JPH0260048B2 - - Google Patents

Info

Publication number
JPH0260048B2
JPH0260048B2 JP9874585A JP9874585A JPH0260048B2 JP H0260048 B2 JPH0260048 B2 JP H0260048B2 JP 9874585 A JP9874585 A JP 9874585A JP 9874585 A JP9874585 A JP 9874585A JP H0260048 B2 JPH0260048 B2 JP H0260048B2
Authority
JP
Japan
Prior art keywords
base material
pores
film
titanium
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9874585A
Other languages
Japanese (ja)
Other versions
JPS6258609A (en
Inventor
Takeshi Nishizaki
Shuichi Murooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP9874585A priority Critical patent/JPS6258609A/en
Publication of JPS6258609A publication Critical patent/JPS6258609A/en
Publication of JPH0260048B2 publication Critical patent/JPH0260048B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、電解コンデンサ用陰極材料に関す
る。 従来の技術 電解コンデンサの電極材料としては、一般的に
は陽極材料と陰極材料とに分かれるが、コンデン
サの静電容量を増大させるためには、陽極材料の
みならず、特に陰極材料自体の静電容量の向上を
図ることも重要である。 このような静電容量の向上を図つた陰極材料の
一つとして、アルミニウム箱基材の表面に不活性
ガス中蒸着法等によりチタン皮膜などの金属皮膜
を形成したものが知られている(例えば特開昭59
−167009号)。かかる陰極材料によれば、皮膜表
面に微細な凹凸が形成される結果、アルミニウム
箔にエツチングを施すことによつて表面積の拡大
効果を図つた従来一般の陰極材料に較べて、拡面
率を向上し得、ひいては静電容量を一層増大する
ことが可能である。 発明が解決しようとする問題点 しかしながら、上記の陰極材料によつてもな
お、金属皮膜による表面積の拡大には限界があ
り、電解コンデンサの小形化、高性能化を実現す
るために昨今要求される静電容量の増大に対して
は、これに十分満足を与え得るものではなかつ
た。 この発明はかかる事情に鑑みてなされたもので
あつて、静電容量を更に増大した陰極材料の提供
を目的とする。 問題点を解決するための手段 この目的において、この発明者らは種々実験と
研究を重ねた結果、基材の表面を粗面化して微細
な凹凸を形成する一方、該表面中に多数のポアを
可及的高密度に分布せしめて基材の表面積のより
一層の拡大化を図つた上で、該表面上に更にチタ
ン微粒子群からなるチタン蒸着皮膜を形成せしめ
るものとすることにより、静電容量の大幅な増大
化を図り得ることを見出し、この発明を完成する
に至つたものである。 即ち、この発明は微細に粗面化されたアルミニ
ウム箔基材の表面中に、最大深さ25μm以下、最
大内径100μm以下のポアが100個/cm2以上の密度
で分布されていること、及び少なくとも前記ポア
を除く基材の表面部分にチタン蒸着皮膜が被覆形
成されていること、を特徴とする電解コンデンサ
用陰極材料を要旨とするものである。 なお、この明細書において、アルミニウムの語
はアルミニウム合金を含む意味において用いる。 アルミニウム箔基材1の表面を粗面化して微細
な凹凸3を形成するのは、前述のようにその凹凸
効果を基材に形成されるチタン蒸着皮膜2の表面
に波及せしめて皮膜の拡面率の向上を助長するた
めである。また、基材1に多数のポア4を形成す
るのは、基材の表面積のより一層の拡大化を図る
と共に、電解液のぬれ性の向上を図るためであ
る。このような基材表面の粗面化と、ポア4の形
成は、エツチング操作によつて同時に達成しう
る。かかるエツチングには化学的あるいは電気化
学的な湿式エツチング法のほか、乾式エツチング
法を採用することも可能である。ポア4の代表的
な断面形状としては、第2図イ,ロ,ハに示すよ
うに、内径が深さにかかわらず略一定な円筒形、
開口部の内径が狭い壺形、あるいは底部から開口
部に至るにつれて内径が広くなつている椀形等が
挙げられる。ポア4の寸法は、最大深さ25μm以
下、最大内径100μm以下とすることが必要であ
る。最大深さが25μmを超え、あるいは又、最大
内径が100μmを超えると、基材1に陰極材料と
しての所要の機械的強度を保持し難いものとなる
欠点が派生する。また、ポア4は基材1の拡面率
増大のうえから、比較的小径ものを可及的高密度
に分布せしめるものとし、少なくとも100個/cm2
程度以上の密度で分布せしめるものとすることが
必要である。 ポア4の内面は必ずしも粗面化されたものであ
ることを必要としないが、静電容量の増大化を図
るうえからは該内面も微細な凹凸粗面に形成され
ている方が望ましい。なお、この明細書でいう粗
面化による微細な凹凸は、基材表面のポアの部分
はもちろん、同表面のうねり成分等を含まない微
視的な凹凸をいうものである。 基材1の表面に被覆形成される導電性皮膜の材
料が特にチタンに限定されるのは、他の導電性金
属例えば鉄や銅に較べて耐久性に優れたものとな
しうるからであり、ひいてはコンデンサの一層の
長寿命化、高信頼性を実現しうるからである。こ
のチタン蒸着皮膜2は、第1図に示すように、少
なくとの前記ポア4を除く基材1の表面部分の全
体に被覆形成されることが必要であるが、勿論、
同時に前記ポア4の内面にも被覆形成される方
が、静電容量の更なる増大を図り得る点で好まし
い。かかる皮膜を構成するチタン微粒子の平均粒
子径は、皮膜の拡面率向上の点から0.01〜1.0μm
の範囲とすることが望ましい。即ち、0.01μm未
満では皮膜が平滑化されて拡面効果に寄与すると
ころが少ないし、また逆に1.0μmを超えて粗大化
しても却つて拡面効果に乏しく静電容量の小さい
ものとなつてしまうからである。また皮膜の厚さ
は0.05〜5.0μmの範囲とすることが望ましい。
0.05μm未満では、同じく皮膜の粗面化による拡
面効果を期待し得ないからであり、逆に5.0μmを
超えても使用チタン材料の増大、コスト上昇、作
業性の悪化に見合うだけの効果が得られないから
である。 このようなチタン蒸着皮膜2の基材1表面への
被覆形成方法としては、真空蒸着法、不活性ガス
中蒸着法、スパツタリング法、イオンプレーテイ
ング法等を用いることができる。なお、このよう
なチタン皮膜の蒸着形成処理は、コイル状の基材
を巻き取りながら半連続的に行いうるものであ
る。 発明の効果 この発明に係る電解コンデンサ用陰極材料は、
上述の次第で、基材の表面が粗面化されているの
みならず、該表面中に、最大深さ25μm以下、最
大内径100μm以下のポアが100個/cm2以上の密度
で分布されたものとなされているから、従来の表
面平滑状若しくは単に微細な凹凸面に粗面化され
ただけの基材を用いた陰極材料に較べて、基材の
表面積自体が一層拡大されたものとなる上に、更
に該基材表面中の少なくとも前記ポアを除く表面
部分に、チタン蒸着皮膜が被覆形成されたものと
なされていることより、該皮膜による表面積拡大
効果と相俟つて、従来品に較べて大幅な静電容量
の増大化効果を得ることができる。従つて、電解
コンデンサの一層の小形化、高性能化をはかるこ
とが可能となる。 また、表面に多数のポアを有する基材が用いら
れていることにより、陰極表面への電解液のぬれ
性が一段と良好なものとなり、ひいてはコンデン
サの耐久性、初期性能の保持性を向上しうる。か
つ、表面の導電性皮膜がチタン蒸着皮膜よりなる
ものであることも相俟つて、他の金属を用いたも
のに較べて一層耐久性に優れたものとなしうる。
上述の次第で、この発明によれば、コンデンサの
静電容量の増大化、ひいては小形化を図りうるの
みならず、長寿命化、高い信頼性をも実現し得る
ものである。 実施例 次にこの発明の実施例を比較例とともに示す。 実施例 1 厚さ0.1mm、純度99.8%のアルミニウム箔を、
液温60℃、2.5wt%塩酸溶液中に浸漬して化学エ
ツチングを施した。該エツチング後のアルミニウ
ム箔基材は、表面に表面粗さ平均0.5μm以下の微
視的凹凸が形成されるとともに、深さ10μm程
度、内径20μm程度の多数のエツチングポアが形
成されたものであつた。また基材の表面拡大率は
約30倍であつた。次いで、上記エツチング箔基材
表面に、真空蒸着法により最大厚さ1.0μmのチタ
ン蒸着皮膜を形成した。この皮膜の表面は平均外
径0.5μmの微粒子が堆積したような形態を呈して
いた。なお、この実施例の場合、ポアの内面には
チタン蒸着皮膜がほとんど形成されていなかつ
た。 実施例 2 厚さ0.1mm、純度99.8%のアルミニウム箔を、
液温65℃、3.0wt%塩酸溶液中に浸漬し、20A/
50cm2の電流密度で300秒間交流電解エツチングし
た。エツチング後のアルミニウム箔基材の表面に
は、平均0.5μm以下の微視的凹凸が形成されると
ともに、深さ20μm程度、内径30μm程度のエツ
チングポアが多数形成されていた。また基材の表
面拡大率は約50倍であつた。次いで、上記エツチ
ング箔基材表面に、5×10-3Torrのアルゴンガ
ス雰囲気中でチタンを蒸発させ、最大深さ0.5μm
のチタン蒸着皮膜を形成した。この皮膜の表面は
平均外径0.6μmの多数のチタン微粒子による球頭
状突出部が形成されたものであつた。なお、この
実施例ではエツチングポアの内面の一部にもチタ
ン蒸着皮膜が形成されていた。 比較例 厚さ0.1mm、純度99.8%の表面平滑なアルミニ
ウム箔を基材として、この基材表面に5×
10-3Torrのアルゴンガス雰囲気中でチタンを蒸
発させ、厚さ0.7μmのチタン蒸着皮膜を形成し
た。この皮膜の表面は平均外径0.2μmの多数のチ
タン微粒子による球頭状突出部が形成されたもの
であつた。 なお、上記実施例1〜2および比較例における
チタン蒸着皮膜の形成は、蒸発源と基材との蒸発
距離250mm、蒸着速度200A゜/secとして行つた。 上記のように作製した3種の陰極材料の静電容
量を、30℃、10wt%ホウ酸アンモニウム溶液中
で測定した。その結果を表に示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a cathode material for electrolytic capacitors. Conventional Technology Electrode materials for electrolytic capacitors are generally divided into anode materials and cathode materials, but in order to increase the capacitance of a capacitor, it is necessary to improve the electrostatic capacity not only of the anode material but also of the cathode material itself. It is also important to improve capacity. As one of the cathode materials designed to improve capacitance, there is a known material in which a metal film such as a titanium film is formed on the surface of an aluminum box base material by vapor deposition in an inert gas (for example, Unexamined Japanese Patent Publication 1987
−167009). According to this cathode material, fine irregularities are formed on the surface of the film, and as a result, the area expansion ratio is improved compared to conventional cathode materials in which the surface area is enlarged by etching aluminum foil. Therefore, it is possible to further increase the capacitance. Problems to be Solved by the Invention However, even with the above-mentioned cathode materials, there is still a limit to the expansion of the surface area with a metal film, which is currently required to realize smaller size and higher performance of electrolytic capacitors. This did not give sufficient satisfaction to the increase in capacitance. The present invention was made in view of the above circumstances, and an object of the present invention is to provide a cathode material with further increased capacitance. Means for Solving the Problems For this purpose, the inventors conducted various experiments and research, and found that while the surface of the base material was roughened to form fine irregularities, a large number of pores were formed on the surface. After further expanding the surface area of the base material by distributing it as densely as possible, a titanium vapor deposited film made of titanium fine particles is further formed on the surface, thereby reducing electrostatic charge. It was discovered that the capacity could be significantly increased, leading to the completion of this invention. That is, this invention provides that pores with a maximum depth of 25 μm or less and a maximum internal diameter of 100 μm or less are distributed in the surface of a finely roughened aluminum foil base material at a density of 100 pores/cm 2 or more, and The gist of the present invention is to provide a cathode material for an electrolytic capacitor, characterized in that at least the surface portion of the base material excluding the pores is coated with a titanium vapor-deposited film. In this specification, the term aluminum is used to include aluminum alloys. The reason why the surface of the aluminum foil base material 1 is roughened to form the fine irregularities 3 is to spread the roughness effect to the surface of the titanium vapor deposited film 2 formed on the base material, thereby expanding the surface of the film. This is to help improve the ratio. Furthermore, the reason why a large number of pores 4 are formed in the base material 1 is to further expand the surface area of the base material and to improve the wettability of the electrolytic solution. Such roughening of the surface of the base material and formation of the pores 4 can be achieved simultaneously by an etching operation. For such etching, it is possible to employ not only a chemical or electrochemical wet etching method but also a dry etching method. Typical cross-sectional shapes of the pore 4 include a cylindrical shape with an approximately constant inner diameter regardless of the depth, as shown in Figure 2 A, B, and C;
Examples include a pot shape with a narrow inner diameter of the opening, and a bowl shape with an inner diameter increasing from the bottom to the opening. The dimensions of the pore 4 need to be a maximum depth of 25 μm or less and a maximum internal diameter of 100 μm or less. If the maximum depth exceeds 25 .mu.m or the maximum inner diameter exceeds 100 .mu.m, the disadvantage arises that it becomes difficult for the base material 1 to maintain the required mechanical strength as a cathode material. In addition, in order to increase the area expansion ratio of the base material 1, the pores 4 should have relatively small diameters and should be distributed as densely as possible, with a density of at least 100 pores/cm 2 .
It is necessary to make the distribution at a density of at least a certain level. Although the inner surface of the pore 4 does not necessarily have to be roughened, it is preferable that the inner surface also be formed into a finely uneven and rough surface in order to increase the capacitance. In this specification, the fine irregularities due to surface roughening refer to microscopic irregularities that do not include pores on the surface of the base material, as well as waviness components on the same surface. The material of the conductive film formed on the surface of the base material 1 is particularly limited to titanium because it can be made to be more durable than other conductive metals such as iron and copper. This is because it is possible to further extend the life of the capacitor and achieve higher reliability. As shown in FIG. 1, this titanium vapor-deposited film 2 needs to be formed on the entire surface of the base material 1 except for at least the pores 4, but of course,
It is preferable to form a coating on the inner surface of the pore 4 at the same time, since the capacitance can be further increased. The average particle diameter of the titanium fine particles constituting such a film is 0.01 to 1.0 μm from the viewpoint of improving the area expansion ratio of the film.
It is desirable that the range be within the range of In other words, if the thickness is less than 0.01 μm, the film becomes smooth and contributes little to the surface-enlarging effect, and conversely, if it becomes coarser than 1.0 μm, the surface-enlarging effect is poor and the capacitance is small. This is because it will be put away. Further, the thickness of the film is preferably in the range of 0.05 to 5.0 μm.
This is because if the thickness is less than 0.05 μm, the effect of surface expansion due to roughening of the film cannot be expected, whereas if it exceeds 5.0 μm, the effect is worth the increase in the amount of titanium material used, the increase in cost, and the deterioration of workability. This is because it cannot be obtained. As a method for forming such a titanium vapor-deposited film 2 on the surface of the base material 1, a vacuum vapor deposition method, an inert gas vapor deposition method, a sputtering method, an ion plating method, etc. can be used. Incidentally, such a process for forming a titanium film by vapor deposition can be performed semi-continuously while winding up a coiled base material. Effects of the Invention The cathode material for electrolytic capacitors according to the present invention is
As described above, not only is the surface of the base material roughened, but pores with a maximum depth of 25 μm or less and a maximum internal diameter of 100 μm or less are distributed on the surface at a density of 100 pores/cm 2 or more. Because of this, the surface area of the base material itself is further expanded compared to conventional cathode materials that use base materials with smooth surfaces or simply roughened surfaces with minute irregularities. In addition, since a titanium vapor-deposited film is formed on at least the surface of the base material excluding the pores, the film has an effect of expanding the surface area, which makes it more durable than conventional products. This can significantly increase the capacitance. Therefore, it is possible to further reduce the size and improve the performance of the electrolytic capacitor. Additionally, by using a base material with many pores on the surface, the wettability of the electrolyte to the cathode surface becomes even better, which in turn improves the durability and retention of initial performance of the capacitor. . In addition, the fact that the conductive film on the surface is made of a titanium vapor-deposited film makes it more durable than those using other metals.
As described above, according to the present invention, not only the capacitance of the capacitor can be increased and the capacitor can be made smaller, but also a longer life and higher reliability can be realized. Examples Next, examples of the present invention will be shown together with comparative examples. Example 1 Aluminum foil with a thickness of 0.1 mm and a purity of 99.8%,
Chemical etching was performed by immersing it in a 2.5 wt% hydrochloric acid solution at a temperature of 60°C. The aluminum foil base material after etching had microscopic irregularities with an average surface roughness of 0.5 μm or less formed on the surface, and a large number of etching pores with a depth of about 10 μm and an inner diameter of about 20 μm. . Moreover, the surface magnification of the base material was about 30 times. Next, a titanium vapor-deposited film having a maximum thickness of 1.0 μm was formed on the surface of the etching foil base material by vacuum vapor deposition. The surface of this film had a morphology in which fine particles with an average outer diameter of 0.5 μm were deposited. In the case of this example, almost no titanium vapor-deposited film was formed on the inner surface of the pore. Example 2 Aluminum foil with a thickness of 0.1 mm and a purity of 99.8%,
Immersed in 3.0wt% hydrochloric acid solution at 65℃, 20A/
AC electrolytic etching was performed for 300 seconds at a current density of 50 cm 2 . On the surface of the aluminum foil base material after etching, microscopic irregularities with an average size of 0.5 μm or less were formed, and many etching pores with a depth of about 20 μm and an inner diameter of about 30 μm were formed. Moreover, the surface magnification of the base material was about 50 times. Next, titanium was evaporated onto the surface of the etching foil base material in an argon gas atmosphere of 5×10 -3 Torr to a maximum depth of 0.5 μm.
A titanium vapor-deposited film was formed. The surface of this film had spherical protrusions formed by a large number of titanium fine particles having an average outer diameter of 0.6 μm. In this example, a titanium vapor-deposited film was also formed on a part of the inner surface of the etching pore. Comparative example: Using a smooth aluminum foil with a thickness of 0.1 mm and a purity of 99.8% as a base material, 5×
Titanium was evaporated in an argon gas atmosphere of 10 -3 Torr to form a titanium vapor deposited film with a thickness of 0.7 μm. The surface of this film had spherical protrusions formed by a large number of titanium fine particles having an average outer diameter of 0.2 μm. The titanium vapor-deposited films in Examples 1 and 2 and Comparative Examples were formed at an evaporation distance of 250 mm between the evaporation source and the substrate, and a evaporation rate of 200 A°/sec. The capacitance of the three types of cathode materials prepared as described above was measured at 30°C in a 10 wt% ammonium borate solution. The results are shown in the table.

【表】 上記結果から明らかなように、この発明に係る
陰極材料は、基材を粗面化しない従来の陰極材料
よりも顕著に優れた静電容量を有するものである
ことを確認し得た。
[Table] As is clear from the above results, it was confirmed that the cathode material according to the present invention has a significantly better capacitance than the conventional cathode material in which the base material is not roughened. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る電解コンデンサ用陰
極材料の表面部の構成を示す模式的断面図、第2
図イ,ロ,ハは、基材の表面に形成されるポアの
形態の代表的な例を示す模式的断面図である。 1……基材、2……チタン蒸着皮膜、3……微
細な凹凸、4……ポア。
FIG. 1 is a schematic cross-sectional view showing the structure of the surface portion of the cathode material for an electrolytic capacitor according to the present invention, and FIG.
Figures A, B, and C are schematic cross-sectional views showing typical examples of the form of pores formed on the surface of the base material. 1... Base material, 2... Titanium vapor deposited film, 3... Fine irregularities, 4... Pores.

Claims (1)

【特許請求の範囲】 1 微細に粗面化されたアルミニウム箔基材の表
面中に、最大深さ25μm以下、最大内径100μm以
下のポアが100個/cm2以上の密度で分布されてい
ること、及び少なくとも前記ポアを除く基材の表
面部分にチタン蒸着皮膜が被覆形成されているこ
と、を特徴とする電解コンデンサ用陰極材料。 2 チタン蒸着皮膜は、平均粒子径0.01〜1.0μm
のチタン微粒子からなる厚さ0.05〜5.0μmの皮膜
である特許請求の範囲第1項記載の電解コンデン
サ用陰極材料。
[Claims] 1. Pores with a maximum depth of 25 μm or less and a maximum internal diameter of 100 μm or less are distributed in the surface of a finely roughened aluminum foil base material at a density of 100 pores/cm 2 or more. A cathode material for an electrolytic capacitor, characterized in that at least a surface portion of the base material excluding the pores is coated with a titanium vapor-deposited film. 2 The titanium vapor deposited film has an average particle size of 0.01 to 1.0 μm.
The cathode material for an electrolytic capacitor according to claim 1, which is a film having a thickness of 0.05 to 5.0 μm and made of fine titanium particles.
JP9874585A 1985-05-08 1985-05-08 Cathode material for electrolytic capacitor Granted JPS6258609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9874585A JPS6258609A (en) 1985-05-08 1985-05-08 Cathode material for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9874585A JPS6258609A (en) 1985-05-08 1985-05-08 Cathode material for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS6258609A JPS6258609A (en) 1987-03-14
JPH0260048B2 true JPH0260048B2 (en) 1990-12-14

Family

ID=14228008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9874585A Granted JPS6258609A (en) 1985-05-08 1985-05-08 Cathode material for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6258609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006013812A1 (en) * 2004-08-05 2008-05-01 松下電器産業株式会社 Method for producing aluminum electrode foil for capacitor and aluminum foil for etching

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166602A (en) * 2006-12-28 2008-07-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP5329686B2 (en) * 2012-02-03 2013-10-30 幸子 小野 Aluminum material for electrolytic capacitor electrode and manufacturing method thereof, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006013812A1 (en) * 2004-08-05 2008-05-01 松下電器産業株式会社 Method for producing aluminum electrode foil for capacitor and aluminum foil for etching

Also Published As

Publication number Publication date
JPS6258609A (en) 1987-03-14

Similar Documents

Publication Publication Date Title
KR910005753B1 (en) Aluminum electrode material for electrolytic capacitor
KR970004301B1 (en) Electrode foil for electrolytic capacitor and process of manufacture thereof
EP0344316B1 (en) Method for producing an electrolytic capacitor
JPH0337293B2 (en)
EP0877402A1 (en) Ultrasonically coated substrate for use in a capacitor and method of manufacture
US4309810A (en) Porous metal films
CN1650375A (en) Electrode and method for the production thereof
TW201435939A (en) Super capacitor and method for manufacturing the same
JP3475193B2 (en) Method and apparatus for forming a porous coating of an electrolytic capacitor and a cathode film
JPH061751B2 (en) Anode material for electrolytic capacitors
JPH0449773B2 (en)
JP4883391B2 (en) Method for producing electrode for lithium secondary battery
JPH0260048B2 (en)
JP2005293899A (en) Manufacturing method of electrode for lithium secondary battery
JPH0263284B2 (en)
US3356912A (en) Porous electrode
GB2056503A (en) Porous metal films
JPS6353688B2 (en)
JPH0748462B2 (en) Method for manufacturing aluminum electrode material for electrolytic capacitor
US7149076B2 (en) Capacitor anode formed of metallic columns on a substrate
JPS63100711A (en) Manufacture of electrode material for electrolytic capacitor
JPH02117123A (en) Cathode material for electrolyte condenser
JPH079868B2 (en) Electrode material for electrolytic capacitors
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
US4089990A (en) Battery plate and method of making

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term