JP2815531B2 - Method for producing anode container for sodium-sulfur battery - Google Patents

Method for producing anode container for sodium-sulfur battery

Info

Publication number
JP2815531B2
JP2815531B2 JP5253209A JP25320993A JP2815531B2 JP 2815531 B2 JP2815531 B2 JP 2815531B2 JP 5253209 A JP5253209 A JP 5253209A JP 25320993 A JP25320993 A JP 25320993A JP 2815531 B2 JP2815531 B2 JP 2815531B2
Authority
JP
Japan
Prior art keywords
anode container
anode
sodium
container
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5253209A
Other languages
Japanese (ja)
Other versions
JPH07105972A (en
Inventor
孝志 安藤
吉彦 蔵島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP5253209A priority Critical patent/JP2815531B2/en
Publication of JPH07105972A publication Critical patent/JPH07105972A/en
Application granted granted Critical
Publication of JP2815531B2 publication Critical patent/JP2815531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ナトリウム−硫黄電池
用陽極容器およびその製造方法に関するものである。
The present invention relates to an anode container for a sodium-sulfur battery and a method for producing the same.

【0002】[0002]

【技術背景】従来、ナトリウム−硫黄電池の陽極容器に
おいては、多硫化ナトリウムに対する耐食性を高めるた
めに、例えば特開昭61−264659号公報に示すよ
うに、低圧雰囲気中でプラズマ溶射により耐食皮膜を形
成する方法が提案されている。この方法は、円筒状の容
器本体の外周面に皮膜を形成する場合や、フリースタン
ディングの場合、すなわち、溶射後に素材を溶解して皮
膜を取り出し、その皮膜で基体を製作する場合には好都
合である。
2. Description of the Related Art Conventionally, in an anode container of a sodium-sulfur battery, in order to enhance corrosion resistance to sodium polysulfide, as shown in, for example, Japanese Patent Application Laid-Open No. 61-264659, a corrosion-resistant coating is formed by plasma spraying in a low-pressure atmosphere. Methods of forming have been proposed. This method is convenient when a film is formed on the outer peripheral surface of a cylindrical container body, or in the case of free standing, that is, when a material is dissolved after thermal spraying to take out a film and a substrate is manufactured using the film. is there.

【0003】しかしながら工業的に連続的に生産するに
は生産性が低いという問題がある。また、大気圧中でプ
ラズマ溶射により陽極容器本体の内壁周面に皮膜を形成
する方法が本件出願人により提案されている。このプラ
ズマ溶射により陽極容器の内周面に皮膜を形成する方法
にあっては、円筒状の陽極容器を回転させながらその軸
方向に溶射ガンの噴出部を挿入し、円筒状の陽極容器本
体の内壁を螺旋状に旋回することにより内壁に均質な皮
膜を形成するようにしている。
However, there is a problem that productivity is low for continuous industrial production. Further, a method of forming a coating on the inner wall peripheral surface of the anode container body by plasma spraying at atmospheric pressure has been proposed by the present applicant. In the method of forming a film on the inner peripheral surface of the anode container by this plasma spraying, the spraying portion of the spray gun is inserted in the axial direction while rotating the cylindrical anode container, and the cylindrical anode container body is rotated. By spirally rotating the inner wall, a uniform film is formed on the inner wall.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
溶射による皮膜形成により工業的に連続的に多数の陽極
容器を順次プラズマ溶射する際、溶射ガンは陽極容器内
を往復移動することになるが、粉末の供給を止むことな
く、連続的に粉末を噴出し、一方の端部から他方の端部
への移動の際に所定の厚みになるように溶射し、溶射ガ
ンを容器から取り出す時は速やかに引上げ、次の容器の
溶射に備えていた。溶射ガンから粉末を連続的に噴出さ
せる理由は安定したプラズマ溶射をするためである。ま
た往復時にプラズマ溶射して所定厚みにしないのは厚み
方向で均一な溶射皮膜を形成させるためのものである。
However, when a large number of anode containers are industrially and continuously plasma-sprayed industrially by such film formation by thermal spraying, the spray gun reciprocates in the anode container. When the powder is continuously ejected without stopping the supply of the powder and sprayed to a predetermined thickness when moving from one end to the other end, and when the spray gun is taken out of the container, It was quickly pulled up and ready for thermal spraying of the next container. The reason why the powder is continuously ejected from the spray gun is to perform stable plasma spraying. The reason why plasma spraying is not performed to a predetermined thickness during reciprocation is to form a uniform sprayed coating in the thickness direction.

【0005】しかしながらこの方法のプラズマ溶射によ
って大気中で工業的に多数の筒状陽極容器の内面に連続
的に皮膜を形成したものをナトリウム−硫黄電池の陽極
容器として使用した場合、比較的初期の段階において階
段状に電池容量が低下し、以降はなだらかな電池容量低
下の傾向を示した。この原因を種々調査した結果、発明
者は陽極容器の皮膜に原因があることをつきとめた。
[0005] However, when a large number of cylindrical anode containers formed continuously and industrially in the air by plasma spraying in the air by this method are used as anode containers for sodium-sulfur batteries, the initial stage is relatively low. The battery capacity decreased stepwise at the stage, and thereafter, the battery capacity tended to decrease gradually. As a result of various investigations for the cause, the inventor has found that there is a cause in the coating of the anode container.

【0006】本発明は、上述の問題点を解決するために
なされたもので、溶射部からのフレームを連続させかつ
粉末を連続供給するとともに、回転する円筒状の陽極容
器の内部を溶射ガンが一方向に移動し次いで連続的に逆
方向に移動することで、陽極容器の内周壁に均質な良質
の皮膜を形成するようにしたナトリウム−硫黄電池の製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The flame from the spraying section is continuous and the powder is continuously supplied, and the spray gun is provided inside the rotating cylindrical anode container. It is an object of the present invention to provide a method for manufacturing a sodium-sulfur battery in which a uniform high-quality film is formed on the inner peripheral wall of an anode container by moving in one direction and then continuously in the opposite direction.

【0007】また本発明の別の目的は、電池容量の急激
な低下のないナトリウム−硫黄電池用陽極容器の工業的
に生産性の高い製造方法を提供することである。
Another object of the present invention is to provide a method of manufacturing an anode container for a sodium-sulfur battery with high productivity without a sharp decrease in battery capacity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明によるナトリウム−硫黄電池用陽極容器の製
造方法は、筒状の金属製の陽極容器を回転しながらこの
陽極容器の内壁に皮膜を形成する方法であって、前記陽
極容器の一方の端部から他方の端部までの前記陽極容器
内に軸方向に溶射噴出部を移動し、陽極容器の内壁に螺
旋状の溶射層を薄く形成し、前記他方の端部を前記溶射
噴出部が通過した後、次いで、前記陽極容器の他方の端
部から一方の端部までの前記陽極容器内に前記軸方向の
逆方向に溶射噴出部を前記一方の端部から他方の端部ま
での移動速度より遅い速度で移動し、前記陽極容器の内
壁に皮膜を均一に形成することを特徴とする。
In order to achieve the above object, a method for producing an anode container for a sodium-sulfur battery according to the present invention comprises the steps of: rotating a cylindrical metal anode container while coating the inner wall of the anode container; In the method of forming, the spraying part is moved in the axial direction into the anode container from one end to the other end of the anode container, a thin spiral sprayed layer on the inner wall of the anode container. After forming and spraying the thermal spraying part through the other end, then the thermal spraying part in the axial direction opposite to the axial direction in the anode container from the other end to one end of the anode container Is moved at a speed lower than the moving speed from the one end to the other end to form a uniform film on the inner wall of the anode container.

【0009】[0009]

【作用】上記のように構成されたナトリウム−硫黄電池
用陽極容器の製造方法によると、円筒状の陽極容器の内
周壁に均質な皮膜が形成されるとともに、一個一個の陽
極容器の内周壁に迅速に皮膜を形成し、短時間に多数の
陽極容器について内周壁に皮膜を形成することができ
る。
According to the method for manufacturing the anode container for a sodium-sulfur battery constructed as described above, a uniform film is formed on the inner peripheral wall of the cylindrical anode container and the inner peripheral wall of each anode container is formed on the inner peripheral wall of each anode container. A film can be formed quickly, and a film can be formed on the inner peripheral wall of a large number of anode containers in a short time.

【0010】[0010]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。本発明を具体化したナトリウム−硫黄電池用陽
極容器の製造方法の一実施例を、図1および図2に示
す。この実施例の製造方法においては、図1AおよびB
に示すように、溶射ガン1を使用して、アルミニウム
(Al)またはAl合金等の非鉄金属材料よりなる円筒
状の容器本体2の内周面に、クロム(Cr)−ケイ素
(Si)−鉄(Fe)合金よりなる粉末材3を、大気中
でプラズマ溶射して、耐食皮膜4を形成する。
Embodiments of the present invention will be described below with reference to the drawings. One embodiment of a method for manufacturing an anode container for a sodium-sulfur battery embodying the present invention is shown in FIGS. In the manufacturing method of this embodiment, FIGS.
As shown in FIG. 1, chromium (Cr) -silicon (Si) -iron is applied to the inner peripheral surface of a cylindrical container body 2 made of a non-ferrous metal material such as aluminum (Al) or an Al alloy using a thermal spray gun 1. A powder material 3 made of an (Fe) alloy is plasma sprayed in the air to form a corrosion resistant film 4.

【0011】また、プラズマ溶射には、1次ガスとして
アルゴンガスを使用し、2次ガスとして水素ガスを添加
する。そして、このガスの供給量は、アルゴンガスを2
0〜55リットル/分、水素ガスを0.2〜3.0リッ
トル/分の範囲に設定し、電流は150〜280Aの範
囲に設定する。また、粉末材3の供給量は、10〜10
0g/分の範囲に設定する。
In the plasma spraying, an argon gas is used as a primary gas, and a hydrogen gas is added as a secondary gas. And the supply amount of this gas is 2 g of argon gas.
The hydrogen gas is set in the range of 0.2 to 3.0 liter / min, and the current is set in the range of 150 to 280 A. The supply amount of the powder material 3 is 10 to 10
Set within the range of 0 g / min.

【0012】ここで、溶射ガン1から噴出する粉末によ
り陽極容器2の内周壁に皮膜4を形成する工程を詳述す
る。 (1) まず、陽極容器2を等速で例えば300rpmで回
転し、上方から溶射ガン1を下方向に速度例えば50〜
400mm/sec の等速度で下降移動する。すると、図
1Aに示すように陽極容器2の内壁に溶射された薄い第
一の溶射層10が螺旋状に形成される。
Here, the step of forming the coating 4 on the inner peripheral wall of the anode container 2 with the powder ejected from the thermal spray gun 1 will be described in detail. (1) First, the anode container 2 is rotated at a constant speed, for example, at 300 rpm, and the spraying gun 1 is moved downward from above at a speed of, for example, 50 to 50 rpm.
It moves down at a constant speed of 400 mm / sec. Then, as shown in FIG. 1A, a thin first sprayed layer 10 sprayed on the inner wall of the anode container 2 is formed in a spiral shape.

【0013】(2) 次いで溶射ガン1が図1Aの位置まで
来たときその位置で溶射ガン1を停止し、この位置で1
〜10秒停止する。溶射する粉末材3については停止し
ないで連続的に噴射継続する。これは、溶射ガン1から
噴射される溶射材を安定に供給し、常に一定の膜厚の均
質な溶射層を陽極容器2の内壁面に形成するためであ
る。
(2) Next, when the spraying gun 1 reaches the position shown in FIG. 1A, the spraying gun 1 is stopped at that position.
Stop for 10 seconds. The spraying of the powder material 3 to be sprayed is continuously performed without stopping. This is because the spray material sprayed from the spray gun 1 is supplied stably and a uniform spray layer having a constant thickness is always formed on the inner wall surface of the anode container 2.

【0014】(3)次いで、陽極容器2を前述の如く等
速で連続回転させている陽極容器2の内部に溶射ガン1
を逆方向に図1Bに示すように上方に前記下降移動時よ
りも遅い速度で例えば5〜20mm/secの範囲で上
昇移動する。すると、図1Bに示すように陽極容器2の
内周壁に均質な皮膜4が形成される。この皮膜の厚さ
は、例えば20〜100μmである。
(3) Next, the spray gun 1 is placed inside the anode container 2 while the anode container 2 is continuously rotated at a constant speed as described above.
The rising movement in the opposite direction to the range of the a downward movement slower than when for example 5 to 20 mm / sec upward as shown in FIG. 1B. Then, a uniform coating 4 is formed on the inner peripheral wall of the anode container 2 as shown in FIG. 1B. The thickness of this film is, for example, 20 to 100 μm.

【0015】このように、この実施例の製造方法によれ
ば、陽極容器2の内周壁面に粉末材3を、大気中でプラ
ズマ溶射するため、低圧雰囲気下でプラズマ溶射する従
来方法のように、プラズマアークが極端に長くなること
はない。従って、陽極容器2の内径が小さい場合でも、
溶射距離を確保することができて、陽極容器2を溶融切
断することなく、陽極容器2の内周面に耐食皮膜4を容
易に形成することができる。
As described above, according to the manufacturing method of this embodiment, since the powder material 3 is plasma-sprayed on the inner peripheral wall surface of the anode container 2 in the air, it is different from the conventional method of plasma spraying under a low-pressure atmosphere. However, the plasma arc does not become extremely long. Therefore, even when the inner diameter of the anode container 2 is small,
The spray distance can be secured, and the corrosion-resistant coating 4 can be easily formed on the inner peripheral surface of the anode container 2 without melting and cutting the anode container 2.

【0016】ここで、陽極容器2としては、外径が50
〜180mmで、長さが200〜500mmのものまで
適用可能になる。そして、この陽極容器2を200℃以
上で予熱するとともに、100〜600rpmで回転さ
せながら、プラズマ溶射を行なうことによって、10〜
200μmの厚さの耐食皮膜4を形成することができ
る。溶射開始温度は例えば150℃以上であり、粉末供
給量は10〜80g/min である。
The anode container 2 has an outer diameter of 50.
With a length of up to 180 mm, a length of 200 to 500 mm can be applied. Then, the anode container 2 is preheated at 200 ° C. or higher, and plasma spraying is performed while rotating the anode container 2 at 100 to 600 rpm.
The corrosion-resistant film 4 having a thickness of 200 μm can be formed. The spraying start temperature is, for example, 150 ° C. or more, and the powder supply amount is 10 to 80 g / min.

【0017】上述の如き方法により陽極容器本体の内周
壁にはCr−Si−Fe合金よりなる皮膜が図2に示す
模式図のように形成される。図2において陽極容器2の
表面には先ず溶射ガン1が下降するときに形成される螺
旋状の第1の溶射層31が薄く形成される。これは、溶
射ガン1の高速での下降移動により形成されるため所定
の間隔がおかれしかも薄く形成されるためである。また
溶射ガン1が上昇移動するときには遅い速度で移動する
ため、前記第1の溶射層31を被覆しかつ陽極容器2の
内壁に厚い第2の溶射層32が均質な厚さで形成され
る。これにより第2の溶射層32の表面は均質なものに
なる。
By the above-described method, a film made of a Cr-Si-Fe alloy is formed on the inner peripheral wall of the anode container body as shown in the schematic diagram of FIG. In FIG. 2, first, a spiral first sprayed layer 31 formed when the spray gun 1 descends is formed thin on the surface of the anode container 2. This is because the thermal spray gun 1 is formed by a downward movement at a high speed and is formed at a predetermined interval and is thin. Further, since the spray gun 1 moves at a low speed when moving upward, the second spray layer 32 which covers the first spray layer 31 and is thick on the inner wall of the anode container 2 is formed with a uniform thickness. Thereby, the surface of the second thermal spray layer 32 becomes uniform.

【0018】これに対し、発明者が従来より実施してき
た比較例を図3に示す。この比較例は公知のものではな
い。この比較例では工業的に連続的に多数の陽極容器を
プラズマ溶射する場合、溶射する粉末剤及び一次ガス、
二次ガスは連続的に噴射し、安定した噴射状態を維持し
続け、それぞれの容器を噴射し続ける。このとき、溶射
ガンは陽極容器の上部から挿入され、一回で皮膜を形成
させつつ下降し、下方に達したならば急速に上部に戻さ
れ次の容器の溶射に備えられる。この戻りの時に形成さ
れている皮膜表面に螺旋状に粉末材の付着物が形成され
る。すなわち、陽極容器の表面に下降時の厚い第1の溶
射層21が形成され、この第1の溶射層21の表面に戻
り時の速い速度で上昇するときに形成される薄い第2の
溶射層22が螺旋状に所定間隔で形成される。このた
め、陽極容器2の表面に形成される皮膜の表面は第2の
溶射層22による未溶解粒子が数多く付着した局部過熱
された不均質な溶射層が形成される。この陽極容器を用
いてナトリウム−硫黄電池を組み立てたとき、皮膜表面
から数多くの未溶解粒子が硫化物を形成することは、こ
の電池の作動時の初期段階において階段状に電池容量が
低下する原因となる。このため、このような比較例の方
法による皮膜形成は必ずしも適切な皮膜形成であるとは
いえない。
On the other hand, FIG. 3 shows a comparative example which has been conventionally implemented by the inventor. This comparative example is not known. In this comparative example, when a large number of anode containers are industrially and continuously plasma-sprayed, the sprayed powder and the primary gas,
The secondary gas is continuously injected, maintains a stable injection state, and continuously injects each container. At this time, the thermal spray gun is inserted from the upper part of the anode container, descends while forming a film in a single operation, and when it reaches the lower part, it is quickly returned to the upper part to prepare for thermal spraying of the next container. At the time of this return, the deposit of the powder material is spirally formed on the surface of the film formed. That is, a thick first sprayed layer 21 is formed on the surface of the anode container when descending, and a thin second sprayed layer is formed on the surface of the first sprayed layer 21 when rising at a high speed when returning. 22 are spirally formed at predetermined intervals. For this reason, on the surface of the film formed on the surface of the anode container 2, a non-uniform sprayed layer locally heated with a large number of undissolved particles adhered by the second sprayed layer 22 is formed. When a sodium-sulfur battery is assembled using this anode container, a large number of undissolved particles form sulfides from the film surface. This is because the battery capacity decreases stepwise in the initial stage of operation of this battery. Becomes Therefore, film formation by the method of the comparative example is not necessarily appropriate film formation.

【0019】また、前記のように陽極容器2の内周面
に、Cr−Si−Fe合金よりなる粉末剤3を、大気中
でプラズマ溶射した場合には、まずSiが優先的に酸化
されて二酸化ケイ素(SiO2 )が形成され、次にCr
が酸化されて酸化クロム(Cr 23 )が形成される。
なお、Cr−Fe合金のベース部分はほとんど酸化され
ないため、気孔率が1〜5%で、表面粗度がRa(平均
粗さ、JIS B0601 )8〜15μmの緻密な耐食皮膜が形
成され、ベース部分のビッカース硬さはHv:300〜
500になる。
Also, as described above, the inner peripheral surface of the anode container 2
And a powder 3 made of a Cr—Si—Fe alloy in air
In the case of plasma spraying, Si is preferentially oxidized first
Silicon dioxide (SiOTwo ) Is formed and then Cr
Is oxidized to chromium oxide (Cr Two OThree ) Is formed.
The base of the Cr-Fe alloy is almost oxidized.
Therefore, the porosity is 1 to 5% and the surface roughness is Ra (average).
Roughness, JIS B0601) 8 to 15 μm dense corrosion-resistant film
And the Vickers hardness of the base portion is Hv: 300-
500.

【0020】次に、本実施例を用いて形成した陽極容器
を使用したナトリウム−硫黄電池の一例を図6に示す。
図1および図6に示すように、陽極容器1はアルミニウ
ムやアルミニウム合金等の金属材料により円筒状に形成
され、その下端開口部には底板2が嵌合固定されてい
る。上下一対のくびれ部3、4は陽極容器1の外周に長
手方向へ所定間隔をおいて形成され、このくびれ部3、
4によって陽極容器1の熱変化に伴う伸縮が吸収緩和さ
れる。なお、下くびれ部4は下端部に溜まる活物質とし
ての多硫化ナトリウム(Na2X )を避けて、それよ
り上側に設けられる。耐食皮膜5は陽極容器1の内周面
に溶射形成され、この耐食皮膜5により陽極容器1の腐
蝕が防止される。
Next, FIG. 6 shows an example of a sodium-sulfur battery using the anode container formed by using this embodiment.
As shown in FIGS. 1 and 6, the anode container 1 is formed in a cylindrical shape from a metal material such as aluminum or an aluminum alloy, and a bottom plate 2 is fitted and fixed to an opening at a lower end thereof. A pair of upper and lower constrictions 3 and 4 are formed on the outer periphery of the anode container 1 at predetermined intervals in the longitudinal direction.
4 absorbs and reduces the expansion and contraction of the anode container 1 due to the thermal change. In addition, the lower constricted part 4 is provided above the lower part, avoiding sodium polysulfide (Na 2 S X ) as an active material accumulated at the lower end. The corrosion-resistant coating 5 is formed by spraying on the inner peripheral surface of the anode container 1, and the corrosion-resistant coating 5 prevents corrosion of the anode container 1.

【0021】支持金具6は前記陽極容器1の上端開、部
に嵌合固定され、その上面にはアルファアルミナよりな
る絶縁リング7が接合固定されている。ベータアルミナ
等のセラミック材料よりなる有底円筒状の固定電解質管
8は絶縁リング7の下端時周に接合固定され、この固体
電解質管8の内側には陰極室R1が区画形成されるとと
もに、外側には陽極室R2が区画形成されている。
The support fitting 6 is fitted and fixed to the upper end of the anode container 1 at the upper end thereof, and an insulating ring 7 made of alpha alumina is fixed to the upper surface thereof. A cylindrical fixed electrolyte tube 8 made of a ceramic material such as beta-alumina is fixedly joined to a lower end circumference of the insulating ring 7, and a cathode chamber R 1 is defined inside the solid electrolyte tube 8, and is formed outside the solid electrolyte tube 8. Has an anode chamber R2 formed therein.

【0022】カートリッジ9は前記陰極室R1内に配設
され、このカートリッジ9内には陰極活物質としてのナ
トリウムNaが収容されている。小孔10はカートリッ
ジ9の底部に設けられ、この小孔10を通してカートリ
ッジ9内のナトリウムNaが、カートリッジ9と固体電
解質管8との間の間隙部に供給される。窒素ガスはアル
ゴンガス等の不活性ガスGは前記カートリッジ9の上部
空間に所定の圧力で封入され、この不活性ガスGにより
カートリッジ9内のナトリウムNaが小孔10から流出
する方向へ加圧されている。カーボンマット等よりなる
陽極用導電材11は陽極室R2内に収容され、この陽極
用導電材11には陽極活物質としての硫黄Sが含浸され
ている。
The cartridge 9 is disposed in the cathode chamber R1, and contains sodium Na as a cathode active material. The small hole 10 is provided at the bottom of the cartridge 9, and the sodium Na in the cartridge 9 is supplied to the gap between the cartridge 9 and the solid electrolyte tube 8 through the small hole 10. Nitrogen gas is filled with an inert gas G such as argon gas in the upper space of the cartridge 9 at a predetermined pressure, and the inert gas G pressurizes sodium Na in the cartridge 9 in a direction of flowing out of the small holes 10. ing. The anode conductive material 11 made of a carbon mat or the like is accommodated in the anode chamber R2, and the anode conductive material 11 is impregnated with sulfur S as an anode active material.

【0023】陰極蓋12は前記絶縁リング7上に接合固
定され、中央の円板部13と、その円板部13の外周に
設けられた円筒部14とを有している。そして、この陰
極蓋12の円筒部14の下端が、カートリッジ9と固体
電解質管8との間の間隙部に供給されたナトリウムNa
に接触して、陰極側の集電が行われる。有底円筒状の安
全管15は前記カートリッジ9と固体電解質管8との間
の間隙部に、そのカートリッジ9および固体電解質管8
からそれぞれ所定間隔をおいて配設され、耐食性を有す
るアルミニウムやステンレス等の金属材料から形成され
ている。そして、放電時に前記カートリッジ9の小孔1
0から供給されるナトリウムNaが、この安全管15と
カートリッジ9との間の間隙内で上方に移動された後、
安全管15の上端を乗り越えて、安全管15と固体電解
質管8との間の間隙内で下方に移動される。
The cathode lid 12 is joined and fixed on the insulating ring 7 and has a central disk portion 13 and a cylindrical portion 14 provided on the outer periphery of the disk portion 13. The lower end of the cylindrical portion 14 of the cathode lid 12 is connected to the sodium Na supplied to the gap between the cartridge 9 and the solid electrolyte tube 8.
, And current collection on the cathode side is performed. The safety tube 15 having a cylindrical shape with a bottom is provided in the gap between the cartridge 9 and the solid electrolyte tube 8 in the cartridge 9 and the solid electrolyte tube 8.
Are formed at a predetermined interval from each other, and are formed of a corrosion-resistant metal material such as aluminum or stainless steel. At the time of discharge, the small holes 1 of the cartridge 9
After the sodium Na supplied from 0 is moved upward in the gap between the safety tube 15 and the cartridge 9,
It moves over the upper end of the safety pipe 15 and moves downward in the gap between the safety pipe 15 and the solid electrolyte pipe 8.

【0024】(実験1)実験1では、前記ナトリウム−
硫黄電池の充放電回数と電池の内部抵抗との関係を実験
した。その結果を図4に示す。この実験1では、運転時
の温度310℃とした。図4において本発明の前記実施
例は、前記比較例に比べ電池の内部抵抗は充放電サイク
ル数の多い時までほとんど変化せず低いことが判明し
た。
(Experiment 1) In Experiment 1, the sodium-
The relationship between the number of charge / discharge of a sulfur battery and the internal resistance of the battery was examined. FIG. 4 shows the results. In Experiment 1, the temperature during operation was 310 ° C. In FIG. 4, it was found that the internal resistance of the battery in the example of the present invention hardly changed until the number of charge / discharge cycles was large, and was lower than that in the comparative example.

【0025】比較例においては陽極導電材と溶射皮膜の
接触あるいは未溶解粒子の硫化が原因と推定される。 (実験2)実験2では、ナトリウム−硫黄電池の充放電
サイクル回数と電池容量との関係を実験した。その結果
を図5に示す。
In the comparative example, it is presumed that the cause is contact between the anode conductive material and the sprayed coating or sulfuration of undissolved particles. (Experiment 2) In Experiment 2, the relationship between the number of charge / discharge cycles of the sodium-sulfur battery and the battery capacity was tested. The result is shown in FIG.

【0026】本発明の実施例では、電池容量は充放電サ
イクルの回数が多くても電池容量の低下はそれほど大き
くない。これに対し前記比較例では、充放電サイクルの
回数は、所定サイクル数になってくると電池容量が急激
に低下することが判明した。これは、前述の陽極容器の
表面に形成される皮膜の最表面部分に形成される未溶解
粒子が硫化されることで多硫化ナトリウム中に入って容
量劣化をきたすことが原因と考えられる。また、多硫化
ナトリウムと反応しやすい未溶解粒子であることも原因
であると考えられる。
In the embodiment of the present invention, even if the number of charge / discharge cycles is large, the decrease in the battery capacity is not so large. On the other hand, in the comparative example, it was found that when the number of charge / discharge cycles reaches a predetermined number, the battery capacity sharply decreases. This is probably because undissolved particles formed on the outermost surface portion of the film formed on the surface of the above-mentioned anode container are sulfided to enter sodium polysulfide and cause capacity deterioration. It is also considered that undissolved particles easily react with sodium polysulfide.

【0027】[0027]

【発明の効果】以上説明したように、本発明のナトリウ
ム−硫黄電池用陽極容器の製造方法によると、陽極本体
の内周面に均質に耐食性に優れた皮膜を形成することが
でき、しかもこの皮膜の耐剥離性は良好であるという効
果がある。この製造方法による陽極容器を使用したナト
リウム−硫黄電池によると、電池としての内部抵抗の増
大を抑制するものであり、さらには充放電サイクルを繰
り返しても電池容量の低下を低減できる効果がある。
As described above, according to the method for manufacturing an anode container for a sodium-sulfur battery of the present invention, a film having excellent corrosion resistance can be uniformly formed on the inner peripheral surface of the anode body. There is an effect that the peel resistance of the film is good. According to the sodium-sulfur battery using the anode container according to this manufacturing method, an increase in internal resistance of the battery is suppressed, and further, there is an effect that a decrease in battery capacity can be reduced even if charge / discharge cycles are repeated.

【0028】また本発明のナトリウム−硫黄電池用陽極
容器の製造方法によると、円筒状の陽極容器の内周壁に
高速度で耐食性皮膜形成を行なうことができるので、ナ
トリウム−硫黄電池用陽極容器の生産性が向上し、コス
トダウンが図れるという効果がある。
According to the method for manufacturing an anode container for a sodium-sulfur battery of the present invention, a corrosion-resistant film can be formed on the inner peripheral wall of a cylindrical anode container at a high speed. This has the effect of improving productivity and reducing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のナトリウム−硫黄電池の製造方法の一
実施例を示す工程図である。
FIG. 1 is a process diagram showing one embodiment of a method for manufacturing a sodium-sulfur battery of the present invention.

【図2】本発明の実施例による皮膜形成状態を示す模式
的拡大断面図である。
FIG. 2 is a schematic enlarged sectional view showing a film formation state according to an example of the present invention.

【図3】比較例による皮膜形成状態を示す模式的拡大断
面図である。
FIG. 3 is a schematic enlarged sectional view showing a film formation state according to a comparative example.

【図4】本発明の実施例による充放電サイクルと電池の
内部抵抗との関係を本発明の実施例と比較例とで対比し
た特性図である。
FIG. 4 is a characteristic diagram in which the relationship between the charge / discharge cycle and the internal resistance of the battery according to the example of the present invention is compared between the example of the present invention and a comparative example.

【図5】充放電サイクルと電池容量との関係を本発明の
実施例と比較例と対比した特性図である。
FIG. 5 is a characteristic diagram in which a relationship between a charge / discharge cycle and a battery capacity is compared with an example of the present invention and a comparative example.

【図6】本発明の実施例により製造した陽極容器を用い
たナトリウム−硫黄電池の一実施例を示す概略断面図で
ある。
FIG. 6 is a schematic sectional view showing one embodiment of a sodium-sulfur battery using the anode container manufactured according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 陽極容器 31 溶射層 32 溶射層 2 Anode container 31 Thermal spray layer 32 Thermal spray layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 10/39 H01M 10/38──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10/39 H01M 10/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 筒状の金属製の陽極容器を回転しながら
この陽極容器の内壁に皮膜を形成する方法であって、 前記陽極容器の一方の端部から他方の端部までの前記陽
極容器内に軸方向に溶射噴出部を移動し、陽極容器の内
壁に螺旋状の溶射層を薄く形成し、 前記他方の端部を前記溶射噴出部が通過した後、 次いで、前記陽極容器の他方の端部から一方の端部まで
の前記陽極容器内に前記軸方向の逆方向に溶射噴出部を
前記一方の端部から他方の端部までの移動速度より遅い
速度で移動し、前記陽極容器の内壁に皮膜を均一に形成
することを特徴とするナトリウム−硫黄電池用陽極容器
の製造方法。
1. A method for forming a film on the inner wall of an anode container while rotating a cylindrical metal anode container, wherein the anode container extends from one end to the other end of the anode container. The spraying part is moved in the axial direction inside, a spiral sprayed layer is formed thinly on the inner wall of the anode container, and after the spraying part passes the other end, then the other side of the anode container In the anode container from one end to one end, the spraying jet is moved in a direction opposite to the axial direction at a speed lower than the movement speed from the one end to the other end. A method for producing an anode container for a sodium-sulfur battery, wherein a film is uniformly formed on an inner wall.
【請求項2】 上方から溶射噴出部を下方向に50〜4
00mm/secの等速度で下降移動させ、陽極容器の
内壁に螺旋状の溶射皮膜を形成した後、下方向から上方
に5〜20mm/secの範囲で前記下降移動時よりも
遅い速度で上昇移動させて陽極容器の内周壁に均質な皮
膜を形成することを特徴とする請求項1に記載されたナ
トリウム−硫黄電池用陽極容器の製造方法。
2. Spraying the sprayed portion from above by 50 to 4
After moving down at a constant speed of 00 mm / sec to form a helical sprayed coating on the inner wall of the anode container, it moves upward from below in a range of 5 to 20 mm / sec at a lower speed than at the time of the downward movement. The method for producing an anode container for a sodium-sulfur battery according to claim 1, wherein a uniform coating is formed on the inner peripheral wall of the anode container.
JP5253209A 1993-10-08 1993-10-08 Method for producing anode container for sodium-sulfur battery Expired - Fee Related JP2815531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253209A JP2815531B2 (en) 1993-10-08 1993-10-08 Method for producing anode container for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253209A JP2815531B2 (en) 1993-10-08 1993-10-08 Method for producing anode container for sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH07105972A JPH07105972A (en) 1995-04-21
JP2815531B2 true JP2815531B2 (en) 1998-10-27

Family

ID=17248080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253209A Expired - Fee Related JP2815531B2 (en) 1993-10-08 1993-10-08 Method for producing anode container for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2815531B2 (en)

Also Published As

Publication number Publication date
JPH07105972A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
US6455108B1 (en) Method for preparation of a thermal spray coated substrate for use in an electrical energy storage device
US4122366A (en) Spark plug
JP2815531B2 (en) Method for producing anode container for sodium-sulfur battery
JP3172121B2 (en) Thermal spraying method for inner peripheral surface of hollow cylindrical tube
JP2854226B2 (en) Anode container for sodium-sulfur battery and method for producing the same
JP2758756B2 (en) Anode container in sodium-sulfur battery
JP2957822B2 (en) Method for producing anode container in sodium-sulfur battery
JP2520986B2 (en) Anode container for sodium-sulfur battery and its manufacturing method
JP3617628B2 (en) Anode container for sodium-sulfur battery
EP0859419A4 (en) Core body for electrode base of secondary cell, process for manufacturing the core body, electrode base of secondary cell, process for manufacturing the electrode base, and electrode and battery using them
KR100559962B1 (en) Battery Cover and its Fabrication Method
JPH0260048B2 (en)
KR20050065911A (en) Metal preparations and processing method of a coating film thereof
KR100559961B1 (en) Battery Cover and its Fabrication Method
JP3095909B2 (en) Method for producing sodium-sulfur battery and anode container thereof
JP4234936B2 (en) Sodium-sulfur battery anode container, method for forming spray coating on inner surface of anode container, and method for determining quality of spray coating
JP2005071902A (en) Method for forming spray coating film on inner circumferential surface of positive electrode container for sodium-sulfur battery
JP2919163B2 (en) Anode container for sodium-sulfur battery
JPH07105971A (en) Positive electrode vessel for sodium-sulfur battery and manufacture of vessel
JP2002008600A (en) Anode container for sodium sulfur electric cell and sodium sulfur unit cell using it
JP2002270220A (en) Positive electrode container for sodium-sulfur battery and its manufacturing method
JPH0892735A (en) Vacuum deposition method
JPH02245280A (en) Production of fluid discharger and porous discharge part for immersed substrate treating device
KR910013347A (en) Impregnated cathode and its manufacturing method
JPH02220399A (en) Manufacture of superconducting cavity

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees