナトリウムに対して耐食性を有する材料であっても
ナトリウム−硫黄電池の陽極容器の防食用皮膜として適
していない。
Generally, the porosity of the metal coating formed by plasma spraying is 3% or more, and the pores remain in a laminated form between the molten metal liquid particles during the spraying. Furthermore, when spraying in an air atmosphere, the surface of the sprayed high temperature metal liquid particles is oxidized and an oxide film remains. Furthermore, at the time of thermal spraying, a part of the thermal sprayed metal powder remains in the coating film and the coating surface as undissolved particles. Such a coating is not suitable as an anticorrosion coating for an anode container of a sodium-sulfur battery, even if the coating material itself is a material having corrosion resistance to sodium polysulfide.

【0009】本発明の目的は、ナトリウム−硫黄電池用
陽極容器の内壁面に耐食皮膜を形成するにあたり、その
皮膜の超緻密化ならびに極微少酸化物含有率によって皮
膜の密着性を向上したナトリウム−硫黄電池用陽極容器
ならびにその製造方法を提供することにある。また本発
明の別の目的は、陽極容器の内壁に耐食皮膜を形成する
際のプラズマ溶射効率を大幅に向上したナトリウム−硫
黄電池用陽極容器の製造法を提供することにある。
The object of the present invention is to form a corrosion-resistant film on the inner wall surface of an anode container for sodium-sulfur batteries, and to improve the adhesion of the film by making the film ultra-densified and containing a very small amount of oxide. An object is to provide an anode container for a sulfur battery and a method for manufacturing the same. Another object of the present invention is to provide a method for producing an anode container for sodium-sulfur batteries, which has a significantly improved plasma spraying efficiency when forming a corrosion resistant coating on the inner wall of the anode container.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明によるナトリウム−硫黄電池用陽極容器は、
ナトリウム−硫黄電池の筒状の金属製陽極容器の内壁に
ステライト合金からなる溶射皮膜を形成したナトリウム
−硫黄電池用陽極容器において、前記皮膜の気孔率が
1.0%以下、酸化物の含有率が極微少、皮膜の平均表
面粗さ4.2μm以下であることを特徴とする。
In order to achieve the above object, the sodium-sulfur battery anode container according to the present invention comprises:
In a sodium-sulfur battery anode container in which a sprayed coating made of a stellite alloy is formed on the inner wall of a cylindrical metal anode container of a sodium-sulfur battery, the porosity of the coating is 1.0% or less, and the oxide content is Is extremely small, and the average surface roughness of the coating is 4.2 μm or less.

【0011】前記ナトリウム−硫黄電池用陽極容器の製
造方法は、皮膜形成用溶射粉末の粒径範囲が5〜25μ
m、平均粒径が10〜20μmのステライト合金を用
い、プラズマ溶射により前記陽極容器の内壁に皮膜を形
成することを特徴とする。
In the method for producing the anode container for sodium-sulfur battery, the particle size range of the sprayed powder for film formation is 5 to 25 μm.
m, an average particle diameter of 10 to 20 μm is used, and a film is formed on the inner wall of the anode container by plasma spraying.

【0012】[0012]

【作用】本発明のナトリウム−硫黄電池用陽極容器を使
用した電池においては、多硫化ソーダの皮膜内への侵入
を抑制し、電池容量の低下を抑制することができる。ま
た本発明のナトリウム−硫黄電池電陽極容器の皮膜で
は、超緻密化による気孔率の減少により電池の内部抵抗
を大幅に低減し、エネルギー効率の向上が図られる。
In the battery using the anode container for a sodium-sulfur battery of the present invention, it is possible to suppress the invasion of sodium polysulfide into the film and suppress the decrease in battery capacity. Further, in the coating of the sodium-sulfur battery electrode anode container of the present invention, the internal resistance of the battery is significantly reduced due to the decrease in the porosity due to the superdensification, and the energy efficiency is improved.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明によるナトリウム−硫黄電池用陽極容器の
製造方法の一例を図1に示す。本実施例の製造方法にお
いては、陽極容器の内壁に形成する耐食皮膜用原料とし
て、平均粒径:15μmのステライト6を皮膜形成用粉
末に用いた。そして図1に示すように溶射ガン1を使用
して、アルミニウムまたはアルミニウム合金等の非鉄金
属材料からなる円筒状の容器本体2の内壁面に粉末材3
を大気中でプラズマ溶射し、耐食皮膜4を形成する。
Embodiments of the present invention will be described below with reference to the drawings. An example of a method for manufacturing an anode container for sodium-sulfur batteries according to the present invention is shown in FIG. In the production method of this example, as the raw material for the corrosion-resistant film formed on the inner wall of the anode container, Stellite 6 having an average particle diameter of 15 μm was used as the film-forming powder. Then, as shown in FIG. 1, by using the thermal spray gun 1, the powder material 3 is formed on the inner wall surface of the cylindrical container body 2 made of a non-ferrous metal material such as aluminum or aluminum alloy.
Is plasma sprayed in the atmosphere to form the corrosion resistant film 4.

【0014】プラズマ溶射には、1次ガスとしてアルゴ
ンガスを使用し、2次ガスとして水素ガスを添加する。
ガスの供給量は、アルゴンガス:40リットル/mi
n、水素ガス:0.2〜3.0リットル/minの範囲
に設定し、電流は250Aとし、電圧Vは28〜32V
とした。溶射前の容器本体2の表面温度(パイプの表面
温度)は210℃以上にし、その回転数は400rpm
とした。容器基材内壁面のブラスト面粗さは2〜10μ
mであった。また皮膜厚さは85μmにした。
For plasma spraying, argon gas is used as the primary gas and hydrogen gas is added as the secondary gas.
The gas supply rate is argon gas: 40 liters / mi
n, hydrogen gas: set in the range of 0.2 to 3.0 liters / min, current is 250 A, voltage V is 28 to 32 V
And The surface temperature of the container body 2 (surface temperature of the pipe) before thermal spraying is set to 210 ° C. or higher, and the rotation speed is 400 rpm.
And The blast surface roughness of the inner wall surface of the container substrate is 2 to 10μ
It was m. The film thickness was 85 μm.

【0015】(実験1)溶射距離と皮膜の表面粗度およ
び気孔率の関係を実験した。実験に用いた溶射粉末はコ
バルト基合金であり、その粉末粒径:14.5μm、皮
膜厚さ:65μm、表面粗度:1〜5μm、陽極容器本
体の基材:アルミニウム合金、プラズマ条件は、Arガ
ス:42リットル/分、H2 ガス:0.4リットル/
分、電流A:255A、電圧V:29.3Vであった。
その結果を図2に示す。
(Experiment 1) The relationship between the spraying distance and the surface roughness and porosity of the coating was tested. The thermal spraying powder used in the experiment was a cobalt-based alloy, and the powder particle size: 14.5 μm, coating thickness: 65 μm, surface roughness: 1-5 μm, base material of the anode container body: aluminum alloy, plasma conditions were: Ar gas: 42 l / min, H 2 gas: 0.4 l / min
The current A was 255 A and the voltage V was 29.3 V.
The result is shown in FIG.

【0016】実験結果が図2に示されるように、溶射距
離が10〜25mmの範囲において皮膜の気孔率が低下
しており、さらには皮膜の表面粗度も低下している。従
って、この範囲において緻密化されている、酸化物の含
有率が極微少であることが判明した。 (実験2)実験2では、溶射開始前の陽極容器の表面温
度(パイプの溶射開始前の表面温度)と形成された皮膜
との密着性について実験した。
As shown in the experimental results of FIG. 2, the porosity of the coating is lowered and the surface roughness of the coating is also lowered in the range of the spray distance of 10 to 25 mm. Therefore, it was proved that the content of the oxide which was densified in this range was extremely small. (Experiment 2) In Experiment 2, the adhesion between the surface temperature of the anode container before the start of thermal spraying (the surface temperature before the start of thermal spraying of the pipe) and the formed film was tested.

【0017】実験条件は、皮膜材料:コバルト基合金、
皮膜厚さ:78μm、陽極容器本体の基材:ブラスト、
面粗度6〜10μmのアルミニウム合金を用いた。その
結果は表1に示すとおりであった。
Experimental conditions are as follows: coating material: cobalt-based alloy,
Film thickness: 78 μm, base material of anode container body: blast,
An aluminum alloy having a surface roughness of 6 to 10 μm was used. The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1において密着性の評価において記号
○:剥離部なし、△:少量剥離、×:大量剥離と判定し
た。表1に示されるように、溶射開始前の陽極容器の表
面温度は、実施例1、2、3に示すように150℃以上
の温度である場合に有効であることが判明した。これに
対し、比較例1〜5においては、低温ほど密着性が悪
く、80〜150℃の間においても密着性の点では十分
でないことが判明した。
In Table 1, in the evaluation of adhesion, it was judged that the symbol ◯: no peeling portion, Δ: small amount peeling, ×: large amount peeling. As shown in Table 1, the surface temperature of the anode container before the start of thermal spraying was found to be effective when the temperature was 150 ° C. or higher as shown in Examples 1, 2, and 3. On the other hand, in Comparative Examples 1 to 5, it was found that the lower the temperature, the poorer the adhesiveness was, and the adhesiveness was not sufficient even at 80 to 150 ° C.

【0020】なお、密着性の試験については、曲げ試験
より発生する皮膜の剥離状況により判定した。判定に用
いた曲げ試験後の装置は、図3および図4に示すような
ものを用いた。すなわち、円筒状のアルミニウム合金か
らなる基材30の表面に耐食皮膜32を形成し、これを
治具36により荷重をかけて引き伸し、その結果、平板
状のアルミニウム合金からなる基材30と皮膜32とし
た。そしてこの図4における曲げ試験後の基材30上の
皮膜32におけるクラック34、剥離部35等の発生状
況に基づいて密着性の良否を判定した。
The adhesion test was judged by the peeling condition of the film generated in the bending test. The device used for the judgment after the bending test was one as shown in FIGS. 3 and 4. That is, a corrosion resistant coating 32 is formed on the surface of a cylindrical base material 30 made of an aluminum alloy, and this is stretched by applying a load with a jig 36. As a result, a flat base material 30 made of an aluminum alloy is formed. The film 32 is used. Then, the quality of the adhesiveness was judged based on the state of occurrence of cracks 34, peeling portions 35 and the like in the film 32 on the base material 30 after the bending test in FIG.

【0021】(実験3)実験3は、原料粉末の平均粒径
の変化によって得られる皮膜の気孔率、皮膜の未溶解粒
子数、粉末の歩留まりならびに粉末の流動性評価につい
て行った。実験条件は、基材:アルミニウム合金、基材
の板厚:2.5mm、原料粉末:コバルト基合金粉、基
材予熱温度:200〜250℃、皮膜厚さ:85μmで
あった。その結果を表2に示す。
(Experiment 3) Experiment 3 was conducted to evaluate the porosity of the coating obtained by changing the average particle diameter of the raw material powder, the number of undissolved particles in the coating, the yield of the powder, and the fluidity of the powder. The experimental conditions were: substrate: aluminum alloy, substrate thickness: 2.5 mm, raw material powder: cobalt-based alloy powder, substrate preheating temperature: 200 to 250 ° C., film thickness: 85 μm. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2に示すように、溶射用粉末の平均粒径
5〜70mmの範囲で実施例11、12、13ならびに
比較例11、12、13、14、15、16について行
った。表2に示されるように、 気孔率については、皮膜中のn=5個について測定
し、その5個の平均気孔率についてそれぞれ求めた。
As shown in Table 2, Examples 11, 12, 13 and Comparative Examples 11, 12, 13, 14, 15, 16 were carried out in the range of the average particle diameter of the thermal spraying powder of 5 to 70 mm. As shown in Table 2, the porosity was measured for n = 5 pieces in the film, and the average porosity of the five pieces was obtained.

【0024】未溶解粒子数については、皮膜表面に目
視により観察される未溶解粒子数の個数を計った。 粉末の歩留まりについては粉末の有効皮膜形成度から
算出した。 粉末の流動性評価については◎:良好、○:普通、
△:可、×:不可と判定した。
Regarding the number of undissolved particles, the number of undissolved particles visually observed on the surface of the coating was counted. The yield of the powder was calculated from the degree of effective film formation of the powder. Regarding the fluidity evaluation of the powder, ◎: good, ○: normal,
Δ: acceptable, ×: not acceptable

【0025】表2に示されるように、実施例11、1
2、13では、平均粒径10〜20μmの溶射用粉末を
用いた場合には、気孔率が1.0%未満となり超緻密化
された皮膜になることが判明した。また未溶解粒子数に
ついては0であった。このことより、皮膜表面の状況に
ついても良好であることが判った。また粉末の歩留まり
については80%以上でかなり良好であった。粉末の流
動性については良好であることが判明した。
As shown in Table 2, Examples 11 and 1
In Nos. 2 and 13, it was found that when a thermal spraying powder having an average particle size of 10 to 20 μm was used, the porosity was less than 1.0% and the film became an ultra-densified film. The number of undissolved particles was 0. From this, it was found that the condition of the film surface was also good. The yield of the powder was 80% or more, which was quite good. It was found that the flowability of the powder was good.

【0026】(実験4)実験4は、前記陽極容器を用い
たナトリウム−硫黄電池の充放電サイクルと電池容量の
関係を示した。結果を図5に示す。実施例11について
は、比較例11、12、13、14、15、16に比べ
充放電サイクルが増えても電池容量の低下が少ないこと
が判明した。
(Experiment 4) Experiment 4 showed the relationship between the charge and discharge cycle of a sodium-sulfur battery using the above-mentioned anode container and the battery capacity. Results are shown in FIG. It was found that the battery capacity of Example 11 was less decreased than that of Comparative Examples 11, 12, 13, 14, 15, 16 even if the charge / discharge cycle was increased.

【0027】(実験5)実験5は、前記陽極容器を用い
たナトリウム−硫黄電池の充放電サイクルと内部抵抗の
関係について測定した。電池の運転温度は310℃であ
った。結果を図6に示す。図6に示すように、充放電サ
イクルを繰り返した場合、比較例11、12、13、1
4、15、16に比べ実施例11では内部抵抗の増加が
低い。また初期の内部抵抗も低い。これにより、実施例
11においては比較例11、12、13、14、15に
比べ、内部抵抗の点についても小さく、電池効率が良好
であることが判明した。
(Experiment 5) In Experiment 5, the relationship between the charge / discharge cycle and the internal resistance of the sodium-sulfur battery using the anode container was measured. The operating temperature of the battery was 310 ° C. Results are shown in FIG. As shown in FIG. 6, when the charge / discharge cycle was repeated, Comparative Examples 11, 12, 13, 1
The increase of the internal resistance is low in Example 11 as compared with 4, 15, and 16. The initial internal resistance is also low. As a result, it was found that Example 11 was smaller in internal resistance than Comparative Examples 11, 12, 13, 14, and 15, and the battery efficiency was good.

【0028】[0028]

【発明の効果】以上説明したように、本発明によるナト
リウム−硫黄電池用陽極容器によると、陽極容器の内壁
に形成されるステライト皮膜の気孔率を1.0%以下に
でき、酸化物の含有率が極微少となり、しかも平均面粗
さが4.2μm以下になるものが得られたことから、皮
膜の密着性が良好であり、電池使用時の熱サイクル時に
電池容量の低下量が低減され、また内部抵抗の増大が抑
制されるため、長期使用時の電池効率の低下がかなり抑
制されるという効果がある。
As described above, according to the anode container for sodium-sulfur battery according to the present invention, the porosity of the stellite coating formed on the inner wall of the anode container can be 1.0% or less, and the inclusion of oxides can be suppressed. A film having a very small rate and an average surface roughness of 4.2 μm or less was obtained, and thus the adhesion of the film is good, and the decrease in the battery capacity during the thermal cycle during use of the battery is reduced. Further, since the increase in internal resistance is suppressed, there is an effect that the decrease in battery efficiency during long-term use is significantly suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるナトリウム−硫黄電池用
陽極容器の皮膜形成方法を説明するための図である。
FIG. 1 is a diagram illustrating a method for forming a film on an anode container for a sodium-sulfur battery according to an embodiment of the present invention.

【図2】プラズマ溶射距離と皮膜の気孔率および面粗度
の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the plasma spraying distance and the porosity and surface roughness of the coating.

【図3】実験に用いた皮膜の密着性評価の際に使用した
装置を示す概略模式図である。
FIG. 3 is a schematic diagram showing an apparatus used for evaluating the adhesion of the film used in the experiment.

【図4】図3の装置により引き伸した基材上の皮膜状況
を示す模式的斜視図である。
FIG. 4 is a schematic perspective view showing a film state on a base material stretched by the apparatus of FIG.

【図5】実験において行った充放電サイクルと電池容量
の関係を示すデータ図である。
FIG. 5 is a data diagram showing the relationship between the charge / discharge cycle and the battery capacity performed in the experiment.

【図6】実験において行った充放電サイクルと内部抵抗
との関係を示すデータ図である。
FIG. 6 is a data diagram showing the relationship between the charge / discharge cycle and the internal resistance conducted in the experiment.

【符号の説明】[Explanation of symbols]

1 溶射ガン 2 容器本体 3 溶射粉末 4 耐食皮膜 1 Thermal spray gun 2 Container body 3 Thermal spray powder 4 Corrosion resistant coating

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ナトリウム−硫黄電池の筒状の金属製陽
極容器の内壁に溶射によりステライト合金からなる耐食
皮膜を形成したナトリウム−硫黄電池用陽極容器におい
て、 前記耐食皮膜の気孔率が1.0%以下、酸化物の含有率
が極微小、平均表面粗さ4.2μm以下であることを特
徴とするナトリウム−硫黄電池用陽極容器。
1. A sodium-sulfur battery anode container in which a corrosion-resistant coating made of a stellite alloy is formed on the inner wall of a cylindrical metal anode container of a sodium-sulfur battery by thermal spraying, wherein the corrosion-resistant coating has a porosity of 1.0. %, The content of oxides is extremely small, and the average surface roughness is 4.2 μm or less, the anode container for sodium-sulfur batteries.
【請求項2】 請求項1記載のナトリウム−硫黄電池用
陽極容器の製造方法であって、 皮膜形成用溶射粉末の粒径範囲が5〜25μm、平均粒
径が10〜20μmのステライト合金を用い、プラズマ
溶射により前記陽極容器の内壁に皮膜を形成することを
特徴とするナトリウム−硫黄電池用陽極容器の製造方
法。
2. A method for manufacturing an anode container for a sodium-sulfur battery according to claim 1, wherein a sprayed powder for forming a coating has a particle size range of 5 to 25 μm and an average particle size of 10 to 20 μm. A method for producing an anode container for a sodium-sulfur battery, which comprises forming a film on the inner wall of the anode container by plasma spraying.
【請求項3】 請求項1記載のナトリウム−硫黄電池用
陽極容器において、前記プラズマ溶射開始前の容器の温
度が150℃以上であることを特徴とするナトリウム−
硫黄電池用陽極容器。
3. The sodium-sulfur battery anode container according to claim 1, wherein the temperature of the container before the start of plasma spraying is 150 ° C. or higher.
Anode container for sulfur battery.
JP05253208A 1993-10-08 1993-10-08 Anode container for sodium-sulfur battery and method for producing the same Expired - Fee Related JP3095593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05253208A JP3095593B2 (en) 1993-10-08 1993-10-08 Anode container for sodium-sulfur battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05253208A JP3095593B2 (en) 1993-10-08 1993-10-08 Anode container for sodium-sulfur battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07105971A true JPH07105971A (en) 1995-04-21
JP3095593B2 JP3095593B2 (en) 2000-10-03

Family

ID=17248065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05253208A Expired - Fee Related JP3095593B2 (en) 1993-10-08 1993-10-08 Anode container for sodium-sulfur battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3095593B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714172B2 (en) 1997-07-14 2004-03-30 Canon Kabushiki Kaisha Display control system and its control method, switching device, connection device, peripheral device, peripheral device system, and their control method, and computer readable memory

Also Published As

Publication number Publication date
JP3095593B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
AU657248B2 (en) Electrodes of improved service life
US8697195B2 (en) Method for forming a protective coating with enhanced adhesion between layers
CN103590008B (en) One is coated with interlayer in TiAl alloy and MCrAlY and prepares Al 2o 3the method of diffusion barrier
EP0017944B1 (en) Thermospray method for production of aluminium porous boiling surfaces
JP2001179431A (en) Method for forming bond coat and thermally insulating film on metallic base material and related article
CN106637071A (en) Method for preparing composite coating by adopting multi-stage pack cementation aluminizing in combination with micro-arc oxidation
CN114411125B (en) High-entropy metal oxide coating and preparation method and application thereof
Lapushkina et al. Contribution in optimization of Zn Cold-sprayed coating dedicated to corrosion applications
JPH0243352A (en) Production of member for molten metal bath
CN212648287U (en) Thermal battery shell and fastener insulation protective coating structure
CN106544627A (en) A kind of thermophilic corrosion-resistance composite coating and preparation method thereof
CN110318050A (en) A kind of aluminium base/anode oxide film composite coating and its preparation method and application
JPH07105971A (en) Positive electrode vessel for sodium-sulfur battery and manufacture of vessel
JP2004035902A (en) Method of producing high temperature oxidation resistant, heat resistant alloy member
CN104726815A (en) Method for preparing heat resistant composite coating by combining stainless steel surface overlaying and spraying
CN109402422B (en) Aluminum-magnesium-zirconium alloy wire and manufacturing method thereof
JP3035209B2 (en) Corrosion resistant material and method for producing the same
JPH01198460A (en) Manufacture of conductor roll
CN104028743A (en) Ferrochromium-based powder core wire and preparing method and application thereof
KR20180074026A (en) Method for treating surface of superalloy components for gas turbine and the superalloy components with its surface treated by the same
JP2020504239A (en) Single-layer zinc alloy-plated steel excellent in spot weldability and corrosion resistance and method for producing the same
JP2520986B2 (en) Anode container for sodium-sulfur battery and its manufacturing method
CN115110024A (en) MCrAlY coating containing active element modification Re-based diffusion barrier and preparation method thereof
JP3205441B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
JP2854226B2 (en) Anode container for sodium-sulfur battery and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees