JPH0428174A - Nonaqueous electrolytic liquid secondary battery - Google Patents

Nonaqueous electrolytic liquid secondary battery

Info

Publication number
JPH0428174A
JPH0428174A JP2133428A JP13342890A JPH0428174A JP H0428174 A JPH0428174 A JP H0428174A JP 2133428 A JP2133428 A JP 2133428A JP 13342890 A JP13342890 A JP 13342890A JP H0428174 A JPH0428174 A JP H0428174A
Authority
JP
Japan
Prior art keywords
carbon material
secondary battery
less
negative electrode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2133428A
Other languages
Japanese (ja)
Inventor
Nobuo Eda
江田 信夫
Yoshiyuki Ozaki
義幸 尾崎
Akiyoshi Nishiyama
西山 晃好
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2133428A priority Critical patent/JPH0428174A/en
Publication of JPH0428174A publication Critical patent/JPH0428174A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the generation of gas at the time of electric charging, by using as a negative pole material a carbon material whose carbonated hydrogen is disintegrated thermally by means of a phase of air and which is grown in accumulation on a metal base material and whose surface is treated with plasma under an oxygen atmosphere and which is absorbed and stored with a light metal active substance. CONSTITUTION:A carbon material is grown in accumulation on a metal base material by disintegrating thermally by means of a phase of air carbonated hydrogen whose, surface interval (d 002) an X ray 002, is more than 3.37Angstrom but less than 3.50Angstrom , (c) axial crystalizer thickness (Lc) is more than 50Angstrom but less than 200Angstrom , (a) axial crystalizer thickness (La) is more than 100Angstrom but less than 400Angstrom , and is treated in oxidization, and then is used as a negative pole 4 carbon material. As the carbon material is treated with plasma under an oxygen atmosphere, the electrolysis of an electrolytic liquid does not occur even if electric charging is made. As a result, a secondary battery which has a high voltage and a high capacity and in addition, is superior in the stability of the electrolytic liquid, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池、詳しくは小形、軽量の
新規な二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a novel compact and lightweight secondary battery.

従来の技術 近年、電子機器のポータプル化、コードレス化が急速に
進んでおり、これらの駆動用電源として小形・軽量で、
高エネルギー密度を有する二次電池への要望が高い。こ
のような点で、非水系二次電池、特にリチウム二次電池
は、とりわけ高電圧、高エネルギー密度を有する電池と
して期待が大きい。
Conventional technology In recent years, electronic devices have rapidly become portable and cordless, and as a power source for driving these devices, small and lightweight
There is a high demand for secondary batteries with high energy density. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, have high expectations as batteries with particularly high voltage and high energy density.

従来、リチウム二次電池の正極活物質には、二酸化マン
ガンや五酸化バナジウムなどが用いられており、この正
極と、金属リチウム負極および有機電解液とで電池を構
成し、充放電をおこなっている。しかし、一般に負極に
リチウム金属を用いる二次電池では充電時に生成するデ
ンドライト状にリチウムによる内部短絡や活物質と電解
液の副反応といった課題が実用化への障害となっている
。このほか、高率充電特性や過放電特性においても満足
出来るとはいえない。
Conventionally, manganese dioxide, vanadium pentoxide, etc. have been used as positive electrode active materials for lithium secondary batteries, and the battery is composed of this positive electrode, a metallic lithium negative electrode, and an organic electrolyte, and is charged and discharged. . However, in general, secondary batteries that use lithium metal for the negative electrode have problems such as dendrite-like internal short circuits caused by the lithium during charging and side reactions between the active material and the electrolyte, which are obstacles to practical application. In addition, it cannot be said that the high-rate charging characteristics and over-discharging characteristics are also satisfactory.

最近、層状化合物のインタカレーション(挿入反応)を
利用した新しいタイプの電極活物質が注目されており、
黒鉛層間化合物は古くから二次電池の電極材料として考
えられている。
Recently, a new type of electrode active material that utilizes intercalation (insertion reaction) of layered compounds has been attracting attention.
Graphite intercalation compounds have long been considered as electrode materials for secondary batteries.

特に、CI!O4−1PF6−1BF4−イオンなどの
アニオンを取りこんだ黒鉛層間化合物は正極として用い
られ、また、Ll 、Na+などのカチオンを・ + 取りこんだ黒鉛層間化合物は負極として考えられる。し
かしながら、このようなカチオンを取りこんだ黒鉛層間
化合物は極めて不安定であり、黒鉛材料を負極として用
いた場合、電池としての安定性に欠け、また大きな電解
液の分解も伴うためにリチウム負極の代替となり得るも
のではなかった。
Especially CI! A graphite intercalation compound incorporating anions such as O4-1PF6-1BF4- ions is used as a positive electrode, and a graphite intercalation compound incorporating cations such as Ll and Na+ can be considered as a negative electrode. However, graphite intercalation compounds that incorporate such cations are extremely unstable, and when graphite materials are used as negative electrodes, they lack stability as a battery and also involve large amounts of electrolyte decomposition, making it difficult to replace lithium negative electrodes. It was not something that could have happened.

ここにいたり、ある種の液状の炭化水素あるいは高分子
材料を炭素化して得られた疑黒鉛材料のカチオン挿入体
が負極として有効であり、利用率が比較的高く電池とし
ての安定性に優れ、小形、軽量の二次電池を提供し得る
と報告されている。
In this case, cationic inserts of pseudographite materials obtained by carbonizing certain liquid hydrocarbons or polymeric materials are effective as negative electrodes, and have a relatively high utilization rate and excellent stability as batteries. It is reported that a small and lightweight secondary battery can be provided.

発明が解決しようとする課題 一般に、黒鉛層間にインクカレートされ得るリチウムの
量は、炭素6原子に対しリチウム1原子が挿入された第
1ステージの黒鉛層間化合物二C6L1が上限であると
報告されており、その場合活物質は372mAh/ g
の容量となる。上記の疑黒鉛材料を電極材に用い、リチ
ウムの吸蔵および放出量を求めたところ100〜150
mAh/g h−iyの容量しか得られず、また充放電
に伴う炭素極の分極が大きいために、例えばLICO0
2などの正極と組み合わせた場合、満足のいく容量、電
圧を有する電池を得ることは困難である。
Problems to be Solved by the Invention Generally, it has been reported that the upper limit of the amount of lithium that can be calated between graphite layers is the first stage graphite intercalation compound 2C6L1 in which one lithium atom is inserted for every six carbon atoms. In that case, the active material is 372mAh/g
The capacity will be . Using the above pseudographite material as an electrode material, the amount of lithium intercalation and release was determined to be 100 to 150.
For example, LICO0
When combined with a positive electrode such as No. 2, it is difficult to obtain a battery with satisfactory capacity and voltage.

本発明は、上記のような従来の課題を解消し、高電圧、
高容量を有し、さらには電解液安定性に優れた非水溶媒
二次電池を提供することを目的としている。
The present invention solves the conventional problems as described above, and
The object of the present invention is to provide a non-aqueous solvent secondary battery that has high capacity and excellent electrolyte stability.

課題を解決するための手段 これらの課題を解決するため本発明は、負極の炭素材料
に、X線広角回折法による002面の面間隔(d 00
2)が3.37Å以上3.50Å以下、a軸力向の結晶
子の厚み(L c)が50Å以上200Å以下、a軸方
向の結晶子の厚み(L a)が100Å以上400A以
下の、炭化水素を気相で熱分解させて金属基村上に堆積
成長させた炭素材で、しかも予めその表面を酸化処理し
たものを用いるものである。
Means for Solving the Problems In order to solve these problems, the present invention provides a negative electrode carbon material with a 002 plane spacing (d 00
2) is 3.37 Å or more and 3.50 Å or less, the crystallite thickness in the a-axis force direction (L c) is 50 Å or more and 200 Å or less, and the crystallite thickness in the a-axis direction (L a) is 100 Å or more and 400 A or less, This carbon material is made by thermally decomposing hydrocarbons in the gas phase and depositing them on a metal substrate, and the surface of the carbon material has been oxidized in advance.

作用 負極材として用いる炭素質材料は、一般にある程度の乱
層構造を有した疑黒鉛材料が好まれる。
As the carbonaceous material used as the working negative electrode material, a pseudographite material having a certain degree of turbostratic structure is generally preferred.

天然黒鉛や人造黒鉛などに見られる黒鉛結晶化がかなり
発達した黒鉛材を用いた場合、充放電に伴うリチウムの
インタカレーション反応は見られず、電解液の分解反応
が主体的に進行すると考えられる。このことは黒鉛材の
a軸力向の結晶子の厚み(L c)の値と密接な関係が
あると思われ、おおむね(L c)が200Å以上の炭
素材では充放電に伴うリチウムの吸蔵・放出は不可能で
ある。
When graphite materials with highly developed graphite crystallization, such as those found in natural graphite and artificial graphite, are used, no intercalation reaction of lithium is observed during charging and discharging, and it is thought that the decomposition reaction of the electrolyte proceeds primarily. It will be done. This seems to be closely related to the value of the crystallite thickness (L c) in the a-axis force direction of the graphite material, and in carbon materials where (L c ) is approximately 200 Å or more, lithium occlusion occurs during charging and discharging.・Release is not possible.

方、(L c)値か50Å以下の炭素材では、リチウム
のインタカレーションは可能であるが、結晶化が不充分
であるために層間にインタカレートされたリチウムは非
常に不安定であり、充放電に伴う炭素極の分極か大きく
なる。従って高容量を得ることは困難であり、高率充放
電も不可能となる。このような観点から負極炭素材とし
ては、X線回折ピークで面間隔d 002が3.37Å
以上3.50Å以下で、かつシェラ−の式で形状因子K
が0.9のとき(Lc)の値が50Å以上200A以下
、好ましくは100Å以上200Å以下の炭素材が最適
となるが、高分子を焼成したものやピッチ系から合成し
たものは上記条件を満足したものでも十分ではなく、唯
一気相から合成した炭素材料の中に良好な特性を示すも
のがある。この条件を満たす炭素材では、比較的結晶化
が進んでおり層状構造はある程度発達した状態にある。
On the other hand, in carbon materials with (L c ) values of 50 Å or less, intercalation of lithium is possible, but lithium intercalated between layers is extremely unstable due to insufficient crystallization. , the polarization of the carbon electrode increases with charging and discharging. Therefore, it is difficult to obtain high capacity, and high rate charging and discharging is also impossible. From this point of view, the negative electrode carbon material has a lattice spacing d 002 of 3.37 Å at the X-ray diffraction peak.
3.50 Å or less, and the shape factor K according to Scherrer's equation
When is 0.9, carbon materials with a value of (Lc) of 50 Å or more and 200 Å or less, preferably 100 Å or more and 200 Å or less, are optimal, but those made by firing polymers or synthesized from pitch-based materials satisfy the above conditions. However, the only carbon material synthesized from the gas phase shows good properties. In a carbon material that satisfies this condition, crystallization is relatively advanced and the layered structure is developed to some extent.

従って、電気化学的にインクカレートされたリチウムは
層間で安定に存在することかでき、炭素極の分極は小さ
くなる。また自己放電が小さく、高率充放電もが可能と
みられる。
Therefore, the electrochemically ink-calated lithium can exist stably between the layers, and the polarization of the carbon electrode becomes small. In addition, self-discharge is small, and high-rate charging and discharging is thought to be possible.

このことは炭素材のa軸方向の結晶子の厚み(La)の
値とも密接な関係があり、同じくシェラ−の式で形状因
子Kが1.84のとき(L a)値としては100Å以
上400Å以下、好ましくは200Å以上400Å以下
の炭素材か適している。
This is closely related to the value of the crystallite thickness (La) in the a-axis direction of the carbon material, and similarly, when the shape factor K is 1.84 in Scherrer's equation, the (La) value is 100 Å or more. A carbon material having a thickness of 400 Å or less, preferably 200 Å or more and 400 Å or less is suitable.

しかし、このままではまだ不十分で、このまま用いると
充電時に電解液を分解してガスを発生させる。この原因
として、該炭素材の表面近傍には反応性の高い微小構造
が存在し、この部分が電解液を分解せしめていると考え
られる。そこで炭素材を酸素雰囲気下でプラズマ処理す
ることにより、上記反応性の高い微小構造は選択的に反
応して電解液に不活性の物質に変化して失活するものと
みられ、この材料を充電しても電解液の分解はおこ ら
ないことが確認された。
However, this is still insufficient, and if used as is, the electrolyte will decompose during charging and generate gas. The reason for this is thought to be that a highly reactive microstructure exists near the surface of the carbon material, and this portion decomposes the electrolyte. Therefore, by subjecting the carbon material to plasma treatment in an oxygen atmosphere, the highly reactive microstructures mentioned above are thought to selectively react and become inert to the electrolyte and deactivated, allowing the material to be charged. It was confirmed that no decomposition of the electrolyte occurred even when the electrolyte was heated.

実施例 実施例1 本実施例では、負極用の炭素材料が吸蔵、放出し得るリ
チウムの量および炭素極の分極特性を検討する1方法と
して、逆の構成として炭素極を正極、金属リチウムを負
極としたコイン形電池を構成し評価を行った。
Examples Example 1 In this example, as a method for examining the amount of lithium that can be occluded and released by the carbon material for the negative electrode and the polarization characteristics of the carbon electrode, we will use a reverse configuration in which the carbon electrode is the positive electrode and the metallic lithium is the negative electrode. A coin-shaped battery was constructed and evaluated.

第1図にそのコイン形電池の縦断面図を示す。FIG. 1 shows a longitudinal cross-sectional view of the coin-shaped battery.

図において1は耐有機電解液性ステンレス鋼板を加工し
た電池ケース、2は同材料の封目板、3はステンレス製
の正極集電体で、ケース1の内面にスポット溶接されて
いる。4は金属リチウム負極で封口板2に圧着されてい
る。5は正極合剤で、下記に示す炭素繊維粉末85重量
部に、フッ素樹脂結着剤15重量部を混合したもの50
mgを集電体3の上に充填、成型したものである。6は
微孔性のポリプロピレン製セパレータ、7はポリプロピ
レン製絶縁バッキングである。電解液には炭酸プロピレ
ンと1.2−ジメトキシエタンの等容積混合溶媒に、過
塩素酸リチウムを1モル/lの割合で溶解したものを用
いた。評価試験は、充放電電流密度0.3mA/ci、
充電終止電圧(炭素材からみると放電となる)2.5V
、放電終止電圧(同しく、炭素材からみて充電となる)
 OVの条件下で定電流充放電試験を行った。
In the figure, 1 is a battery case made of an organic electrolyte-resistant stainless steel plate, 2 is a sealing plate made of the same material, and 3 is a positive electrode current collector made of stainless steel, which is spot-welded to the inner surface of the case 1. 4 is a metallic lithium negative electrode which is pressed onto the sealing plate 2. 5 is a positive electrode mixture, which is a mixture of 85 parts by weight of carbon fiber powder shown below and 15 parts by weight of a fluororesin binder.
mg was filled onto a current collector 3 and molded. 6 is a microporous polypropylene separator, and 7 is a polypropylene insulating backing. The electrolytic solution used was one in which lithium perchlorate was dissolved at a ratio of 1 mol/l in a mixed solvent of equal volume of propylene carbonate and 1,2-dimethoxyethane. The evaluation test consisted of a charge/discharge current density of 0.3 mA/ci,
End-of-charge voltage (discharge when viewed from the carbon material) 2.5V
, end-of-discharge voltage (same as charging from the perspective of carbon material)
A constant current charge/discharge test was conducted under OV conditions.

なお、この電池の寸法は直径20mm、総高1.6mm
である。
The dimensions of this battery are 20mm in diameter and 1.6mm in total height.
It is.

第1表に本実施例で用いた、ベンゼンと水素の混合体を
気相で熱分解させて鉄触媒粒子上に堆積成長させてえた
繊維状の炭素材の諸物性値および10サイクル目の放電
比容量を示した。比較のため、同一の炭素材を4 X 
10−2mmHgの減圧下でアルゴンと酸素の等容積混
合ガスを1分間に5ccながしながら、所定の電圧にて
プラズマ処理してなる電池を構成した。
Table 1 shows the physical properties of the fibrous carbon material used in this example, obtained by thermally decomposing a mixture of benzene and hydrogen in the gas phase and depositing it on iron catalyst particles, and the discharge at the 10th cycle. The specific capacity is shown. For comparison, the same carbon material was
A battery was constructed by performing plasma treatment at a predetermined voltage while flowing an equal volume mixed gas of argon and oxygen at 5 cc per minute under a reduced pressure of 10-2 mmHg.

第 表 第2図には第1表で示した各炭素材を用いた電池の1サ
イクル目の充電曲線を示す。
Table 2 shows charging curves of the first cycle of batteries using each of the carbon materials shown in Table 1.

第1表および第2図から負極用の材料には、電池B−D
およびB゛〜D°つまりd 002が3.37〜3.4
6、Lcは91〜195.Laは132〜404の範囲
の物性値をもつ炭素材が好ましく、さらに加えて予め表
面を酸素雰囲気下でプラズマ処理したものが適している
From Table 1 and Figure 2, the materials for the negative electrode include batteries B-D.
and B゛~D°, that is, d 002 is 3.37~3.4
6, Lc is 91-195. La is preferably a carbon material having a physical property value in the range of 132 to 404, and in addition, a material whose surface has been previously plasma-treated in an oxygen atmosphere is suitable.

実施例2 実施例1で使用したコイン形電池を用い、ベンゼンをア
ルゴン雰囲気で熱分解させてニッケル基板上に堆積成長
させてえた炭素材を用いたほかは実施例1と全く同じよ
うに構成した。同じく、比較のため、同一の炭素材を4
 X 10−”mmHgの減圧下でアルゴンと酸素の等
容積混合ガスを1分間に5ccながしながら、所定の電
圧にてプラズマ処理してなる電池を構成した。
Example 2 The coin-shaped battery used in Example 1 was used, and the structure was exactly the same as Example 1, except that a carbon material obtained by thermally decomposing benzene in an argon atmosphere and depositing it on a nickel substrate was used. . Similarly, for comparison, the same carbon material was
A battery was constructed by performing plasma treatment at a predetermined voltage while flowing an equal volume mixed gas of argon and oxygen at a rate of 5 cc per minute under a reduced pressure of X 10 mmHg.

充放電試験も実施例1と全く同じように行なった。A charge/discharge test was also conducted in exactly the same manner as in Example 1.

第2表に本実施例で用いた炭素材の諸物性値および10
サイクル目の放電比容量を示した。第3図には第2表で
示した各炭素材を用いた電池の1サイクル目の充電曲線
を示す。
Table 2 shows various physical property values and 10
The discharge specific capacity of the cycle is shown. FIG. 3 shows charging curves of the first cycle of batteries using each carbon material shown in Table 2.

第 表 第2表および第3図から負極用の材料には、電池E−H
およびE°〜H゛つまりd002が3.38〜3.51
、Lcは52〜173.  L aは103〜370の
範囲の物性値をもつ炭素材が好ましく、さらに加えて予
め酸素雰囲気下でプラズマ処理したものが適している。
From Table 2 and Figure 3, the materials for the negative electrode include batteries E-H.
and E°~H゛, that is, d002 is 3.38~3.51
, Lc is 52-173. La is preferably a carbon material having physical property values in the range of 103 to 370, and in addition, a carbon material that has been previously subjected to plasma treatment in an oxygen atmosphere is suitable.

発明の効果 以上の説明から明らかなように、実施例1および2より
、非水電解液二次電池の負極材料に、X線広角回折法に
よる002面の面間隔d 002が3.37λ以上3.
50Å以下、a軸力向の結晶子の厚みLcが50Å以上
200Å以下、a軸方向の結晶子の厚みLaが100λ
以上40(1Å以下の、炭化水素を気相で熱分解させて
金属基村上に堆積成長させた炭素材で、しかも予め該表
面を酸素雰囲気下でプラズマ処理したものに軽金属の活
物質を吸蔵させたものを用いることにより、充電時に電
解液が分解してガス発生する不都合が解消できたもので
ある。
Effects of the Invention As is clear from the above explanation, Examples 1 and 2 show that the negative electrode material of the non-aqueous electrolyte secondary battery has a 002 plane spacing d 002 of 3.37λ or more as determined by X-ray wide-angle diffraction. ..
50 Å or less, the crystallite thickness Lc in the a-axis force direction is 50 Å or more and 200 Å or less, and the crystallite thickness La in the a-axis direction is 100λ
A light metal active material is occluded in a carbon material having a thickness of 40 (1 Å or less), which is grown by thermally decomposing hydrocarbons in the gas phase and deposited on the metal substrate, and whose surface has been previously plasma-treated in an oxygen atmosphere. By using such a battery, the inconvenience of the electrolyte decomposing and generating gas during charging can be eliminated.

また、負極の電位を立ち上げる構成をとることで、たと
えばOv過放電が可能となり、しかも、充電によるリチ
ウム金属のデンドライト形成が基本的になくなった。こ
のため従来の金属リチウムかを使用した電池が有してい
た過放電ができない、デンドライトの形成による内部シ
ョートなどの課題を解決することができるものである。
Furthermore, by adopting a configuration in which the potential of the negative electrode is raised, for example, Ov overdischarge is possible, and dendrite formation of lithium metal due to charging is basically eliminated. Therefore, it is possible to solve the problems of conventional batteries using metallic lithium, such as inability to over-discharge and internal short-circuiting due to the formation of dendrites.

なお、実施例では炭化水素としてベンゼンを用いたが、
メタンガスやプロパンガスでもよい。また、実施例では
炭素材を合成する際に水素ガスを混合させたが、単にア
ルゴンなとの不活性ガス雰囲気で行ってもよい。
In addition, although benzene was used as the hydrocarbon in the examples,
Methane gas or propane gas may also be used. Furthermore, in the examples, hydrogen gas was mixed when synthesizing the carbon material, but the synthesis may also be carried out simply in an inert gas atmosphere such as argon.

また、実施例では金属触媒粒子あるいは基板に鉄および
ニッケルをもちいたがコバルトあるいはこれらの混合体
でもよい。また、当然のことながら炭素材は繊維状でも
粉状のいずれでもよい。
Further, although iron and nickel are used for the metal catalyst particles or the substrate in the embodiment, cobalt or a mixture thereof may be used. Furthermore, it goes without saying that the carbon material may be either fibrous or powdery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるコイン形電池の縦断面
図、第2図は1サイクル目の充電特性の比較を示す図、
第3図は1サイクル目の充電特性の比較を示す図である
。 1・・・ケース、2・・・封口板、3・・・正極集電体
、4・・・負 極、5・・・正 極、6・・・セパレー
タ、7・・・絶縁バッキング。
FIG. 1 is a longitudinal cross-sectional view of a coin-shaped battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing a comparison of charging characteristics in the first cycle.
FIG. 3 is a diagram showing a comparison of charging characteristics in the first cycle. DESCRIPTION OF SYMBOLS 1... Case, 2... Sealing plate, 3... Positive electrode current collector, 4... Negative electrode, 5... Positive electrode, 6... Separator, 7... Insulating backing.

Claims (3)

【特許請求の範囲】[Claims] (1)充放電可能な正極と、非水電解液と、充放電可能
な負極とを備えた非水電解液二次電池において、上記負
極は、炭化水素を気相で熱分解させて金属基材上に堆積
成長させた、X線広角回折法による002面の面間隔(
d002)が3.37Å以上3.50Å以下、c軸方向
の結晶子の厚み(Lc)が50Å以上200Å以下、a
軸力向の結晶子の厚み(La)が100Å以上400Å
以下の炭素材でしかも予めその表面を酸素雰囲気下でプ
ラズマ化処理してなり、さらに該炭素材に軽金属の活物
質を吸蔵させたものであることを特徴とする非水電解液
二次電池。
(1) In a non-aqueous electrolyte secondary battery comprising a chargeable/dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable/dischargeable negative electrode, the negative electrode is formed by thermally decomposing hydrocarbons in the gas phase to form a metal base. The interplanar spacing of the 002 plane (
d002) is 3.37 Å or more and 3.50 Å or less, the crystallite thickness (Lc) in the c-axis direction is 50 Å or more and 200 Å or less, a
Crystallite thickness (La) in the axial direction is 100 Å or more and 400 Å
1. A non-aqueous electrolyte secondary battery, characterized in that it is made of the following carbon material, the surface of which has been subjected to plasma treatment in an oxygen atmosphere, and further has a light metal active material occluded in the carbon material.
(2)上記炭化水素は、ベンゼン、メタンおよびプロパ
ンからなる群から選ばれた少なくとも1つである特許請
求の範囲第1項記載の非水電解液二次電池。
(2) The nonaqueous electrolyte secondary battery according to claim 1, wherein the hydrocarbon is at least one selected from the group consisting of benzene, methane, and propane.
(3)上記金属基材は、鉄、ニッケルおよびコバルトか
らなる群から選ばれた少なくとも1つである粒子もしく
は基板である特許請求の範囲第1項記載の非水電解液二
次電池。
(3) The nonaqueous electrolyte secondary battery according to claim 1, wherein the metal base material is a particle or a substrate of at least one selected from the group consisting of iron, nickel, and cobalt.
JP2133428A 1990-05-23 1990-05-23 Nonaqueous electrolytic liquid secondary battery Pending JPH0428174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133428A JPH0428174A (en) 1990-05-23 1990-05-23 Nonaqueous electrolytic liquid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133428A JPH0428174A (en) 1990-05-23 1990-05-23 Nonaqueous electrolytic liquid secondary battery

Publications (1)

Publication Number Publication Date
JPH0428174A true JPH0428174A (en) 1992-01-30

Family

ID=15104543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133428A Pending JPH0428174A (en) 1990-05-23 1990-05-23 Nonaqueous electrolytic liquid secondary battery

Country Status (1)

Country Link
JP (1) JPH0428174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310144A (en) * 1993-04-23 1994-11-04 Yuasa Corp Secondary battery
JPH1131510A (en) * 1997-07-11 1999-02-02 Mitsubishi Chem Corp Lithium secondary battery
WO2021023612A1 (en) * 2019-08-02 2021-02-11 Plasmatreat Gmbh Method for providing an electrode foil for producing a lithium-ion rechargeable battery and method for producing a lithium-ion rechargeable battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310144A (en) * 1993-04-23 1994-11-04 Yuasa Corp Secondary battery
JPH1131510A (en) * 1997-07-11 1999-02-02 Mitsubishi Chem Corp Lithium secondary battery
WO2021023612A1 (en) * 2019-08-02 2021-02-11 Plasmatreat Gmbh Method for providing an electrode foil for producing a lithium-ion rechargeable battery and method for producing a lithium-ion rechargeable battery

Similar Documents

Publication Publication Date Title
US6294291B1 (en) Secondary battery or cell with a non-aqueous electrolyte
US8703338B2 (en) Material based on carbon and silicon nanotubes that can be used in negative electrodes for lithium batteries
US7521151B2 (en) Rechargeable lithium battery with specific surface roughness of positive electrode and/or negative electrode
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
JP5060010B2 (en) Nonaqueous electrolyte secondary battery
US20200295352A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof
EP2624340B1 (en) Negative active material, method of preparing the same, negative electrode for lithium secondary battery including negative active material, and lithium secondary battery including negative electrode
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
EP0690518B1 (en) Non-aqueous secondary battery and negative electrode
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
US20080199779A1 (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
JPH04155776A (en) Nonaqueous electrolyte secondary battery
JPH07105938A (en) Manufacture of negetive electrode for non-aqueous electrolyte secondary battery
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH03285273A (en) Nonaqueous electrolyte secondary battery
JPH0428174A (en) Nonaqueous electrolytic liquid secondary battery
JPH03245473A (en) Non-aqueous solvent secondary cell
JPH03289068A (en) Nonaqueous electrolyte secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JPH08106920A (en) Lithium secondary battery
CN114586194B (en) Lithium ion battery and method for manufacturing lithium ion battery
JPH09245798A (en) Lithium secondary battery
JP2615054B2 (en) Non-aqueous electrolyte secondary battery
JPH03134970A (en) Nonaqueous solvent secondary battery
JPH09106818A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery