JP3095909B2 - Method for producing sodium-sulfur battery and anode container thereof - Google Patents

Method for producing sodium-sulfur battery and anode container thereof

Info

Publication number
JP3095909B2
JP3095909B2 JP04305702A JP30570292A JP3095909B2 JP 3095909 B2 JP3095909 B2 JP 3095909B2 JP 04305702 A JP04305702 A JP 04305702A JP 30570292 A JP30570292 A JP 30570292A JP 3095909 B2 JP3095909 B2 JP 3095909B2
Authority
JP
Japan
Prior art keywords
anode container
sodium
anode
solid electrolyte
electrolyte tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04305702A
Other languages
Japanese (ja)
Other versions
JPH06163074A (en
Inventor
孝志 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP04305702A priority Critical patent/JP3095909B2/en
Publication of JPH06163074A publication Critical patent/JPH06163074A/en
Application granted granted Critical
Publication of JP3095909B2 publication Critical patent/JP3095909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ナトリウム−硫黄電
池及びその陽極容器の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sodium-sulfur battery and its anode container.

【0002】[0002]

【従来の技術】一般に、ナトリウム−硫黄電池において
は、陽極容器がアルミニウムやアルミニウム合金等の金
属材料により形成され、この陽極容器内にベータアルミ
ナ等のセラミックよりなる固体電解質管が吊り下げ状態
で取着されている。そして、この固体電解質管の内側の
陰極室内にはナトリウムが収容され、外側の陽極室内に
は硫黄が収容されている。
2. Description of the Related Art In general, in a sodium-sulfur battery, an anode container is formed of a metal material such as aluminum or an aluminum alloy, and a solid electrolyte tube made of ceramic such as beta alumina is suspended in the anode container. Is being worn. Then, sodium is contained in the cathode chamber inside the solid electrolyte tube, and sulfur is contained in the outside anode chamber.

【0003】この種のナトリウム−硫黄電池において
は、運転時に300〜350℃まで加熱されると共に、
停止時には放熱して冷却される。このとき、金属製の陽
極容器がセラミック製の固体電解質管よりも熱膨脹率が
大きいため、運転時には陽極容器と固体電解質管の下端
部との隙間が拡大し、停止時にはこの隙間が減少するこ
とになる。
In this type of sodium-sulfur battery, it is heated to 300 to 350 ° C. during operation, and
When stopped, heat is dissipated and cooled. At this time, since the metal anode container has a larger coefficient of thermal expansion than the ceramic solid electrolyte tube, the gap between the anode container and the lower end portion of the solid electrolyte tube increases during operation, and the gap decreases when stopped. Become.

【0004】ところが、運転時に溶融状態にあった多硫
化ナトリウムが240℃付近まで冷却されると固化し
て、陽極容器と固体電解質管の下端部との隙間に固体相
を形成するため、陽極容器が冷却時に原寸まで収縮でき
なくなる。このため、電池の運転−停止を繰り返し行っ
ていると、陽極容器が軸線方向へ次第に伸長して、固体
電解質管を破損させるおそれがあった。
However, when the sodium polysulfide in the molten state during operation is cooled to around 240 ° C., it solidifies and forms a solid phase in the gap between the anode container and the lower end of the solid electrolyte tube. Cannot be shrunk to the original size when cooled. For this reason, when the operation-stop of the battery is repeatedly performed, the anode container may gradually elongate in the axial direction and damage the solid electrolyte tube.

【0005】このような問題点を解消するために、陽極
容器の外周の上端近傍に1つのくびれ部を設けて、陽極
容器の熱変化に伴う伸縮を吸収緩和できるようにしたナ
トリウム−硫黄電池も、従来から提案されている。
[0005] In order to solve such a problem, a sodium-sulfur battery in which one constriction is provided near the upper end of the outer periphery of the anode container so as to absorb and reduce expansion and contraction of the anode container due to heat change is also known. It has been conventionally proposed.

【0006】[0006]

【発明が解決しようとする課題】ところが、この従来の
ナトリウム−硫黄電池においては、陽極容器の外周の上
端近傍に1つのくびれ部のみが設けられているだけであ
るため、陽極容器の熱変化に伴う伸縮を十分に吸収緩和
することができない。このため、電池の運転−停止を繰
り返し行っていると、くびれ部が熱変化により過度に伸
長若しくは収縮して、そのくびれ部や陽極容器の内面の
耐食皮膜にクラックが生じたり、固体電解質管が破損し
たりするという問題があった。
However, in this conventional sodium-sulfur battery, only one constriction is provided in the vicinity of the upper end of the outer periphery of the anode container. The accompanying expansion and contraction cannot be sufficiently absorbed and alleviated. For this reason, when the battery is repeatedly operated and stopped, the constricted portion excessively expands or contracts due to a thermal change, and cracks occur in the constricted portion and the corrosion-resistant coating on the inner surface of the anode container, or the solid electrolyte tube may be damaged. There was a problem of being damaged.

【0007】この発明は、このような従来の技術に存在
する問題点に着目してなされたものであって、その第1
の目的は、陽極容器の熱変化に伴う伸縮を十分に吸収緩
和することができて、電池の運転−停止を繰り返し行っ
た際に、陽極容器の外周のくびれ部や陽極容器の内面の
耐食皮膜にクラックが生じたり、固体電解質管が破損し
たりするおそれを確実に防止することができるナトリウ
ム−硫黄電池を提供することにある。
[0007] The present invention has been made in view of the problems existing in such a conventional technique, and its first aspect is as follows.
The purpose of this method is to sufficiently absorb and mitigate the expansion and contraction of the anode container due to thermal changes, and when the battery is repeatedly operated and stopped, the constriction on the outer periphery of the anode container and the corrosion-resistant coating on the inner surface of the anode container It is an object of the present invention to provide a sodium-sulfur battery that can surely prevent the occurrence of cracks and breakage of the solid electrolyte tube.

【0008】また、この発明の第2の目的は、外周に複
数のくびれ部を有する陽極容器を、そのくびれ部にクラ
ック等が発生することなく容易に製造することができる
ナトリウム−硫黄電池の陽極容器の製造方法を提供する
ことにある。
A second object of the present invention is to provide an anode container for a sodium-sulfur battery which can easily produce an anode container having a plurality of constrictions on the outer periphery without cracks or the like occurring in the constrictions. An object of the present invention is to provide a method for manufacturing a container.

【0009】[0009]

【課題を解決するための手段】上記の第1の目的を達成
するために、請求項1に記載の発明では、金属製の陽極
容器内にセラミック製の固体電解質管を吊り下げ状態で
取着し、その固体電解質管の内側の陰極室内にナトリウ
ムを収容すると共に、外側の陽極室内に硫黄を収容して
なるナトリウム−硫黄電池において、前記陽極容器の上
部外周にくびれ部を設けるとともに、そのくびれ部から
下方へ所定間隔をおいてさらに別のくびれ部を形成した
ことを特徴とするものである。
In order to achieve the first object, according to the first aspect of the present invention, a ceramic solid electrolyte tube is suspended in a metal anode container. A sodium-sulfur battery containing sodium in the cathode chamber inside the solid electrolyte tube and sulfur in the outside anode chamber, providing a constricted portion on the upper outer periphery of the anode container, A further constricted portion is formed at a predetermined interval downward from the portion.

【0010】また、上記の第2の目的を達成するため
に、請求項2に記載の発明では、金属製の陽極容器内に
セラミック製の固体電解質管を吊り下げ状態で取着し、
その固体電解質管の内側の陰極室内にナトリウムを収容
すると共に、外側の陽極室内に硫黄を収容してなるナト
リウム−硫黄電池において、直管状の金属パイプをビッ
カース硬さが40よりも小さくなるまで加熱処理し、こ
の状態で金属パイプの外周に複数のくびれ部を長手方向
へ所定間隔をおいて形成することを特徴とするものであ
る。
In order to achieve the second object, according to the second aspect of the present invention, a ceramic solid electrolyte tube is attached to a metal anode container in a suspended state,
In a sodium-sulfur battery containing sodium in the cathode chamber inside the solid electrolyte tube and sulfur in the outside anode chamber, a straight tubular metal pipe is heated until the Vickers hardness becomes smaller than 40. In this state, a plurality of constrictions are formed on the outer periphery of the metal pipe at predetermined intervals in the longitudinal direction.

【0011】[0011]

【作用】上記のように構成されたナトリウム−硫黄電池
において、電池の運転−停止が繰り返し行われて、陽極
容器が熱変化により伸長若しくは収縮される場合、その
陽極容器の伸縮は上下に位置する複数のくびれ部に分担
して確実に吸収緩和される。従って、陽極容器の外周の
くびれ部や陽極容器の内面の耐食皮膜にクラックが生じ
たり、固体電解質管が破損したりするおそれを確実に防
止することができる。
In the sodium-sulfur battery configured as described above, when the battery is repeatedly operated and stopped to expand or contract the anode container due to heat change, the expansion and contraction of the anode container is vertically positioned. The absorption is surely alleviated by sharing to a plurality of constrictions. Therefore, it is possible to reliably prevent the occurrence of cracks in the constricted portion on the outer periphery of the anode container and the corrosion-resistant coating on the inner surface of the anode container and the possibility of breakage of the solid electrolyte tube.

【0012】また、陽極容器を製造する場合、直管状の
金属パイプをビッカース硬さが40よりも小さくなるま
で加熱処理した後、金属パイプの外周に複数のくびれ部
を長手方向へ所定間隔をおいて形成すれば、くびれ部に
クラック等が発生することなく、陽極容器を容易に製造
することができる。
In the case of manufacturing an anode container, a straight metal pipe is subjected to heat treatment until the Vickers hardness becomes smaller than 40, and then a plurality of constrictions are formed on the outer periphery of the metal pipe at predetermined intervals in the longitudinal direction. If formed, the anode container can be easily manufactured without generating cracks or the like in the constricted portion.

【0013】[0013]

【実施例】以下、請求項1に記載の発明を具体化したナ
トリウム−硫黄電池の第1実施例を、図面に基づいて詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of a sodium-sulfur battery embodying the present invention will be described in detail with reference to the drawings.

【0014】図1及び図2に示すように、陽極容器1は
アルミニウムやアルミニウム合金等の金属材料により円
筒状に形成され、その下端開口部には底板2が嵌合固定
されている。上下一対のくびれ部3,4は陽極容器1の
外周に長手方向へ所定間隔をおいて形成され、このくび
れ部3,4によって陽極容器1の熱変化に伴う伸縮が吸
収緩和される。なお、下くびれ部4は下端部に溜まる活
物質としての多硫化ナトリウム(Na2 X )を避け
て、それより上側に設けられる。耐食皮膜5は陽極容器
1の内周面に溶射形成され、この耐食皮膜5により陽極
容器1の腐食が防止される。
As shown in FIGS. 1 and 2, the anode container 1 is formed in a cylindrical shape from a metal material such as aluminum or an aluminum alloy, and a bottom plate 2 is fitted and fixed to an opening at a lower end thereof. A pair of upper and lower constrictions 3 and 4 are formed on the outer periphery of the anode container 1 at predetermined intervals in the longitudinal direction, and the constrictions 3 and 4 absorb and reduce expansion and contraction of the anode container 1 due to a heat change. In addition, the lower constricted part 4 is provided above the lower part, avoiding sodium polysulfide (Na 2 S X ) as an active material accumulated at the lower end. The corrosion-resistant coating 5 is formed by spraying on the inner peripheral surface of the anode container 1, and the corrosion-resistant coating 5 prevents corrosion of the anode container 1.

【0015】支持金具6は前記陽極容器1の上端開口部
に嵌合固定され、その上面にはアルファアルミナよりな
る絶縁リング7が接合固定されている。ベータアルミナ
等のセラミック材料よりなる有底円筒状の固体電解質管
8は絶縁リング7の下端内周に吊り下げ状態で接合固定
され、この固体電解質管8の内側には陰極室R1が区画
形成されると共に、外側には陽極室R2が区画形成され
ている。
The support bracket 6 is fitted and fixed to the upper end opening of the anode container 1, and an insulating ring 7 made of alpha alumina is fixedly joined to the upper surface thereof. A cylindrical solid electrolyte tube 8 having a bottom and made of a ceramic material such as beta-alumina is suspended and fixed to the inner periphery of the lower end of the insulating ring 7 in a suspended state. Inside the solid electrolyte tube 8, a cathode chamber R1 is defined. At the same time, an anode chamber R2 is defined on the outside.

【0016】カートリッジ9は前記陰極室R1内に配設
され、このカートリッジ9内には陰極活物質としてのナ
トリウムNaが収容されている。小孔10はカートリッ
ジ9の底部に設けられ、この小孔10を通してカートリ
ッジ9内のナトリウムNaが、カートリッジ9と固体電
解質管8との間の間隙部に供給される。
A cartridge 9 is provided in the cathode chamber R1, and contains sodium Na as a cathode active material. The small hole 10 is provided at the bottom of the cartridge 9, and the sodium Na in the cartridge 9 is supplied to the gap between the cartridge 9 and the solid electrolyte tube 8 through the small hole 10.

【0017】窒素ガスやアルゴンガス等の不活性ガスG
は前記カートリッジ9の上部空間に所定の圧力で封入さ
れ、この不活性ガスGによりカートリッジ9内のナトリ
ウムNaが小孔10から流出する方向へ加圧されてい
る。カーボンマット等よりなる陽極用導電材11は陽極
室R2内に収容され、この陽極用導電材11には陽極活
物質としての硫黄Sが含浸されている。
Inert gas G such as nitrogen gas or argon gas
Is sealed in the upper space of the cartridge 9 at a predetermined pressure, and the inert gas G pressurizes sodium Na in the cartridge 9 in a direction of flowing out of the small holes 10. The anode conductive material 11 made of a carbon mat or the like is accommodated in the anode chamber R2, and the anode conductive material 11 is impregnated with sulfur S as an anode active material.

【0018】陰極蓋12は前記絶縁リング7上に接合固
定され、中央の円板部13と、その円板部13の外周に
設けられた円筒部14とを有している。そして、この陰
極蓋12の円筒部14の下端が、カートリッジ9と固体
電解質管8との間の間隙部に供給されたナトリウムNa
に接触して、陰極側の集電が行われる。
The cathode lid 12 is fixedly joined to the insulating ring 7 and has a central disk portion 13 and a cylindrical portion 14 provided on the outer periphery of the disk portion 13. The lower end of the cylindrical portion 14 of the cathode lid 12 is connected to the sodium Na supplied to the gap between the cartridge 9 and the solid electrolyte tube 8.
, And current collection on the cathode side is performed.

【0019】有底円筒状の安全管15は前記カートリッ
ジ9と固体電解質管8との間の間隙部に、そのカートリ
ッジ9及び固体電解質管8からそれぞれ所定間隔をおい
て配設され、耐食性を有するアルミニウムやステンレス
等の金属材料から形成されている。そして、放電時に前
記カートリッジ9の小孔10から供給されるナトリウム
Naが、この安全管15とカートリッジ9との間の間隙
内で上方に移動された後、安全管15の上端を乗り越え
て、安全管15と固体電解質管8との間の間隙内で下方
に移動される。さらに、このナトリウムNaは固体電解
質管8をナトリウムイオンとなって透過して、陽極室R
2側へ移動されるようになっている。
The bottomed cylindrical safety tube 15 is disposed in the gap between the cartridge 9 and the solid electrolyte tube 8 at a predetermined interval from the cartridge 9 and the solid electrolyte tube 8, respectively, and has corrosion resistance. It is formed from a metal material such as aluminum or stainless steel. Then, after the sodium Na supplied from the small hole 10 of the cartridge 9 at the time of discharge is moved upward in the gap between the safety tube 15 and the cartridge 9, it passes over the upper end of the safety tube 15 and It is moved downward in the gap between the tube 15 and the solid electrolyte tube 8. Further, the sodium Na permeates through the solid electrolyte tube 8 as sodium ions, and the anode room R
It is designed to be moved to two sides.

【0020】次に、前記のように構成されたこの実施例
のナトリウム−硫黄電池について作用を説明する。さ
て、この電池は運転時に300〜350℃に加熱され、
この状態で陰極室R1のナトリウムNaと陽極室R2の
硫黄Sとがイオン化される。そして、このイオン化され
たナトリウムは、放電時に固体電解質管8を透過して陽
極室R2側に移り、硫黄Sと反応して多硫化ナトリウム
を生成する。また、逆に充電時には、多硫化ナトリウム
が分解し、生成したナトリウムイオンが固体電解質管8
を透過して、陰極室R1側にナトリウムNaを生成する
と共に、陽極室R2側に硫黄Sを生成する。
Next, the operation of the sodium-sulfur battery of this embodiment configured as described above will be described. Now, this battery is heated to 300-350 ° C during operation,
In this state, sodium Na in the cathode chamber R1 and sulfur S in the anode chamber R2 are ionized. Then, the ionized sodium permeates through the solid electrolyte tube 8 during discharge and moves to the anode chamber R2 side, and reacts with sulfur S to generate sodium polysulfide. Conversely, during charging, sodium polysulfide is decomposed, and the generated sodium ions are transferred to the solid electrolyte tube 8.
To generate sodium Na on the cathode chamber R1 side and sulfur S on the anode chamber R2 side.

【0021】このように、電池は運転時に300〜35
0℃まで加熱されると共に、停止時には放熱して冷却さ
れる。このとき、アルミニウムやアルミニウム合金等の
金属材料よりなる陽極容器1が、ベータアルミナ等のセ
ラミック材料よりなる固体電解質管8よりも熱膨張率が
大きいため、運転時には陽極容器1と固体電解質管8の
下端部との隙間が拡大し、停止時にはこの隙間が減少す
る。
As described above, the battery is operated during operation at 300-35.
While being heated to 0 ° C., it is cooled by radiating heat when stopped. At this time, the anode container 1 made of a metal material such as aluminum or an aluminum alloy has a larger coefficient of thermal expansion than the solid electrolyte tube 8 made of a ceramic material such as beta-alumina. The gap with the lower end is enlarged, and this gap is reduced when stopping.

【0022】ところが、運転時に溶融状態にあった多硫
化ナトリウムが240℃付近まで冷却されると固化し
て、陽極容器1と固体電解質管8の下端部との隙間に固
体相を形成するため、陽極容器1が冷却時に原寸まで収
縮できなくなる。このため、電池の運転−停止を繰り返
し行っていると、陽極容器1が軸線方向へ次第に伸長し
て、固体電解質管8を破損させるおそれがある。
However, when the sodium polysulfide in the molten state during operation is cooled to around 240 ° C., it solidifies and forms a solid phase in the gap between the anode container 1 and the lower end of the solid electrolyte tube 8. The anode container 1 cannot be contracted to its original size during cooling. For this reason, when the operation-stop of the battery is repeatedly performed, the anode container 1 may gradually expand in the axial direction, and the solid electrolyte tube 8 may be damaged.

【0023】しかしながら、この実施例のナトリウム−
硫黄電池においては、陽極容器1の外周に上下一対のく
びれ部3,4が長手方向へ所定間隔をおいて形成されて
いるため、電池の運転−停止が繰り返し行われて、陽極
容器1が熱変化により伸長若しくは収縮された場合で
も、その陽極容器1の伸縮は上下一対のくびれ部3,4
に分担して確実に吸収緩和される。従って、陽極容器1
の外周のくびれ部3,4や陽極容器1の内面の耐食皮膜
5にクラックが生じたり、固体電解質管8が破損したり
するおそれを確実に防止することができる。
However, the sodium-
In the sulfur battery, since a pair of upper and lower constricted portions 3 and 4 are formed on the outer periphery of the anode container 1 at predetermined intervals in the longitudinal direction, the operation and stop of the battery are repeated, and the anode container 1 is heated. Even when the anode container 1 is expanded or contracted by the change, the expansion and contraction of the anode container 1 is controlled by a pair of upper and lower constricted portions 3 and 4.
And the absorption is surely alleviated. Therefore, the anode container 1
Cracks in the constricted portions 3 and 4 on the outer periphery of the outer wall and the corrosion-resistant coating 5 on the inner surface of the anode container 1 and damage to the solid electrolyte tube 8 can be reliably prevented.

【0024】ちなみに、陽極容器1の外周に上下一対の
くびれ部3,4を設けた実施例の構成と、陽極容器1の
外周に上くびれ部3のみを設けた従来例の構成と、陽極
容器の外周に上くびれ部3を設けると共に、陰極蓋12
の円板部13に環状くびれ部を設けた比較例の構成とに
ついて、ヒートサイクル回数と上くびれ部3のクラック
発生本数との関係を、実電池試験したところ、図3のグ
ラフに示すような結果が得られた。このグラフから明ら
かなように、この実施例の構成によれば、従来例及び比
較例の構成に比較して、上くびれ部3のクラック発生本
数を大幅に減少できることが確認された。
Incidentally, the configuration of the embodiment in which a pair of upper and lower constricted portions 3 and 4 are provided on the outer periphery of the anode container 1, the configuration of the conventional example in which only the upper constricted portion 3 is provided on the outer periphery of the anode container 1, and the anode container The upper constriction 3 is provided on the outer periphery of the
The relationship between the number of heat cycles and the number of cracks generated in the upper constricted portion 3 was tested with respect to the configuration of the comparative example in which the circular constricted portion was provided in the disk portion 13 of FIG. The result was obtained. As is clear from this graph, it was confirmed that the number of cracks in the upper constricted portion 3 can be significantly reduced according to the configuration of this example, as compared with the configurations of the conventional example and the comparative example.

【0025】また、同様にこの実施例と従来例と比較例
の構成について、ヒートサイクル回数と耐食皮膜5のク
ラック発生本数との関係を、実電池試験したところ、図
4のグラフに示すような結果が得られた。このグラフか
ら明らかなように、この実施例の構成によれば、従来例
及び比較例の構成に比較して、耐食皮膜5のクラック発
生本数を大幅に減少できることが確認された。
Similarly, the relationship between the number of heat cycles and the number of cracks generated in the corrosion-resistant coating 5 was tested for the configurations of this example, the conventional example, and the comparative example by an actual battery test, as shown in the graph of FIG. The result was obtained. As is clear from this graph, it was confirmed that the number of cracks in the corrosion-resistant coating 5 can be significantly reduced according to the configuration of this example, as compared with the configurations of the conventional example and the comparative example.

【0026】次に、請求項2に記載の発明を具体化した
陽極容器の製造方法の一実施例を、図5に基づいて説明
する。すなわち、この実施例において、陽極容器1を製
造する場合には、直管状の金属パイプをビッカース硬さ
が40よりも小さくなるまで加熱処理し、その後、金属
パイプの外周に上下一対のくびれ部3,4を長手方向へ
所定間隔をおいて回転させながら絞り成形する。このよ
うに加工すれば、くびれ部3,4にクラック等が発生す
ることなく、陽極容器1を容易に製造することができ
る。また、この加工後に、くびれ部3,4付近を局部的
に再熱処理して、陽極容器1全体を均一硬さにするのが
望ましい。
Next, an embodiment of a method of manufacturing an anode container embodying the invention described in claim 2 will be described with reference to FIG. That is, in this embodiment, when the anode container 1 is manufactured, the straight tubular metal pipe is heated until the Vickers hardness becomes smaller than 40, and then a pair of upper and lower constricted portions 3 is formed on the outer periphery of the metal pipe. , 4 are drawn while rotating at predetermined intervals in the longitudinal direction. With such processing, the anode container 1 can be easily manufactured without generating cracks or the like in the constricted portions 3 and 4. Further, after this processing, it is desirable that the vicinity of the constricted portions 3 and 4 be locally reheat-treated so that the entire anode container 1 has a uniform hardness.

【0027】ちなみに、外径が60mm、長さが360
mm、肉厚が2.2mmのアルミニウムパイプに、内径
が47mmの一対のくびれ部3,4を形成した場合につ
いて、くびれ部3,4の欠陥の有無に対する陽極容器用
の金属パイプの熱処理温度とパイプ硬さとの関係を試験
したところ、図5のグラフに示すような結果が得られ
た。
Incidentally, the outer diameter is 60 mm and the length is 360
In the case where a pair of constrictions 3 and 4 having an inner diameter of 47 mm are formed on an aluminum pipe having a thickness of 2.2 mm and a wall thickness of 2.2 mm, the heat treatment temperature of the metal pipe for the anode container with respect to the presence or absence of defects in the constrictions 3 and 4 When the relationship with the pipe hardness was tested, the results shown in the graph of FIG. 5 were obtained.

【0028】このグラフから明らかなように、金属パイ
プを400℃よりも低い温度で3時間加熱処理して、ビ
ッカース硬さが40よりも大きい状態で、くびれ部3,
4を絞り成形した場合には、加工後くびれ部3,4にク
ラック等の欠陥が発生した。それに対して、金属パイプ
を400℃よりも高い温度で3時間加熱処理して、ビッ
カース硬さが40よりも小さくなった状態で、くびれ部
3,4を絞り成形した場合には、加工後くびれ部3,4
にクラック等の欠陥が発生しなくなった。
As is apparent from this graph, the metal pipe was heat-treated at a temperature lower than 400 ° C. for 3 hours, and the constricted portion 3 was formed while the Vickers hardness was higher than 40.
In the case where No. 4 was drawn, defects such as cracks occurred in the constricted portions 3 and 4 after processing. On the other hand, when the metal pipe is heat-treated at a temperature higher than 400 ° C. for 3 hours and the Vickers hardness becomes smaller than 40, and the constrictions 3 and 4 are formed by drawing, the constriction after processing is obtained. Parts 3, 4
No cracks or other defects occurred.

【0029】[0029]

【別の実施例】次に、請求項1に記載の発明を具体化し
た別の実施例を、図6〜図10に基づいて説明する。
Next, another embodiment of the present invention will be described with reference to FIGS.

【0030】さて、これらの別の実施例においては、切
削加工により陽極容器1の外周にくびれ部4が形成され
ている。そして、図6に示す第2実施例では、くびれ部
4が切削により断面ほぼ半円形状の1つの環状溝で形成
されている。また、図7に示す第3実施例では、くびれ
部4が断面ほぼ円弧状の1つの環状溝で形成され、図8
の第4実施例では、くびれ部4が断面ほぼ長円形状の1
つの環状溝で形成されている。さらに、図9に示す第5
実施例では、くびれ部4が断面ほぼ半円形状の2つの環
状溝で形成され、図10に示す第6実施例では、くびれ
部4が断面波形状の複数の環状溝で形成されている。
In these other embodiments, the constricted portion 4 is formed on the outer periphery of the anode container 1 by cutting. In the second embodiment shown in FIG. 6, the constricted portion 4 is formed by cutting into one annular groove having a substantially semicircular cross section. Further, in the third embodiment shown in FIG. 7, the constricted portion 4 is formed by one annular groove having a substantially arc-shaped cross section.
In the fourth embodiment, the constricted portion 4 has a substantially elliptical cross section.
It is formed by two annular grooves. Further, the fifth type shown in FIG.
In the embodiment, the constricted portion 4 is formed by two annular grooves having a substantially semicircular cross section. In the sixth embodiment shown in FIG. 10, the constricted portion 4 is formed by a plurality of annular grooves having a corrugated cross section.

【0031】なお、この発明は前記実施例の構成に限定
されるものではなく、例えば、下くびれ部4を陽極容器
1の外周で長手方向の中間部付近に設けたり、下くびれ
部4の円弧の大きさを陽極容器1の径や厚さに応じて変
えたり、下くびれ部4を複数箇所に設けたり等、この発
明の趣旨から逸脱しない範囲で、各部の構成を任意に変
更して具体化することも可能である。
The present invention is not limited to the configuration of the above-described embodiment. For example, the lower constricted portion 4 may be provided in the outer periphery of the anode container 1 in the vicinity of an intermediate portion in the longitudinal direction, or the arc of the lower constricted portion 4 may be formed. The configuration of each part is arbitrarily changed within a range not departing from the gist of the present invention, such as changing the size of the part according to the diameter and thickness of the anode container 1 and providing the lower neck part 4 at a plurality of places. It is also possible to convert.

【0032】[0032]

【発明の効果】この発明は、以上説明したように構成さ
れているため、次のような優れた効果を奏する。
Since the present invention is configured as described above, it has the following excellent effects.

【0033】請求項1に記載の発明によれば、陽極容器
の熱変化に伴う伸縮を十分に吸収緩和することができ
て、電池の運転−停止を繰り返し行った際に、陽極容器
の外周のくびれ部や陽極容器の内面の耐食皮膜にクラッ
クが生じたり、固体電解質管が破損したりするおそれを
確実に防止することができる。
According to the first aspect of the present invention, the expansion and contraction of the anode container due to the thermal change can be sufficiently absorbed and alleviated, and when the battery is repeatedly operated and stopped, the outer periphery of the anode container can be removed. It is possible to reliably prevent the occurrence of cracks in the constricted portion and the corrosion-resistant coating on the inner surface of the anode container and the possibility of breakage of the solid electrolyte tube.

【0034】また、請求項2に記載の発明によれば、外
周に複数のくびれ部を有する陽極容器を、そのくびれ部
にクラック等が発生することなく容易に製造することが
できる。
According to the second aspect of the present invention, an anode container having a plurality of constrictions on the outer periphery can be easily manufactured without generating cracks or the like in the constrictions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を具体化したナトリウム−硫黄電池の
第1実施例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a sodium-sulfur battery embodying the present invention.

【図2】その陽極容器を取り出して示す縦断面図であ
る。
FIG. 2 is a longitudinal sectional view showing the anode container taken out.

【図3】実電池試験のヒートサイクル回数と上くびれ部
のクラック発生本数との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the number of heat cycles in an actual battery test and the number of cracks in the upper constricted portion.

【図4】実電池試験のヒートサイクル回数と耐食皮膜の
クラック発生本数との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the number of heat cycles in an actual battery test and the number of cracks in a corrosion-resistant film.

【図5】くびれ部の欠陥の有無に対する陽極容器用の金
属パイプの熱処理温度とパイプ硬さとの関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between a heat treatment temperature and a pipe hardness of a metal pipe for an anode container with respect to the presence or absence of a defect in a constricted portion.

【図6】この発明の第2実施例を示す陽極容器の縦断面
図である。
FIG. 6 is a longitudinal sectional view of an anode container showing a second embodiment of the present invention.

【図7】この発明の第3実施例を示す陽極容器の縦断面
図である。
FIG. 7 is a longitudinal sectional view of an anode container showing a third embodiment of the present invention.

【図8】この発明の第4実施例を示す陽極容器の縦断面
図である。
FIG. 8 is a longitudinal sectional view of an anode container showing a fourth embodiment of the present invention.

【図9】この発明の第5実施例を示す陽極容器の縦断面
図である。
FIG. 9 is a longitudinal sectional view of an anode container showing a fifth embodiment of the present invention.

【図10】この発明の第6実施例を示す陽極容器の縦断
面図である。
FIG. 10 is a longitudinal sectional view of an anode container showing a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…陽極容器、3…上くびれ部、4…下くびれ部、5…
耐食皮膜、8…固体電解質管、R1…陰極室、R2…陽
極室、Na…ナトリウム、S…硫黄。
1 ... anode container, 3 ... upper constricted part, 4 ... lower constricted part, 5 ...
Corrosion resistant coating, 8: solid electrolyte tube, R1: cathode chamber, R2: anode chamber, Na: sodium, S: sulfur.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属製の陽極容器内にセラミック製の固
体電解質管を吊り下げ状態で取着し、その固体電解質管
の内側の陰極室内にナトリウムを収容すると共に、外側
の陽極室内に硫黄を収容してなるナトリウム−硫黄電池
において、 前記陽極容器の上部外周にくびれ部を設けるとともに、
そのくびれ部から下方へ所定間隔をおいてさらに別のく
びれ部を形成したことを特徴とするナトリウム−硫黄電
池。
A ceramic solid electrolyte tube is suspended in a metal anode container, sodium is contained in a cathode chamber inside the solid electrolyte tube, and sulfur is contained in an outer anode chamber. In the sodium-sulfur battery housed, while providing a constricted part on the upper outer periphery of the anode container,
A sodium-sulfur battery in which another constricted portion is formed at a predetermined interval downward from the constricted portion.
【請求項2】 金属製の陽極容器内にセラミック製の固
体電解質管を吊り下げ状態で取着し、その固体電解質管
の内側の陰極室内にナトリウムを収容すると共に、外側
の陽極室内に硫黄を収容してなるナトリウム−硫黄電池
において、 直管状の金属パイプをビッカース硬さが40よりも小さ
くなるまで加熱処理し、この状態で金属パイプの外周に
複数のくびれ部を長手方向へ所定間隔をおいて形成する
ことを特徴とするナトリウム−硫黄電池の陽極容器の製
造方法。
2. A ceramic solid electrolyte tube is suspended in a metal anode container, sodium is contained in a cathode chamber inside the solid electrolyte tube, and sulfur is contained in an outer anode chamber. In the accommodated sodium-sulfur battery, the straight tubular metal pipe is subjected to heat treatment until the Vickers hardness becomes smaller than 40, and in this state, a plurality of constrictions are formed on the outer periphery of the metal pipe at predetermined intervals in the longitudinal direction. A method for manufacturing an anode container of a sodium-sulfur battery, characterized by being formed by:
JP04305702A 1992-11-16 1992-11-16 Method for producing sodium-sulfur battery and anode container thereof Expired - Lifetime JP3095909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04305702A JP3095909B2 (en) 1992-11-16 1992-11-16 Method for producing sodium-sulfur battery and anode container thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04305702A JP3095909B2 (en) 1992-11-16 1992-11-16 Method for producing sodium-sulfur battery and anode container thereof

Publications (2)

Publication Number Publication Date
JPH06163074A JPH06163074A (en) 1994-06-10
JP3095909B2 true JP3095909B2 (en) 2000-10-10

Family

ID=17948338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04305702A Expired - Lifetime JP3095909B2 (en) 1992-11-16 1992-11-16 Method for producing sodium-sulfur battery and anode container thereof

Country Status (1)

Country Link
JP (1) JP3095909B2 (en)

Also Published As

Publication number Publication date
JPH06163074A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
EP1056115B1 (en) High pressure discharge lamp
JP3095909B2 (en) Method for producing sodium-sulfur battery and anode container thereof
US8277274B2 (en) Apparatus and methods for use of refractory abhesives in protection of metallic foils and leads
JP2957822B2 (en) Method for producing anode container in sodium-sulfur battery
JP3193319B2 (en) Sodium-sulfur battery
JP2769284B2 (en) Method for producing sodium-sulfur battery and anode container thereof
EP0262979B1 (en) Discharge tube assembly for high-pressure discharge lamp
US4805180A (en) Discharge tube apparatus
JP3615163B2 (en) Anode container for sodium-sulfur battery
JPH11277153A (en) Formation of constriction to cylindrical member
JP4289948B2 (en) Sodium-sulfur battery
JP3103730B2 (en) Method for manufacturing sodium-sulfur battery and anode container for the same
JPH086175B2 (en) Target for inner surface sputtering of pipes
JP3617628B2 (en) Anode container for sodium-sulfur battery
JP7223162B2 (en) Electrodes for gas discharge lamps and gas discharge lamps
JP3017894B2 (en) Sodium-sulfur battery
JPS60160542A (en) Method for manufacture anode structure of magnetron
JP3561210B2 (en) Anode container for sodium-sulfur single cell and sodium-sulfur single cell using the same
JPH05275109A (en) Anode vessel for sodium-sulfur battery
JPS6284822A (en) Melt retardant metallic coil reinforced composite seamless pipe and its production
JPH0824953B2 (en) High-density packed capillary manufacturing method
JPS6389675A (en) Production of composite structure pipe
JPH0721559Y2 (en) Immersion pipe for simple molten steel processing equipment
JPH06208854A (en) Sodium-sulfur battery and manufacture thereof
JPH0235802Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 13