JP5601536B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5601536B2
JP5601536B2 JP2011223324A JP2011223324A JP5601536B2 JP 5601536 B2 JP5601536 B2 JP 5601536B2 JP 2011223324 A JP2011223324 A JP 2011223324A JP 2011223324 A JP2011223324 A JP 2011223324A JP 5601536 B2 JP5601536 B2 JP 5601536B2
Authority
JP
Japan
Prior art keywords
negative electrode
particles
sio
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2011223324A
Other languages
Japanese (ja)
Other versions
JP2012009457A (en
Inventor
田渕  徹
青木  寿之
勝志 西江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2011223324A priority Critical patent/JP5601536B2/en
Publication of JP2012009457A publication Critical patent/JP2012009457A/en
Application granted granted Critical
Publication of JP5601536B2 publication Critical patent/JP5601536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池は、起電力が大きく、エネルギー密度が高いので、携帯用電子機器などの電源として広く利用されている。
従来、非水電解質二次電池においては、リチウムのデンドライト析出を防止できることから負極活物質として炭素材料が広く用いられてきた。しかし、負極活物質として炭素材料を用いた場合、その放電容量を理論容量(372mAh/g)以上に増大させることはできないため、電池としての放電容量を10%以上増大させることは困難であるという問題点があった。
Nonaqueous electrolyte secondary batteries are widely used as power sources for portable electronic devices and the like because of their large electromotive force and high energy density.
Conventionally, in a nonaqueous electrolyte secondary battery, a carbon material has been widely used as a negative electrode active material since lithium dendrite precipitation can be prevented. However, when a carbon material is used as the negative electrode active material, it is difficult to increase the discharge capacity as a battery by 10% or more because the discharge capacity cannot be increased beyond the theoretical capacity (372 mAh / g). There was a problem.

そこで、放電容量を増大させ、電池の高エネルギー密度化を図るために、リチウムと合金化しうる金属を活物質として用いる試みがなされている。このような金属としては、ケイ素が挙げられる(例えば、特許文献1参照。)。   Therefore, in order to increase the discharge capacity and increase the energy density of the battery, attempts have been made to use a metal that can be alloyed with lithium as an active material. An example of such a metal is silicon (see, for example, Patent Document 1).

ケイ素は各原子に4個の原子が配位して形成された四面体が連なったダイヤモンド型の結晶構造を有し、極めて多量のリチウムイオンを吸蔵できる。   Silicon has a diamond-type crystal structure in which tetrahedrons formed by coordination of four atoms to each atom are continuous, and can store a very large amount of lithium ions.

しかしながら、ケイ素はリチウムイオンの吸蔵に伴なう体積膨張が大きく、充放電の繰り返しにより微粉化しやすい。この微粉化により、導電経路が断絶する部分が発生し、集電効率が低下する。このため、充電−放電のサイクルが進むと、急激に容量が低下し、サイクル寿命が短いものとなってしまう。このような理由から、ケイ素を負極活物質として用いた場合、例えば50サイクル後の容量保持率を20%以上向上させることは困難であった。   However, silicon has a large volume expansion associated with occlusion of lithium ions, and is easily pulverized by repeated charge and discharge. By this pulverization, a portion where the conductive path is interrupted is generated, and the current collection efficiency is lowered. For this reason, when the charge-discharge cycle progresses, the capacity rapidly decreases and the cycle life becomes short. For these reasons, when silicon is used as the negative electrode active material, it has been difficult to improve the capacity retention after 50 cycles, for example, by 20% or more.

特開平7−29602号公報Japanese Patent Laid-Open No. 7-29602

本発明は上記のような事情に基づいて完成されたものであって、高いエネルギー密度を有し、さらにサイクル特性に優れた非水電解質二次電池を提供することを目的とする。   The present invention has been completed based on the above circumstances, and an object thereof is to provide a nonaqueous electrolyte secondary battery having a high energy density and excellent cycle characteristics.

上記の目的を達成するための手段として、請求項1の発明は、正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、前記負極活物質が、ケイ素Siからなる粒子と、ケイ素酸化物SiO(但し、0<X≦2)からなる粒子と、炭素材料とから構成される複合粒子を含み、前記ケイ素Siと前記ケイ素酸化物SiO との合計に対する前記ケイ素Siの割合が、20重量%以上80重量%以下であることを特徴とする。 As means for achieving the above object, the invention of claim 1 is a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, and a nonaqueous electrolyte. wherein said negative electrode active material, and particles composed of silicon Si, silicon oxides SiO X (where, 0 <X ≦ 2) and particles consisting of, viewed contains composite particles composed of a carbon material, and the silicon Si The ratio of the silicon Si to the total of the silicon oxide SiO X is 20 wt% or more and 80 wt% or less .

負極活物質がSiからなる粒子と、SiOからなる粒子(但し、0<X≦2)とを含むことにより、高いエネルギー密度の非水電解質二次電池を得ることができる。これは、Siからなる粒子、及びSiOからなる粒子は、リチウムイオンと固溶体や金属間化合物を形成することにより、リチウムイオンを多量に吸蔵することができるからである。
また、SiはSiO に比べて放電容量が大きいので、Siの割合を20重量%未満とすると、放電容量が低下するから好ましくない。一方、SiO はSiに比べて、充放電に伴う体積膨張が小さく、サイクル特性に優れているので、Siの割合が80重量%を超えると、サイクル特性が低下するから好ましくない。したがって、SiとSiO との合計に対するSiの割合は、20重量%以上80重量%以下が好ましい。
When the negative electrode active material includes particles made of Si and particles made of SiO X (where 0 <X ≦ 2), a non-aqueous electrolyte secondary battery having a high energy density can be obtained. This is because particles made of Si and particles made of SiO 2 X can occlude a large amount of lithium ions by forming a solid solution or an intermetallic compound with lithium ions.
Further, since Si has a larger discharge capacity than SiO X , it is not preferable that the Si ratio is less than 20% by weight because the discharge capacity decreases. On the other hand, SiO X has a smaller volume expansion due to charging / discharging than Si, and is excellent in cycle characteristics. Therefore, if the ratio of Si exceeds 80% by weight, cycle characteristics deteriorate, which is not preferable. Accordingly, the ratio of Si to the total of Si and SiO X is preferably 20% by weight or more and 80% by weight or less.

参考例として、非水電解質二次電池において、前記ケイ素Siからなる粒子と前記ケイ素酸化物SiO(但し、0<X≦2)からなる粒子は、ケイ素Siとケイ素酸化物SiO(但し、0<X≦2)とを含む二次粒子を構成しており、前記二次粒子は前記炭素材料を含まないものであり、前記炭素材料の平均面間隔d(002)は0.3354nm以上0.35nm以下であることとしてもよい。 As a reference example, in a non-aqueous electrolyte secondary battery, the particles composed of silicon Si and the silicon oxide SiO X (where 0 <X ≦ 2) are composed of silicon Si and silicon oxide SiO X (where 0 <X ≦ 2), the secondary particles do not contain the carbon material, and the average interplanar spacing d (002) of the carbon material is 0.3354 nm or more and 0. It is good also as being 35 nm or less .

負極活物質が、SiとSiO  The negative electrode active material is Si and SiO. X (但し、0<X≦2)とを含む粒子を含むことにより、高いエネルギー密度の非水電解質二次電池を得ることができる。これは、SiとSiOHowever, a high energy density non-aqueous electrolyte secondary battery can be obtained by including particles including (0 <X ≦ 2). This is because Si and SiO X とを含む粒子は、リチウムイオンと固溶体や金属間化合物を形成することにより、リチウムイオンを多量に貯蔵することができるからである。This is because the particles containing can form a large amount of lithium ions by forming a solid solution or an intermetallic compound with lithium ions.

SiO  SiO X (但し、0<X≦2)は、Xが2以下であると高い放電容量を示すから、負極活物質として好ましく使用できる。この理由は以下のように考えられる。ケイ素原子に対する酸素原子の比が2以下であるようなケイ素酸化物は、ケイ素原子と酸素原子との結合の他に、ケイ素原子同士の結合を含んだ骨格構造を形成していると考えられる。このような構造中では、リチウムイオンを吸蔵可能なサイトが非常に多いと考えられる。このため、リチウムイオンを容易にしかも多量に吸蔵放出できると考えられるのである。さらに、SiO(However, 0 <X ≦ 2) can be preferably used as the negative electrode active material because X shows a high discharge capacity when X is 2 or less. The reason is considered as follows. A silicon oxide having a ratio of oxygen atoms to silicon atoms of 2 or less is considered to form a skeletal structure including bonds between silicon atoms in addition to bonds between silicon atoms and oxygen atoms. In such a structure, it is considered that there are very many sites that can occlude lithium ions. For this reason, it is considered that lithium ions can be easily stored and released in large quantities. Furthermore, SiO X を含むことにより体積膨張が抑制されるため、Siのみを負極活物質とする場合よりもサイクル特性が向上すると考えられる。Since the volume expansion is suppressed by including, it is considered that the cycle characteristics are improved as compared with the case where only Si is used as the negative electrode active material.

さらに、前記の負極活物質と炭素材料とを混合することにより、サイクル特性に優れた非水電解質二次電池を得ることができる。これは、充放電に伴って、Siからなる粒子や、SiOからなる粒子、SiとSiOとを含む粒子が微粉化したとしても、炭素材料によって導電経路が維持されるので、集電力の低下が抑制されるからである。 Furthermore, a nonaqueous electrolyte secondary battery having excellent cycle characteristics can be obtained by mixing the negative electrode active material and the carbon material. This is because the conductive path is maintained by the carbon material even if the particles made of Si, the particles made of SiO X , or the particles containing Si and SiO X are pulverized along with charge and discharge. This is because the decrease is suppressed.

負極活物質全体に対する、複合粒子を構成する炭素材料(以下、これを炭素材料Aとする。)の割合が3重量%未満であると、充放電を繰り返した際に、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の微粉化に伴う導電経路の断絶を防止することができず、サイクル特性が低下するので好ましくない。また、60重量%を超えると放電容量が低下するので好ましくない。したがって、負極活物質全体に対する炭素材料の割合は3重量%以上60重量%以下が好ましい。 When the ratio of the carbon material constituting the composite particles (hereinafter referred to as carbon material A) to the entire negative electrode active material is less than 3% by weight, particles made of Si, SiO particles consisting of X, and Si and could not be prevented disconnection of the conductive path caused by the pulverization of the particles comprising an SiO X, since the cycle characteristics are deteriorated unfavorably. On the other hand, if it exceeds 60% by weight, the discharge capacity decreases, which is not preferable. Therefore, the ratio of the carbon material to the whole negative electrode active material is preferably 3% by weight or more and 60% by weight or less.

最も結晶性の高い黒鉛材料のd(002)は0.3354nmなので、負極活物質に用いられる炭素材料Aのd(002)は0.3354nm以上が好ましい。他方、0.35nmを超えると、炭素材料Aそのものの導電性が低くなるから好ましくない。以上より、平均面間隔d(002)は、0.3354nm以上0.35nm以下が好ましい。d(002)は、例えば、理学電機製、X−Ray Diffractometer、RINT2000を使用し、CuKα線を用いて測定できる。   Since d (002) of the most crystalline graphite material is 0.3354 nm, d (002) of the carbon material A used for the negative electrode active material is preferably 0.3354 nm or more. On the other hand, if it exceeds 0.35 nm, the conductivity of the carbon material A itself is lowered, which is not preferable. From the above, the average interplanar distance d (002) is preferably 0.3354 nm or more and 0.35 nm or less. For example, d (002) can be measured using CuKα rays using an X-Ray Diffractometer, RINT2000, manufactured by Rigaku Corporation.

複合粒子を構成する炭素材料Aを、天然黒鉛、人造黒鉛、アセチレンブラック、気相成長炭素繊維からなる群の中から選択することにより、サイクル特性を向上させることができる。これは、上記炭素材料の導電性が高いため、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の導電経路を維持することが容易となるからである。上記炭素材料は、単独で使用しても良く、また2種以上を混合して用いてもよい。 By selecting the carbon material A constituting the composite particles from the group consisting of natural graphite, artificial graphite, acetylene black, and vapor-grown carbon fiber, cycle characteristics can be improved. This is because the high conductivity of the carbon material, particles composed of Si, from it is easy to maintain a conductive path of particles comprising particles consisting of SiO X, and Si and a SiO X. The above carbon materials may be used alone or in combination of two or more.

複合粒子の表面に炭素材料(以下、複合粒子の表面を被覆する炭素材料を炭素材料Bとする。)が被覆されることにより、サイクル特性が向上した非水電解質二次電池を得ることができる。この理由は、以下のように考えられる。複合粒子の表面に露出したSiからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子については、充放電の繰り返しにより発生した微粉が複合粒子から脱落することによりサイクル特性が低下する場合がある。この複合粒子を炭素材料Bで被覆することにより、複合粒子の表面に露出していたSiからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子についても、導電経路を維持することが可能となるので、サイクル特性が向上すると考えられる。 By coating the surface of the composite particles with a carbon material (hereinafter, the carbon material covering the surface of the composite particles is referred to as carbon material B), a nonaqueous electrolyte secondary battery with improved cycle characteristics can be obtained. . The reason is considered as follows. For the particles composed of Si exposed on the surface of the composite particles, the particles composed of SiO X , and the particles containing Si and SiO X , the cycle characteristics are deteriorated by the fine powder generated by repeated charge and discharge dropping off from the composite particles. There is a case. By covering the composite particles with the carbon material B, the conductive path is maintained even for the particles made of Si, the particles made of SiO X , and the particles containing Si and SiO X exposed on the surface of the composite particles. Therefore, it is considered that the cycle characteristics are improved.

また、複合粒子の表面を炭素材料で被覆しない場合、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子上には、リチウムイオンとの反応性が他と比べて高い部分が存在し、リチウムイオンの吸蔵・放出反応は、この反応性の高い部分で集中的に進行するという、いわゆる反応ムラが発生することがある。すると、反応性の高い部分では、リチウムイオンの吸蔵により負極活物質の体積が膨張するのに対し、反応性の低い部分では、負極活物質の体積膨張は小さなものとなる。このような体積変動のムラが発生することにより、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の形状が崩れて周囲から孤立した部分が生じ、導電経路が断絶されることもある。 In addition, when the surface of the composite particle is not covered with a carbon material, the reactivity with lithium ions is higher on the particles made of Si, the particles made of SiO X , and the particles containing Si and SiO X compared to others. In some cases, so-called reaction unevenness occurs in which the reaction of occluding and releasing lithium ions proceeds intensively in the highly reactive portion. Then, in the highly reactive part, the volume of the negative electrode active material expands due to occlusion of lithium ions, whereas in the low reactive part, the volume expansion of the negative electrode active material becomes small. Due to the occurrence of such unevenness of volume fluctuation, the shape of the particles made of Si, the particles made of SiO X , and the particles containing Si and SiO X are broken, resulting in isolated portions from the surroundings, and the conduction path is interrupted. Sometimes it is done.

複合粒子の表面が導電性を有する炭素材料Bで被覆されていることにより、上記のような反応ムラが緩和され、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子とリチウムイオンとは均一に反応するようになる。これにより、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子は均一に体積膨張するから、孤立化が防止されて導電経路が維持される結果、サイクル特性に優れた非水電解質二次電池を得ることができる。 By the surface of the composite particle is covered with the carbon material B having conductivity, the reaction unevenness as described above is alleviated, comprising particles consisting of Si, particles made of SiO X, and Si and a SiO X particles And lithium ions react uniformly. As a result, since the particles made of Si, the particles made of SiO X , and the particles containing Si and SiO X are uniformly expanded in volume, isolation is prevented and the conductive path is maintained, resulting in excellent cycle characteristics. A nonaqueous electrolyte secondary battery can be obtained.

負極活物質全体に対する、炭素材料全部(炭素材料Aと炭素材料Bとの合計)の割合が、30重量%未満であると、充放電の繰り返しによりSiからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の微粉が発生した場合に、導電経路を維持することができなくなる結果、サイクル特性が低下するから好ましくない。80重量%を超えると、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の割合が低下する結果、放電容量が低下するから好ましくない。したがって、負極活物質全体に対する、炭素材料全部の割合は、30重量%以上80重量%以下が好ましい。 When the ratio of the entire carbon material (the total of the carbon material A and the carbon material B) to the entire negative electrode active material is less than 30% by weight, particles composed of Si, particles composed of SiO X , and When fine particles of particles containing Si and SiO X are generated, the conductive path cannot be maintained, and as a result, cycle characteristics deteriorate, which is not preferable. If it exceeds 80% by weight, the ratio of the particles composed of Si, the particles composed of SiO x , and the particles containing Si and SiO x decreases, resulting in a decrease in discharge capacity. Therefore, the ratio of all the carbon materials to the whole negative electrode active material is preferably 30% by weight or more and 80% by weight or less.

負極活物質全体に対する、複合粒子の表面を覆っている炭素材料Bの割合が、0.5重量%未満であると、上記複合粒子の表面を十分に被覆することができないため、サイクル特性が低下するから好ましくない。40.0重量%を超えると、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の割合が低下する結果、放電容量が低下するから好ましくない。したがって、負極活物質全体に対する、複合粒子の表面を覆っている炭素材料Bの割合は、0.5重量%以上40.0重量%以下が好ましい。 When the ratio of the carbon material B covering the surface of the composite particle to the whole negative electrode active material is less than 0.5% by weight, the surface of the composite particle cannot be sufficiently covered, so that the cycle characteristics are deteriorated. Therefore, it is not preferable. If it exceeds 40.0% by weight, the ratio of the particles composed of Si, the particles composed of SiO x , and the particles containing Si and SiO x decreases, resulting in a decrease in discharge capacity. Therefore, the ratio of the carbon material B covering the surface of the composite particles to the whole negative electrode active material is preferably 0.5% by weight or more and 40.0% by weight or less.

負極活物質のBET比表面積が10.0m/gを超えると、バインダの結着性が低下する。このため、充放電に伴う負極活物質の膨張、収縮により、負極活物質間に隙間が生じ、負極活物質同士の電気的接触が断絶する結果、サイクル特性が低下するから好ましくない。したがって、負極活物質のBET比表面積が10.0m/g以下が好ましい。 When the BET specific surface area of the negative electrode active material exceeds 10.0 m 2 / g, the binding property of the binder decreases. For this reason, an expansion | swelling and shrinkage | contraction of the negative electrode active material accompanying charging / discharging generate | occur | produces a clearance gap between negative electrode active materials, As a result of disconnecting the electrical contact of negative electrode active materials, it is unpreferable since cycling characteristics fall. Therefore, the BET specific surface area of the negative electrode active material is preferably 10.0 m 2 / g or less.

本発明によれば、高いエネルギー密度を有し、サイクル特性に優れた非水電解質二次電池を得ることができる。すなわち、炭素材料を負極活物質として用いた従来の電池と比べて、放電容量を10%以上増大させることができ、さらに、ケイ素と炭素との複合体を負極活物質として用いた電池と比べて、容量保持率を20%以上も向上させることができる。   According to the present invention, a nonaqueous electrolyte secondary battery having a high energy density and excellent cycle characteristics can be obtained. That is, compared with a conventional battery using a carbon material as a negative electrode active material, the discharge capacity can be increased by 10% or more, and compared with a battery using a composite of silicon and carbon as a negative electrode active material. The capacity retention rate can be improved by 20% or more.

実施例1の発明に係る負極活物質の断面を示す模式図The schematic diagram which shows the cross section of the negative electrode active material which concerns on invention of Example 1 実施例2の発明に係る負極活物質の断面を示す模式図The schematic diagram which shows the cross section of the negative electrode active material which concerns on invention of Example 2 参考例2に係る負極活物質の断面を示す模式図Schematic showing the cross section of the negative electrode active material according to Reference Example 2 参考例3に係る負極活物質の断面を示す模式図Schematic showing the cross section of the negative electrode active material according to Reference Example 3 本発明の一実施形態の角形非水電解質二次電池の縦断面図The longitudinal cross-sectional view of the square nonaqueous electrolyte secondary battery of one Embodiment of this invention

以下、本発明の実施形態を添付図面に基づいて説明する。
図5は、本発明の一実施形態である角形非水電解質二次電池の概略断面図である。この角形非水電解質二次電池21は、アルミニウム箔からなる正極集電体に正極合剤を塗布してなる正極23と、銅箔からなる負極集電体に負極合剤を塗布してなる負極24とがセパレータ25を介して巻回された扁平巻状電極群22と、非水電解液とを電池ケース26に収納してなる。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 5 is a schematic cross-sectional view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment of the present invention. This rectangular nonaqueous electrolyte secondary battery 21 includes a positive electrode 23 formed by applying a positive electrode mixture to a positive electrode current collector made of aluminum foil, and a negative electrode formed by applying a negative electrode mixture to a negative electrode current collector made of copper foil. A flat wound electrode group 22 wound around a separator 25 and a nonaqueous electrolyte solution are housed in a battery case 26.

電池ケース26には、安全弁28を設けた電池蓋27がレーザー溶接によって取り付けられ、負極端子29は負極リード31を介して負極24と接続され、正極23は正極リード30を介して電池蓋27と接続されている。   A battery lid 27 provided with a safety valve 28 is attached to the battery case 26 by laser welding, a negative electrode terminal 29 is connected to the negative electrode 24 via a negative electrode lead 31, and a positive electrode 23 is connected to the battery lid 27 via a positive electrode lead 30. It is connected.

正極活物質としては、リチウムイオンが可逆的に挿入・脱離することができる化合物を使用することができる。このような化合物の例としては以下の物質が挙げられる。無機化合物としては、組成式LiMO(Mは1種又は2種以上の遷移金属、0≦x≦1)、または組成式Li(Mは1種又は2種以上の遷移金属、0≦y≦2)で表されるリチウム遷移金属複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物等を用いることができる。これらの具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiS等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマーなどが挙げられる。更に、無機化合物、有機化合物を問わず、上記各種正極活物質を混合して用いても良い。 As the positive electrode active material, a compound that can reversibly insert and desorb lithium ions can be used. Examples of such compounds include the following substances. As the inorganic compound, a composition formula Li x MO 2 (M is one or more transition metals, 0 ≦ x ≦ 1), or a composition formula Li y M 2 O 4 (M is one or more kinds). Transition metals, lithium transition metal composite oxides represented by 0 ≦ y ≦ 2), oxides having tunnel-like vacancies, layered metal chalcogenides, and the like can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 and the like. . Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above various positive electrode active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.

上記の正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤を金属箔からなる正極集電体に塗工することにより正極板を製造することができる。   A positive electrode plate is manufactured by preparing a positive electrode mixture by mixing the positive electrode active material, a conductive agent, and a binder, and coating the positive electrode mixture on a positive electrode current collector made of a metal foil. be able to.

導電剤の種類は特に制限されず、金属であっても非金属であってもよい。金属の導電剤としては、CuやNiなどの金属元素から構成される材料を挙げることができる。また、非金属の導電剤としては、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラックなどの炭素材料を挙げることができる。   The kind in particular of electrically conductive agent is not restrict | limited, A metal or a nonmetal may be sufficient. Examples of the metal conductive agent include materials composed of metal elements such as Cu and Ni. Examples of the nonmetallic conductive agent include carbon materials such as graphite, carbon black, acetylene black, and ketjen black.

結着剤は、電極製造時に使用する溶媒や電解液に対して安定な材料であれば特にその種類は制限されない。具体的には、セルロース、カルボキシメチルセルロース、スチレン−ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム、シンジオタクチック1,2−ポリブタジエン、エチレン−酢酸ビニル共重合体、プロピレン−α−オレフィン(炭素数2〜12)共重合体、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリテトラフルオロエチレン−エチレン共重合体などを用いることができる。   The type of the binder is not particularly limited as long as it is a material that is stable with respect to the solvent and the electrolyte used in manufacturing the electrode. Specifically, cellulose, carboxymethyl cellulose, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber, syndiotactic 1,2-polybutadiene, ethylene-vinyl acetate copolymer, propylene-α-olefin (carbon (Equation 2-12) Copolymers, polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene-ethylene copolymers and the like can be used.

正極集電体には、例えば、Al、Ta、Nb、Ti、Hf、Zr、Zn、W、Bi、およびこれらの金属を含む合金などを例示することができる。これらの金属は、電解液中での陽極酸化によって表面に不動態皮膜を形成するため、正極集電体と電解液との接触部分において非水電解質が酸化分解するのを有効に防止することができる。その結果、非水系二次電池のサイクル特性を有効に高めることができる。   Examples of the positive electrode current collector include Al, Ta, Nb, Ti, Hf, Zr, Zn, W, Bi, and alloys containing these metals. Since these metals form a passive film on the surface by anodic oxidation in the electrolytic solution, it is possible to effectively prevent the nonaqueous electrolyte from being oxidatively decomposed at the contact portion between the positive electrode current collector and the electrolytic solution. it can. As a result, the cycle characteristics of the non-aqueous secondary battery can be effectively improved.

図1に、請求項1の発明に係る負極活物質の断面を示す模式図を示す。負極活物質は、Siからなる粒子11と、SiOからなる粒子12(但し、0<X≦2)と、炭素材料A13とから構成される複合粒子10を含む。 FIG. 1 is a schematic diagram showing a cross section of a negative electrode active material according to the invention of claim 1. The negative electrode active material includes composite particles 10 composed of particles 11 made of Si, particles 12 made of SiO X (where 0 <X ≦ 2), and a carbon material A13.

上記の複合粒子10は、Siからなる粒子11と、SiOからなる粒子12と、炭素材料A13とを、ミルを用いてミリングすることにより得ることができる。このとき、大気中でもよいが、アルゴンや窒素などの不活性雰囲気下でミリングするのが好ましい。ミルの種類としては、ボールミル、振動ミル、衛生ボールミル、チューブミル、ジェットミル、ロッドミル、ハンマーミル、ローラーミル、ディスクミル、アトライタミル、遊星ボールミル、インパクトミルなどが挙げられる。また、メカニカルアロイ法を用いてもよい。ミリング温度は10℃〜300℃の範囲で行うことができる。また、ミリング時間は30秒〜48時間の範囲で行うことができる。 Composite particles 10 described above, the particles 11 made of Si, and the particles 12 made of SiO X, and carbon materials A13, can be obtained by milling with a mill. At this time, although it may be in the air, milling is preferably performed in an inert atmosphere such as argon or nitrogen. Examples of the mill include ball mill, vibration mill, sanitary ball mill, tube mill, jet mill, rod mill, hammer mill, roller mill, disk mill, attritor mill, planetary ball mill, impact mill and the like. Further, a mechanical alloy method may be used. The milling temperature can be performed in the range of 10 ° C to 300 ° C. The milling time can be in the range of 30 seconds to 48 hours.

また本発明においては、図2に示すように、上記複合粒子10の表面に炭素材料B14が被覆されたものを負極活物質として用いることもできる。   Moreover, in this invention, as shown in FIG. 2, what coated the carbon material B14 on the surface of the said composite particle 10 can also be used as a negative electrode active material.

図3に、参考例2に係る負極活物質の断面を示す模式図を示す。負極活物質は、SiとSiOとを含む粒子15(但し、0<X≦2)と、炭素材料A13とから構成される複合粒子16を含む。 FIG. 3 is a schematic diagram showing a cross section of the negative electrode active material according to Reference Example 2 . The negative electrode active material includes composite particles 16 composed of particles 15 containing Si and SiO X (where 0 <X ≦ 2) and a carbon material A13.

上記複合粒子16は、SiとSiOとを含む粒子15と、炭素材料A13とを、図1に示した複合粒子10と同様の方法により得ることができる。
また、参考例3として、図4に示すように、上記複合粒子16の表面に炭素材料B14が被覆されたものを負極活物質として用いることもできる。
The composite particle 16 can be obtained by the same method as the composite particle 10 shown in FIG. 1 with the particle 15 containing Si and SiO X and the carbon material A13.
As Reference Example 3, as shown in FIG. 4, the composite particle 16 whose surface is coated with the carbon material B14 can be used as the negative electrode active material.

複合粒子10、16の表面に炭素材料B14を被覆させるには、有機化合物を複合粒子10、16の表面に被覆した後に焼成する方法や、化学気相析出(CVD)法などを用いることができる。   In order to coat the surface of the composite particles 10 and 16 with the carbon material B14, a method in which an organic compound is coated on the surfaces of the composite particles 10 and 16 and then firing, a chemical vapor deposition (CVD) method, or the like can be used. .

CVD法においては、反応ガスとしては、メタン、アセチレン、ベンゼン、トルエン等の有機化合物を用いることができる。反応温度は、700℃〜1300℃の範囲で行うことができる。反応時間は30秒〜72時間の範囲で行うことができる。CVD法によると、被覆した有機化合物を焼成する方法に比べて、低い反応温度で炭素材料を被覆できる。このため、Siからなる粒子11、SiOからなる粒子12、及びSiとSiOとを含む粒子15の融点以下で被覆処理を行えるので好ましい。 In the CVD method, an organic compound such as methane, acetylene, benzene, and toluene can be used as a reaction gas. The reaction temperature can be in the range of 700 ° C to 1300 ° C. The reaction time can be 30 to 72 hours. According to the CVD method, the carbon material can be coated at a lower reaction temperature than the method of firing the coated organic compound. Thus, it preferred because perform the coating process at a temperature lower than the melting point of the particles 15 containing the particles 11, made of SiO X particles 12, and Si and SiO X consisting of Si.

炭素材料B14が複合粒子10の表面に被覆されているか否かは、ラマン分光分析を行うことにより確認できる。ラマン分光分析は試料の表面部分の分析を行うから、複合粒子10表面に炭素材料B14が全体に被覆されている場合には、表面に被覆された炭素材料B14の結晶性を示すR値(強度比1580cm−1のピーク強度に対する1360cm−1のピーク強度)が、負極活物質粒子のどこで測定しても一定の値を示すことになる。このラマン分光分析には例えば、
JOBIN,YVON製 T64000を使用することができる。
Whether or not the carbon material B14 is coated on the surface of the composite particle 10 can be confirmed by performing Raman spectroscopic analysis. Since Raman spectroscopic analysis analyzes the surface portion of the sample, when the carbon material B14 is entirely coated on the surface of the composite particle 10, an R value (intensity) indicating the crystallinity of the carbon material B14 coated on the surface. the ratio peak intensity of 1360 cm -1 to the peak intensity of 1580 cm -1) is, be measured anywhere in the anode active material particles will exhibit a constant value. For example, this Raman spectroscopic analysis
T64000 manufactured by JOBIN, YVON can be used.

Siからなる粒子、SiO(但し、0<X≦2)からなる粒子、SiとSiO(但し、0<X≦2)とを含む粒子としては、フッ酸、硫酸などの酸で洗浄されたものや、水素で還元されたものなども使用できる。 Particles made of Si, particles made of SiO X (where 0 <X ≦ 2), particles containing Si and SiO X (where 0 <X ≦ 2) are washed with an acid such as hydrofluoric acid or sulfuric acid. And those reduced with hydrogen can also be used.

負極活物質全体に対する、炭素材料A13、炭素材料B14の割合は、熱重量分析を行うことにより測定することができる。例えば、10±2℃/分で熱重量測定した場合、炭素材料A13、炭素材料B14の重量減少は30℃〜1000℃の範囲で観測される。そして、580℃近辺において、複合粒子10の表面に被覆された、比較的結晶性の低い炭素材料B14の重量減少が観測され、次に、610℃近辺に、Siからなる粒子11、SiOからなる粒子12、及びSiとSiOとを含む粒子15と共にミリングされた炭素材料A13の重量減少が観測される。Siからなる粒子11、SiOからなる粒子12、及びSiとSiOとを含む粒子15の重量減少は、1500℃〜2000℃近辺において観測される。この結果から、それぞれの材料の重量比率を測定することができる。この熱重量分析には、例えばセイコーインスツルメント製 SSC/5200を使用することができる。 The ratio of the carbon material A13 and the carbon material B14 to the whole negative electrode active material can be measured by performing thermogravimetric analysis. For example, when thermogravimetric measurement is performed at 10 ± 2 ° C./min, weight loss of the carbon material A13 and the carbon material B14 is observed in the range of 30 ° C. to 1000 ° C. In the vicinity of 580 ° C., a decrease in the weight of the carbon material B 14 having a relatively low crystallinity coated on the surface of the composite particle 10 is observed. Next, in the vicinity of 610 ° C., the particles 11 made of Si and the SiO X The weight loss of the carbon material A13 milled together with the particles 12 and the particles 15 containing Si and SiO X is observed. Weight loss of the particle 11, made of SiO X particles 12 and Si and particles 15 containing a SiO X, made of Si is observed in the vicinity 1500 ° C. to 2000 ° C.. From this result, the weight ratio of each material can be measured. For this thermogravimetric analysis, for example, SSC / 5200 manufactured by Seiko Instruments Inc. can be used.

負極活物質の比表面積は、例えば島津製作所製、マイクロメリテックス、ジェニミ2370を使用し、液体窒素を用い、圧力測定範囲0〜126.6KPaとする動的定圧法による定温ガス吸着法によって行い、BET法で解析できる。また、データ処理ソフトウェアとしてはGEMINI−PC1を使用できる。   The specific surface area of the negative electrode active material is, for example, made by Shimadzu Corporation, Micromeritex, Jenimi 2370, using liquid nitrogen, by a constant temperature gas adsorption method by a dynamic constant pressure method with a pressure measurement range of 0-126.6 KPa, It can be analyzed by the BET method. Further, GEMINI-PC1 can be used as data processing software.

負極集電体の材質は、銅、ニッケル、ステンレス等の金属であるのが好ましく、これらの中では薄膜に加工しやすく安価であることから銅箔を使用するのが好ましい。   The material of the negative electrode current collector is preferably a metal such as copper, nickel, and stainless steel. Among these, it is preferable to use a copper foil because it is easy to process into a thin film and is inexpensive.

負極板の製造方法は特に制限されず、上記の正極の製造方法と同様の方法により製造することができる。   The manufacturing method in particular of a negative electrode plate is not restrict | limited, It can manufacture by the method similar to the manufacturing method of said positive electrode.

非水電解液の非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、酢酸メチル、プロピオン酸メチル、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、ジメトキシエタン、ジメトキシメタン、リン酸エチレンメチル、リン酸エチルエチレン、リン酸トリメチル、リン酸トリエチルなどを使用することができる。これらの有機溶媒は、一種類だけを選択して使用してもよいし、二種類以上を組み合わせて用いてもよい。   Examples of the non-aqueous solvent for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, methyl propionate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, dimethoxyethane, dimethoxymethane, ethylene methyl phosphate, ethyl ethylene phosphate, trimethyl phosphate, triethyl phosphate and the like can be used. Only one kind of these organic solvents may be selected and used, or two or more kinds may be used in combination.

非水電解液の溶質としては、LiClO、LiPF、LiBF等の無機リチウム塩や、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSOおよびLiC(CFSO等の含フッ素有機リチウム塩等を挙げることができる。これらの溶質は、一種類だけを選択して使用してもよいし、二種類以上を組み合わせて用いてもよい。 As a solute of the non-aqueous electrolyte, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN Examples thereof include fluorine-containing organic lithium salts such as (CF 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Only one type of these solutes may be selected and used, or two or more types may be used in combination.

電解質としては、上記電解液以外にも固体状またはゲル状の電解質を用いることができる。このような電解質としては、無機固体電解質のほか、ポリエチレンオキサイド、ポリプロピレンオキサイドまたはこれらの誘導体などが例示できる。   As the electrolyte, a solid or gel electrolyte can be used in addition to the electrolyte solution. Examples of such an electrolyte include an inorganic solid electrolyte, polyethylene oxide, polypropylene oxide, and derivatives thereof.

セパレータとしては、絶縁性のポリエチレン微多孔膜、ポリプロピレン微多孔膜、ポリエチレン不織布、ポリプロピレン不織布などに電解液を含浸したものが使用できる。   As the separator, an insulating polyethylene microporous membrane, polypropylene microporous membrane, polyethylene nonwoven fabric, polypropylene nonwoven fabric and the like impregnated with an electrolytic solution can be used.

以下、本発明を実施例に基づき詳細に説明する。なお、本発明は下記実施例により何ら限定されるものではない。
<実施例1>
Si30重量部と、SiO30重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製することにより、負極活物質を調製した。
Hereinafter, the present invention will be described in detail based on examples. In addition, this invention is not limited at all by the following Example.
<Example 1>
A negative electrode active material was prepared by preparing composite particles by treating 30 parts by weight of Si, 30 parts by weight of SiO 2 and 40 parts by weight of artificial graphite in a nitrogen atmosphere at 25 ° C. for 30 minutes with a ball mill.

上記の負極活物質95重量%と、SBR3重量%と、CMC2重量%とを水中で混合することにより負極ペーストを作製した。この負極ペーストを厚さ15μmの銅箔上に、塗布重量1.15mg/cm、電池内に収納する負極活物質量が2gとなるように塗布し、つぎに、150℃で乾燥することにより、水を蒸発させた。この作業を銅箔の両面に対して行い、さらに、両面をロールプレスで圧縮成型した。このようにして、両面に負極合剤層を備えた負極板を作製した。 A negative electrode paste was prepared by mixing 95% by weight of the negative electrode active material, 3% by weight of SBR, and 2% by weight of CMC in water. This negative electrode paste was applied onto a copper foil having a thickness of 15 μm so that the application weight was 1.15 mg / cm 2 and the amount of the negative electrode active material stored in the battery was 2 g, and then dried at 150 ° C. The water was evaporated. This operation was performed on both sides of the copper foil, and both sides were compression molded with a roll press. Thus, the negative electrode plate provided with the negative mix layer on both surfaces was produced.

正極活物質としてコバルト酸リチウム90重量%と、導電剤としてアセチレンブラック5重量%と、結着剤としてPVDF5重量%とをNMP中で分散させることにより、正極ペーストを作製した。この正極ペーストを厚さ20μmのアルミニウム箔上に、塗布重量2.5mg/cm、電池内に収納する正極活物質量が5.3gとなるように塗布し、つぎに、150℃で乾燥することにより、NMPを蒸発させた。以上の操作をアルミニウム箔の両面に行い、さらに、両面をロールプレスで圧縮成型した。このようにして、両面に正極合剤層を備えた正極板を作製した。 A positive electrode paste was prepared by dispersing 90% by weight of lithium cobaltate as a positive electrode active material, 5% by weight of acetylene black as a conductive agent, and 5% by weight of PVDF as a binder in NMP. This positive electrode paste is applied onto an aluminum foil having a thickness of 20 μm so that the application weight is 2.5 mg / cm 2 and the amount of the positive electrode active material stored in the battery is 5.3 g, and then dried at 150 ° C. As a result, NMP was evaporated. The above operation was performed on both sides of the aluminum foil, and both sides were compression molded with a roll press. In this way, a positive electrode plate having a positive electrode mixture layer on both sides was produced.

このようにして作製した正極板及び負極板を、厚さ20μm、多孔度40%の連通多孔体であるポリエチレンセパレータを間に挟んで重ねて巻き、巻回型発電要素を作製した。この発電要素を高さ48mm、幅30mm、厚さ4.2mmの容器内に挿入した後、この電池の内部に非水電解液を注入することによって、角形非水電解質二次電池を作製した。この非水電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:1の混合溶媒に1mol/lのLiPFを溶解したものを用いた。 The positive electrode plate and the negative electrode plate thus produced were stacked with a polyethylene separator, which is a continuous porous body having a thickness of 20 μm and a porosity of 40%, interposed between them to produce a wound power generation element. The power generation element was inserted into a container having a height of 48 mm, a width of 30 mm, and a thickness of 4.2 mm, and then a nonaqueous electrolyte was injected into the battery to produce a rectangular nonaqueous electrolyte secondary battery. As this nonaqueous electrolytic solution, a solution obtained by dissolving 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1 was used.

<実施例2>
実施例2については、負極活物質として、Si20重量部と、SiO20重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製した後、メタンを900℃で熱分解する方法(CVD)によって、その複合粒子の表面に炭素材料を被覆したものを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
<Example 2>
For Example 2, 20 parts by weight of Si, 20 parts by weight of SiO 2 and 40 parts by weight of artificial graphite were treated as a negative electrode active material by a ball mill in a nitrogen atmosphere at 25 ° C. for 30 minutes to prepare composite particles. Thereafter, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the surface of the composite particles was coated with a carbon material by a method of thermally decomposing methane at 900 ° C. (CVD). .

<実施例3>
実施例3については、SiOの代わりにSiOを用いた以外は実施例2と同様にして非水電解質二次電池を作製した。
<Example 3>
For Example 3, except for using SiO instead of SiO 2 was used to fabricate a non-aqueous electrolyte secondary battery in the same manner as in Example 2.

<比較例1ないし4>
表1に示した原料を使用した以外は、実施例2と同様にして負極活物質を調製し、これを用いて非水電解質二次電池を作製した。
<Comparative Examples 1 to 4>
A negative electrode active material was prepared in the same manner as in Example 2 except that the raw materials shown in Table 1 were used, and a nonaqueous electrolyte secondary battery was produced using this.

<測定>
(ラマン分光分析)
上記のように調製した負極活物質について、上述の方法によりラマン分光分析を行い、R値を測定した。R値は、負極活物質粒子のどの部分で測定しても約0.8を示した。このR値は、試料の結晶性が高い場合には0を示し、結晶性が低くなるにつれて大きな値を示すものである。R値が約0.8であることから、この粒子は、CVD法に析出した比較的結晶性の低い炭素材料により、均一に被覆されていることが確認された。
<Measurement>
(Raman spectroscopy)
About the negative electrode active material prepared as mentioned above, the Raman spectroscopic analysis was performed by the above-mentioned method, and R value was measured. The R value was about 0.8 regardless of which part of the negative electrode active material particles was measured. This R value indicates 0 when the crystallinity of the sample is high, and increases as the crystallinity decreases. Since the R value was about 0.8, it was confirmed that the particles were uniformly coated with the carbon material having a relatively low crystallinity deposited by the CVD method.

(熱重量分析)
上記のように調製した負極活物質について、上述の方法により熱重量分析を行い、それぞれの材料の重量比率を測定した。
(Thermogravimetric analysis)
The negative electrode active material prepared as described above was subjected to thermogravimetric analysis by the above-described method, and the weight ratio of each material was measured.

(XRD)
上記のように調製した負極活物質について、上述の方法によりX線回折を行い、CuKα線のX線回折パターンの回折角(2θ)から、炭素材料の平均面間隔d(002)を測定した。
(XRD)
The negative electrode active material prepared as described above was subjected to X-ray diffraction by the method described above, and the average interplanar spacing d (002) of the carbon material was measured from the diffraction angle (2θ) of the X-ray diffraction pattern of CuKα rays.

(BET比表面積)
上記のように調製した負極活物質について、上述の方法によりBET比表面積測定を行った。
(BET specific surface area)
About the negative electrode active material prepared as mentioned above, the BET specific surface area measurement was performed by the above-mentioned method.

(充放電特性)
上記のように作製した非水電解質二次電池を、25℃において、1CmAの電流で4.2Vまで充電し、続いて4.2Vの定電圧で2時間充電した後、1CmAの電流で2.0Vまで放電した。この充放電過程を1サイクルとし、500サイクルの充放電試験を行った。そして、1サイクル目の放電容量に対する500サイクル目の放電容量の割合(百分率表示)を、サイクル容量保持率とした。
(Charge / discharge characteristics)
The non-aqueous electrolyte secondary battery produced as described above was charged to 4.2 V at a current of 1 CmA at 25 ° C., and then charged for 2 hours at a constant voltage of 4.2 V, and then at a current of 1 CmA. The battery was discharged to 0V. This charging / discharging process was made into 1 cycle, and the 500-cycle charging / discharging test was done. The ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle (expressed as a percentage) was defined as the cycle capacity retention rate.

Figure 0005601536
Figure 0005601536

<結果>
上記実施例及び比較例に関する種々の測定結果を表1にまとめた。
実施例1ないし3は、SiOを含まない比較例1と比べて容量保持率が高く、また、Siを含まない比較例2と比べて放電容量が大きい。そして、複合粒子中に炭素材料を含まない比較例3と比べて容量保持率が高い。さらに、Si及びSiOを含まない比較例4と比べて放電容量が大きい。
実施例1と、炭素材料により複合粒子が被覆された実施例2、3とを比較すると、実施例2は容量保持率が優れている。
<Result>
Various measurement results regarding the above-described Examples and Comparative Examples are summarized in Table 1.
Examples 1 to 3 have a higher capacity retention rate than Comparative Example 1 that does not contain SiO X , and a larger discharge capacity than Comparative Example 2 that does not contain Si. And the capacity | capacitance retention is high compared with the comparative example 3 which does not contain a carbon material in a composite particle. Furthermore, the discharge capacity is large as compared with Comparative Example 4 that does not contain Si and SiO X.
When Example 1 is compared with Examples 2 and 3 in which composite particles are coated with a carbon material, Example 2 is superior in capacity retention.

<実施例4ないし7及び参考例1
SiとSiOとの合計量に対するSiの割合を、表2に示すものとした以外は、実施例2と同様にして非水電解質二次電池を作製した。
<Examples 4 to 7 and Reference Example 1 >
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the ratio of Si to the total amount of Si and SiO 2 was as shown in Table 2.

Figure 0005601536
Figure 0005601536

上記実施例に関する種々の測定結果を、実施例2及び比較例1、2の結果と併せて表2にまとめた。
Siからなる粒子とSiOからなる粒子との合計に対する、Siからなる粒子の割合が、20重量%以上80重量%以下である実施例2、及びないしは、Siからなる粒子の割合が10重量%である参考例1と比べて、放電容量が大きい。
Various measurement results regarding the above-mentioned examples are summarized in Table 2 together with the results of Example 2 and Comparative Examples 1 and 2.
In Examples 2 and 4 to 7 in which the ratio of the particles made of Si to the total of the particles made of Si and the particles made of SiO X is 20 wt% or more and 80 wt% or less, the ratio of the particles made of Si is Compared with the reference example 1 which is 10 weight%, discharge capacity is large.

<実施例ないし13
Si、及びSiOと共に混合する人造黒鉛の添加量を、表3に示す割合とした以外は、実施例2と同様にして非水電解質二次電池を作製した。
<Examples 8 to 13 >
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the amount of artificial graphite mixed with Si and SiO 2 was changed to the ratio shown in Table 3.

Figure 0005601536
Figure 0005601536

上記実施例に関する種々の測定結果を表3にまとめた。
負極活物質全体に対する人造黒鉛の割合が、3重量%以上60重量%以下である実施例ないし12は、人造黒鉛の割合が1重量%である実施例と比べて容量保持率が高い。他方、人造黒鉛の割合が70重量%である実施例13と比べると、実施例ないし12は放電容量が大きい。
Table 3 summarizes various measurement results regarding the above examples.
Examples 9 to 12 in which the ratio of the artificial graphite to the whole negative electrode active material is 3% by weight or more and 60% by weight or less have a higher capacity retention than Example 8 in which the ratio of the artificial graphite is 1% by weight. On the other hand, compared with Example 13 in which the proportion of artificial graphite is 70% by weight, Examples 9 to 12 have a larger discharge capacity.

また、負極活物質全体に対する炭素材料全部の割合が30重量%以上80重量%以下である実施例10ないし12は、炭素材料全部の割合がそれぞれ21重量%、23重量%である実施例と比べて、容量保持率が高い。炭素材料全部の割合が90重量%である実施例13と比べると、実施例10ないし12は、放電容量が大きく、容量保持率も高い。 Examples 10 to 12 in which the ratio of the total carbon material to the whole negative electrode active material is 30% by weight or more and 80% by weight or less are Example 8 in which the ratio of the total carbon material is 21% by weight and 23% by weight, respectively. Compared to 9 , the capacity retention rate is high. Compared with Example 13 in which the proportion of the total carbon material is 90% by weight, Examples 10 to 12 have a large discharge capacity and a high capacity retention rate.

<実施例14ないし16
Si、及びSiOと共に混合する炭素材料として、人造黒鉛に代えて、実施例14では天然黒鉛を、実施例15ではアセチレンブラックを、実施例16では、気相成長炭素繊維を用いた以外は、実施例2と同様にして非水電解質二次電池を作製した。
<Examples 14 to 16 >
As a carbon material to be mixed with Si and SiO 2 , natural graphite was used in Example 14 , acetylene black was used in Example 15 , and vapor grown carbon fiber was used in Example 16 , instead of artificial graphite. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2.

Figure 0005601536
Figure 0005601536

上記実施例に関する種々の測定結果を実施例2の結果と併せて表4にまとめた。
平均面間隔d(002)が0.3354nm以上0.35nm以下である実施例2、1416は、d(002)が0.37nmである実施例15と比べて放電容量が大きく、また容量保持率も優れている。
Various measurement results regarding the above-mentioned example are summarized in Table 4 together with the result of Example 2.
In Examples 2, 14 , and 16 in which the average surface distance d (002) is 0.3354 nm or more and 0.35 nm or less, the discharge capacity is larger than that in Example 15 in which d (002) is 0.37 nm, and the capacity The retention rate is also excellent.

<実施例17ないし19
CVD法によって炭素材料を被覆する際、反応条件を、適宜変更することにより、複合粒子の表面に被覆される炭素量として表5に示される値を有する負極活物質を調製した。この負極活物質を用いた以外は、実施例2と同様にして非水電解質二次電池を作製した。
<Examples 17 to 19 >
When the carbon material was coated by the CVD method, the negative electrode active material having the value shown in Table 5 as the amount of carbon coated on the surface of the composite particles was prepared by appropriately changing the reaction conditions. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that this negative electrode active material was used.

Figure 0005601536
Figure 0005601536

上記実施例に関する種々の測定結果を実施例2の結果と併せて表5にまとめた。
負極活物質全体に対する、複合粒子の表面を覆っている炭素材料の割合が、0.5重量%以上40.0重量%以下である実施例2、1718は、炭素材料の割合が60重量%である実施例19と比べて、放電容量が大きく、容量保持率も高い。
Various measurement results regarding the above-mentioned example are summarized in Table 5 together with the result of Example 2.
In Examples 2, 17 and 18 , in which the ratio of the carbon material covering the surface of the composite particles with respect to the whole negative electrode active material is 0.5 wt% or more and 40.0 wt% or less, the ratio of the carbon material is 60 wt% % and is compared to example 19, the discharge capacity is large, the capacity retention rate is high.

<実施例20ないし22
Si、SiO、及び人造黒鉛として、所定の比表面積を有するものを用いて、表6に示されるBET比表面積を有する負極活物質を調製した。この負極活物質を用いた以外は、実施例2と同様にして非水電解質二次電池を作製した。
<Examples 20 to 22 >
A negative electrode active material having a BET specific surface area shown in Table 6 was prepared using Si, SiO 2 , and artificial graphite having a predetermined specific surface area. A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that this negative electrode active material was used.

Figure 0005601536
Figure 0005601536

上記実施例に関する種々の測定結果を実施例2の結果と併せて表6にまとめた。
負極活物質のBET比表面積が10.0m/g以下である実施例2、2021は、BET比表面積が20m/gである実施例22と比べて放電容量が大きく、容量保持率も高い。
Various measurement results regarding the above-mentioned example are summarized in Table 6 together with the result of Example 2.
In Examples 2, 20 and 21 , in which the negative electrode active material has a BET specific surface area of 10.0 m 2 / g or less, the discharge capacity is large and the capacity retention rate is higher than that of Example 22 in which the BET specific surface area is 20 m 2 / g. Is also expensive.

参考例2
重量比1:1でSiとSiOとを含む粒子60重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製することにより、負極活物質を調製した。負極活物質以外はすべて実施例1と同様にして、参考例2の非水電解質二次電池を作製した。
< Reference Example 2 >
By preparing composite particles by treating 60 parts by weight of particles containing Si and SiO 2 at a weight ratio of 1: 1 and 40 parts by weight of artificial graphite in a nitrogen atmosphere at 25 ° C. for 30 minutes in a ball mill, An active material was prepared. A nonaqueous electrolyte secondary battery of Reference Example 2 was produced in the same manner as Example 1 except for the negative electrode active material.

参考例3
負極活物質として、重量比1:1でSiとSiOとを含む粒子40重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製した後、メタンを900℃で熱分解する方法(CVD)によって、その複合粒子の表面に炭素材料を被覆したものを用いた以外は、参考例2と同様にして、参考例3の非水電解質二次電池を作製した。
< Reference Example 3 >
As a negative electrode active material, 40 parts by weight of particles containing Si and SiO 2 at a weight ratio of 1: 1 and 40 parts by weight of artificial graphite were treated in a nitrogen atmosphere at 25 ° C. for 30 minutes by a ball mill to prepare composite particles. Then, the nonaqueous electrolyte of Reference Example 3 was used in the same manner as Reference Example 2 except that the composite particles were coated with a carbon material by a method of thermally decomposing methane at 900 ° C. (CVD). A secondary battery was produced.

参考例4
SiOの代わりにSiOを用いた以外は参考例3と同様にして、参考例4の非水電解質二次電池を作製した。
< Reference Example 4 >
A nonaqueous electrolyte secondary battery of Reference Example 4 was produced in the same manner as Reference Example 3 , except that SiO was used instead of SiO 2 .

参考例2ないしの負極活物質について、実施例1と同様にして、ラマン分光分析、熱重量分析、XRD、BET比表面積を測定した。また、参考例2ないしの非水電解質二次電池について、実施例1と同様にして、充放電特性を測定した。その結果を表7に示した。なお、表7には比較のため、表1に示した比較例1ないし4のデータも併せて示した。 For the negative electrode active materials of Reference Examples 2 to 4 , the Raman spectroscopic analysis, thermogravimetric analysis, XRD, and BET specific surface area were measured in the same manner as in Example 1. The charge / discharge characteristics of the nonaqueous electrolyte secondary batteries of Reference Examples 2 to 4 were measured in the same manner as in Example 1. The results are shown in Table 7. For comparison, Table 7 also shows data of Comparative Examples 1 to 4 shown in Table 1.

Figure 0005601536
Figure 0005601536

<結果>
参考例2ないしは、SiOを含まない比較例1と比べて容量保持率が高く、また、Siを含まない比較例2と比べて放電容量が大きい。そして、複合粒子中に炭素材料を含まない比較例3と比べて容量保持率が高い。さらに、Si及びSiOを含まない比較例4と比べて放電容量が大きい。
参考例2と、炭素材料により複合粒子が被覆された参考例3とを比較すると、参考例3は容量保持率が優れている。
<Result>
Reference Examples 2 to 4 have a higher capacity retention rate than Comparative Example 1 that does not contain SiO X , and a larger discharge capacity than Comparative Example 2 that does not contain Si. And the capacity | capacitance retention is high compared with the comparative example 3 which does not contain a carbon material in a composite particle. Furthermore, the discharge capacity is large as compared with Comparative Example 4 that does not contain Si and SiO X.
When Reference Example 2 is compared with Reference Examples 3 and 4 in which composite particles are coated with a carbon material, Reference Examples 3 and 4 have excellent capacity retention.

参考例5ないし
SiとSiOとを含む粒子中におけるSiの割合を、表8に示すものとした以外は、参考例3と同様にして、参考例5ないしの非水電解質二次電池を作製した。
参考例5ないしに関する種々の測定結果を、参考例3及び比較例1、2の結果と併せて表8にまとめた。
< Reference Examples 5 to 9 >
Nonaqueous electrolyte secondary batteries of Reference Examples 5 to 9 were produced in the same manner as Reference Example 3 except that the ratio of Si in the particles containing Si and SiO 2 was as shown in Table 8.
Various measurement results for Reference Examples 5 to 9 are summarized in Table 8 together with the results of Reference Example 3 and Comparative Examples 1 and 2.

Figure 0005601536
Figure 0005601536

SiとSiOとを含む粒子中におけるSiの割合が20重量%以上80重量%以下である参考例3、及びないしは、Siの割合が10重量%である参考例5と比べて、放電容量が大きい。 In Reference Example 3 and 6 to 9 in which the proportion of Si in the particles containing Si and SiO 2 is 20 wt% or more and 80 wt% or less, compared to Reference Example 5 in which the proportion of Si is 10 wt%, Large discharge capacity.

参考例10ないし15
SiとSiOとを含む粒子と混合する人造黒鉛の添加量を、表9に示す割合とした以外は、参考例3と同様にして、参考例10ないし1の非水電解質二次電池を作製した。
参考例10ないし1に関する種々の測定結果を表9にまとめた。
< Reference Examples 10 to 15 >
The nonaqueous electrolyte secondary batteries of Reference Examples 10 to 15 were manufactured in the same manner as Reference Example 3 except that the amount of artificial graphite mixed with particles containing Si and SiO 2 was changed to the ratio shown in Table 9. Produced.
Various measurement results on to 1 5 Reference Example 10 are summarized in Table 9.

Figure 0005601536
Figure 0005601536

負極活物質全体に対する人造黒鉛の割合が、3重量%以上60重量%以下である参考例11ないし14は、人造黒鉛の割合が1重量%である参考例10と比べて容量保持率が高い。他方、人造黒鉛の割合が70重量%である参考例15に比べると、参考例11ないし14は放電容量が大きい。 Reference Examples 11 to 14 in which the proportion of artificial graphite with respect to the whole negative electrode active material is 3 wt% or more and 60 wt% or less have a higher capacity retention than Reference Example 10 in which the proportion of artificial graphite is 1 wt%. On the other hand, compared with Reference Example 15 in which the proportion of artificial graphite is 70% by weight, Reference Examples 11 to 14 have a larger discharge capacity.

また、負極活物質全体に対する炭素材料全部の割合が30重量%以上60重量%以下である参考例12ないし14は、炭素材料全部の割合がそれぞれ21重量%、23重量%である参考例1011と比べて、容量保持率が高い。炭素材料全部の割合が90重量%である参考例15と比べると、参考例12ないし14は、放電容量が大きく、容量保持率も高い。
Further, to no Example 12 or less 30 wt% to 60 wt% fraction of the total carbon material to the entire negative electrode active material 14, 21 wt% fraction of the total carbon material respectively, Example 10 is 23 wt%, Compared to 11 , the capacity retention rate is high. Compared with Reference Example 15 in which the proportion of the entire carbon material is 90% by weight, Reference Examples 12 to 14 have a large discharge capacity and a high capacity retention rate.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

上記した実施形態では、角形非水電解質二次電池21として説明したが、電池構造は特に限定されず、円筒形、袋状、リチウムポリマー電池等としてもよいことは勿論である。   In the above-described embodiment, the prismatic nonaqueous electrolyte secondary battery 21 has been described. However, the battery structure is not particularly limited, and may be a cylindrical shape, a bag shape, a lithium polymer battery, or the like.

10、16...複合粒子
11...Siからなる粒子
12...SiOからなる粒子
13...炭素材料A
14...炭素材料B
15...SiとSiOとを含む粒子
10, 16 ... Composite particles 11 ... Si particles 12 ... SiO X particles 13 ... Carbon material A
14 ... Carbon material B
15 ... Particles containing Si and SiO X

Claims (1)

正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、前記負極活物質が、ケイ素Siからなる粒子と、ケイ素酸化物SiO(但し、0<X≦2)からなる粒子と、炭素材料とから構成される複合粒子を含み、前記ケイ素Siと前記ケイ素酸化物SiOとの合計に対する前記ケイ素Siの割合が、20重量%以上80重量%以下であることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, and a non-aqueous electrolyte, the negative electrode active material comprises particles made of silicon Si, silicon oxide SiO X (Provided that the ratio of the silicon Si to the total of the silicon Si and the silicon oxide SiO X is 20% by weight, including composite particles composed of particles composed of 0 <X ≦ 2) and a carbon material. A nonaqueous electrolyte secondary battery characterized by being 80 wt% or less.
JP2011223324A 2011-10-07 2011-10-07 Nonaqueous electrolyte secondary battery Expired - Lifetime JP5601536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223324A JP5601536B2 (en) 2011-10-07 2011-10-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223324A JP5601536B2 (en) 2011-10-07 2011-10-07 Nonaqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002304654A Division JP5060010B2 (en) 2002-05-08 2002-10-18 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012009457A JP2012009457A (en) 2012-01-12
JP5601536B2 true JP5601536B2 (en) 2014-10-08

Family

ID=45539725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223324A Expired - Lifetime JP5601536B2 (en) 2011-10-07 2011-10-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5601536B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
JP2015510666A (en) 2012-01-30 2015-04-09 ネクソン リミテッドNexeon Limited Si / C electroactive material composition
KR101718055B1 (en) * 2012-02-13 2017-03-20 삼성에스디아이 주식회사 Negative active material and lithium battery containing the material
JP2013191529A (en) * 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101572364B1 (en) * 2014-03-19 2015-11-26 오씨아이 주식회사 Carbon-silicon composite and negative electrode for lithium secondary battery and lithium secondary battery using the same
KR101567203B1 (en) 2014-04-09 2015-11-09 (주)오렌지파워 Negative electrode material for rechargeable battery and method of fabricating the same
KR101604352B1 (en) 2014-04-22 2016-03-18 (주)오렌지파워 Negative electrode active material and rechargeable battery having the same
KR101550781B1 (en) 2014-07-23 2015-09-08 (주)오렌지파워 Method of forming silicon based active material for rechargeable battery
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
EP3319154A4 (en) 2015-07-02 2019-03-20 Showa Denko K.K. Negative electrode material for lithium-ion batteries and use therefor
JP6567448B2 (en) * 2016-03-16 2019-08-28 株式会社東芝 Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery and battery pack including the same, vehicle
CN107623116B (en) * 2017-09-22 2020-07-17 苏州锦艺新材料科技有限公司 Lithium ion battery cathode composite material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899684B2 (en) * 1998-06-15 2007-03-28 宇部興産株式会社 Non-aqueous secondary battery
JP2000243396A (en) * 1999-02-23 2000-09-08 Hitachi Ltd Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP2002170561A (en) * 2000-11-30 2002-06-14 Denki Kagaku Kogyo Kk Electrode active material and nonaqueous system secondary battery
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2004095306A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004119176A (en) * 2002-09-26 2004-04-15 Toshiba Corp Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery

Also Published As

Publication number Publication date
JP2012009457A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5060010B2 (en) Nonaqueous electrolyte secondary battery
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
KR102633418B1 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
KR102459411B1 (en) Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
CN107431250B (en) Nonaqueous electrolyte secondary battery
JP6181590B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7265668B2 (en) Lithium-ion secondary batteries, mobile terminals, automobiles and power storage systems
JP5503858B2 (en) Negative electrode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery
WO2015025443A1 (en) Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
WO2015111710A1 (en) Non-aqueous secondary battery
CN108292746B (en) Negative electrode active material, mixed negative electrode active material, negative electrode, and secondary battery
JP2004335195A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
WO2017085911A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
WO2016136227A1 (en) Nonaqueous electrolyte secondary battery
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
JP7019284B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP5245201B2 (en) Negative electrode, secondary battery
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
WO2017145654A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP2005243431A (en) Nonaqueous electrolyte secondary battery
JP6467031B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2020065832A1 (en) Conductive material, positive electrode and secondary battery
JP2004200003A (en) Nonaqueous electrolyte secondary battery
JP6862091B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and negative electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5601536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term