JPH04280469A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04280469A
JPH04280469A JP3069107A JP6910791A JPH04280469A JP H04280469 A JPH04280469 A JP H04280469A JP 3069107 A JP3069107 A JP 3069107A JP 6910791 A JP6910791 A JP 6910791A JP H04280469 A JPH04280469 A JP H04280469A
Authority
JP
Japan
Prior art keywords
bit line
layer
memory cell
capacitor
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3069107A
Other languages
Japanese (ja)
Inventor
Toru Koyama
徹 小山
Katsuhiko Tamura
勝彦 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3069107A priority Critical patent/JPH04280469A/en
Publication of JPH04280469A publication Critical patent/JPH04280469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To obtain the memory cell structure of a dynamic RAM which can reduce the memory cell intervals and enlarge a capacitor area in the same memory region. CONSTITUTION:A dielectric layer 11 is installed to the lower part of an active layer which comprises a P-type single crystal layer 2. A bit line is formed below the layer and connected with an n-type diffusion layer 10 from the lower part, which eliminates a contact region between the bit line and the n-type diffusion layer. This construction makes it possible to reduce the interval between the word line of the adjacent memory cell and the capacitor.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体装置の一種で
あるダイナミックRAMに関し、特にそのメモリセル構
造の改良を図ったものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic RAM, which is a type of semiconductor device, and particularly to a dynamic RAM with an improved memory cell structure.

【0002】0002

【従来の技術】図3は従来のダイナミックRAMの積層
キャパシタ型のメモリセル構造の一例である、ビット線
形成までの断面模式図である。図において、1bはP型
のSi基板、3は例えば0.3〜0.4μmの厚みを有
する素子分離及び層間のSi酸化膜、4は例えば0.2
μmの厚みを有し、通常、多結晶Siからなるワード線
、5は例えば0.2μmの厚みを有し、通常、多結晶S
iからなるキャパシタの電極、6は例えば数十オングス
トロームの厚みを有し、通常、Si酸化膜,Si窒化膜
からなるキャパシタ誘電膜、7は例えば0.2μmの厚
みを有し、通常、多結晶Siからなるキャパシタのもう
片方の電極、8は通常Si酸化膜からなる、キャパシタ
電極7とビット線13の間の層間絶縁膜、9は通常、P
あるいはAsを高濃度に拡散させたn型の拡散層であり
、キャパシタの電極5とコンタクトをとっている。10
は拡散層9と同様にビット線とコンタクトをとっている
n型の拡散層である。13bは通常、金属,シリサイド
等からなるビット線であり、14bは隣のメモリセルと
のワード線の間隔を示しており、この従来例では例えば
2μmである。
2. Description of the Related Art FIG. 3 is a schematic cross-sectional view of an example of a stacked capacitor type memory cell structure of a conventional dynamic RAM up to bit line formation. In the figure, 1b is a P-type Si substrate, 3 is an element isolation and interlayer Si oxide film having a thickness of, for example, 0.3 to 0.4 μm, and 4 is, for example, 0.2 μm thick.
The word line 5 has a thickness of 0.2 μm and is usually made of polycrystalline Si, and the word line 5 has a thickness of 0.2 μm and is usually made of polycrystalline Si.
A capacitor electrode 6 has a thickness of, for example, several tens of angstroms, and is usually made of a Si oxide film or a Si nitride film. 7 has a thickness of, for example, 0.2 μm, and is usually made of polycrystalline material. The other electrode of the capacitor made of Si, 8 is an interlayer insulating film between the capacitor electrode 7 and the bit line 13, usually made of a Si oxide film, and 9 is usually made of P.
Alternatively, it is an n-type diffusion layer in which As is diffused at a high concentration, and is in contact with the electrode 5 of the capacitor. 10
Similarly to the diffusion layer 9, this is an n-type diffusion layer that is in contact with the bit line. 13b is a bit line usually made of metal, silicide, etc., and 14b indicates the distance between a word line and an adjacent memory cell, which is, for example, 2 μm in this conventional example.

【0003】従来のダイナミックRAMの積層キャパシ
タ型のメモリセル構造は図3に示す通り、ビット線13
bを電極5,7および誘電膜6からなるキャパシタ構造
の上方に形成していた。そのために、基板1bの表面に
ビット線13bと拡散層10とのコンタクト領域が必要
であるとともに、キャパシタ電極7にビット線13を通
す開口部が必要であった。
The stacked capacitor type memory cell structure of a conventional dynamic RAM has a bit line 13 as shown in FIG.
b was formed above a capacitor structure consisting of electrodes 5, 7 and dielectric film 6. Therefore, a contact region between the bit line 13b and the diffusion layer 10 was required on the surface of the substrate 1b, and an opening for passing the bit line 13 through the capacitor electrode 7 was required.

【0004】0004

【発明が解決しようとする課題】従来の半導体装置は、
以上のように構成されているので、Si基板表面にビッ
ト線と拡散層とのコンタクト領域が必要であり、キャパ
シタ電極にはビット線を通す開口領域が必要であったが
、これらは各々メモリセル領域の縮小およびキャパシタ
領域の拡大を図る上で制限を与え、ダイナミックRAM
の高集積化において障害となっていた。
[Problems to be Solved by the Invention] Conventional semiconductor devices are
With the above structure, a contact area between the bit line and the diffusion layer was required on the surface of the Si substrate, and an opening area for passing the bit line was required for the capacitor electrode, but these were required for each memory cell. Dynamic RAM
This has been an obstacle in achieving high integration.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、隣り合うメモリセルとの間隔を
縮小することができるとともに、同じメモリセル領域で
キャパシタ領域を拡大することができるメモリセル構造
を有する半導体装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and it is possible to reduce the distance between adjacent memory cells and to expand the capacitor area in the same memory cell area. The object is to obtain a semiconductor device having a memory cell structure.

【0006】[0006]

【課題を解決するための手段】この発明に係る半導体装
置は、そのメモリセル構造として、活性層であるP型単
結晶Si層の下部に誘電体層を設け、さらにその下にビ
ット線を形成し、誘電体層と活性層を通してビット線と
トランジスタ部のn型拡散層とを接続したものである。 なお、ビット線を形成する誘電体層の下部領域は無添加
のSi基板とする。
[Means for Solving the Problems] A semiconductor device according to the present invention has a memory cell structure in which a dielectric layer is provided below a P-type single crystal Si layer that is an active layer, and a bit line is further formed below the dielectric layer. However, the bit line and the n-type diffusion layer of the transistor section are connected through the dielectric layer and the active layer. Note that the lower region of the dielectric layer forming the bit line is made of an additive-free Si substrate.

【0007】[0007]

【作用】この発明におけるビット線は、活性領域の下部
に誘電体層を隔てて形成され、下方からn型拡散層と接
続される。そのため、活性層表面にビット線とn型拡散
層とのコンタクトを形成する必要がなくなり、隣のメモ
リセルとのワード線間隔14を詰めることができる。さ
らにコンタクトホールを形成する必要がなくなるため、
キャパシタの電極7に開口領域を形成する必要がなくな
る。このことにより、キャパシタ領域を拡大することが
できる。
The bit line in the present invention is formed below the active region with a dielectric layer in between, and is connected to the n-type diffusion layer from below. Therefore, there is no need to form a contact between the bit line and the n-type diffusion layer on the surface of the active layer, and the word line interval 14 between adjacent memory cells can be reduced. Furthermore, since there is no need to form contact holes,
There is no need to form an opening region in the electrode 7 of the capacitor. This allows the capacitor area to be expanded.

【0008】なお、この誘電体層は上側のP型単結晶S
i層と下側の無添加の単結晶Si領域を分離する役目を
持つ。ビット線を誘電体層下側の無添加の単結晶領域に
形成することにより、ビット線をn型拡散層で形成した
際、接合容量による信号遅延を防止することができる。
[0008] This dielectric layer is similar to the upper P type single crystal S.
It has the role of separating the i-layer and the lower doped-free single-crystal Si region. By forming the bit line in an additive-free single crystal region below the dielectric layer, signal delay due to junction capacitance can be prevented when the bit line is formed of an n-type diffusion layer.

【0009】[0009]

【実施例】以下、この発明の実施例を図について説明す
る。図1はこの発明の一実施例による半導体装置を示す
。図において、3〜10,14は図3の従来例と同じも
のである。1aは無添加のSi基板、2は例えば0.2
μmの厚みを有するP型の単結晶Si層、11は例えば
0.2μmの厚みを有し、Si基板1aと単結晶Si層
2を分離するSi酸化層、12はビット線13aとn型
拡散層10とを接続するn型拡散領域、13aはn型拡
散層からなるビット線であり、Si酸化層11の下側に
例えば0.2μmの厚みで形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a semiconductor device according to an embodiment of the invention. In the figure, numerals 3 to 10 and 14 are the same as those in the conventional example shown in FIG. 1a is an additive-free Si substrate, 2 is, for example, 0.2
A P-type single crystal Si layer having a thickness of μm, 11 a Si oxide layer having a thickness of, for example, 0.2 μm and separating the Si substrate 1a and the single crystal Si layer 2, 12 a bit line 13a and an n-type diffusion The n-type diffusion region 13a connecting the layer 10 is a bit line made of an n-type diffusion layer, and is formed under the Si oxide layer 11 to a thickness of, for example, 0.2 μm.

【0010】本実施例は、図に示す通り、ビット線13
aを、活性層となるP型単結晶層2の下方にSi酸化層
11を介して形成し、下方からn型拡散層10に接続し
ており、このため、P型単結晶層表面にビット線と拡散
層とのコンタクト領域を形成する必要がなくなる。その
ため、隣のメモリセルとのワード線間隔14aは図に示
すように狭くなり、例えば1μm以下となる。従って、
従来例に比して大幅に詰めることができる。さらに、コ
ンタクトホールを形成する必要がないため、図に示す通
り、キャパシタの電極7に開口領域を形成する必要がな
く、もう片方の電極5を隣のメモリセル近くまで延長す
ることができ、このことによりキャパシタ領域の拡大が
可能となり、キャパシタ容量の増大が可能となる。また
、ビット線13aの下方のシリコン基板を無添加として
おり、このため、ビット線の接合容量を軽減でき、接合
容量による信号の遅延を防止することができる。
In this embodiment, as shown in the figure, the bit line 13
a is formed below the P-type single-crystal layer 2, which becomes the active layer, via a Si oxide layer 11, and is connected to the n-type diffusion layer 10 from below. There is no need to form a contact region between the line and the diffusion layer. Therefore, the word line interval 14a between adjacent memory cells becomes narrow as shown in the figure, for example, 1 μm or less. Therefore,
The size can be reduced significantly compared to the conventional example. Furthermore, since there is no need to form a contact hole, as shown in the figure, there is no need to form an opening area in the electrode 7 of the capacitor, and the other electrode 5 can be extended close to the adjacent memory cell. This makes it possible to expand the capacitor area and increase the capacitor capacity. Further, the silicon substrate below the bit line 13a is free of additives, so that the junction capacitance of the bit line can be reduced and signal delay due to the junction capacitance can be prevented.

【0011】なお、上記実施例ではビット線13aの上
側はSi酸化層11と接しており、下側は無添加の単結
晶Siと接しているが、図2に示すように、ビット線1
3aの下側に、さらにSi酸化層15を例えば0.2μ
mの厚みで形成し、ビット線をSi酸化層11,15に
て上下から挟むような構造をとっても良い。さらに、ビ
ット線側壁にもSi酸化層を形成し、ビット線をSi酸
化膜で包み込む、或いはSi酸化層中にビット線を形成
するような構造をとっても良い。これらの構造をとるこ
とにより、接合容量はさらに軽減される。なお、ビット
線を酸化膜で覆うような構造をとった場合には、単結晶
Si1aは無添加である必要はない。
In the above embodiment, the upper side of the bit line 13a is in contact with the Si oxide layer 11, and the lower side is in contact with undoped single crystal Si, but as shown in FIG.
Further, a Si oxide layer 15 of, for example, 0.2μ is formed under the layer 3a.
The bit line may be formed to have a thickness of m, and may have a structure in which the bit line is sandwiched between the Si oxide layers 11 and 15 from above and below. Furthermore, a structure may be adopted in which a Si oxide layer is also formed on the side wall of the bit line and the bit line is wrapped in the Si oxide film, or the bit line is formed in the Si oxide layer. By adopting these structures, the junction capacitance is further reduced. Note that when a structure is adopted in which the bit line is covered with an oxide film, the single crystal Si1a does not need to be additive-free.

【0012】また、上記実施例ではビット線13aをn
型拡散層により形成したが、金属或いはシリサイドでも
良い。
Further, in the above embodiment, the bit line 13a is
Although it is formed of a type diffusion layer, it may be formed of metal or silicide.

【0013】さらに、上記実施例では誘電体層11ある
いは15をSi酸化膜で形成しているが、Ta2 O5
 等の他の誘電体でも良い。
Furthermore, in the above embodiment, the dielectric layer 11 or 15 is formed of a Si oxide film, but Ta2O5
Other dielectric materials such as the like may also be used.

【0014】[0014]

【発明の効果】以上のように、この発明に係る半導体装
置によれば、ビット線を活性層の下方に形成し、ビット
線とn型拡散層とのコンタクトを基板表面からなくすよ
うな構造にしたので、メモリセル間隔を縮小することが
できるとともに、キャパシタ領域の増大が可能となり、
ダイナミックRAMの高集積化が図れる効果がある。
[Effects of the Invention] As described above, the semiconductor device according to the present invention has a structure in which the bit line is formed below the active layer and the contact between the bit line and the n-type diffusion layer is eliminated from the substrate surface. This makes it possible to reduce the memory cell spacing and increase the capacitor area.
This has the effect of increasing the degree of integration of the dynamic RAM.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例によるダイナミックRAM
の積層キャパシタ型メモリセルの構造の一部を示す断面
模式図である。
FIG. 1 Dynamic RAM according to an embodiment of the present invention
FIG. 2 is a schematic cross-sectional view showing a part of the structure of a stacked capacitor type memory cell.

【図2】この発明の一実施例によるダイナミックRAM
の積層キャパシタ型メモリセルの構造の一部を示す断面
模式図である。
FIG. 2 Dynamic RAM according to an embodiment of the present invention
FIG. 2 is a schematic cross-sectional view showing a part of the structure of a stacked capacitor type memory cell.

【図3】従来のダイナミックRAMの積層キャパシタ型
メモリセルの構造の一部を示す断面模式図である。
FIG. 3 is a schematic cross-sectional view showing a part of the structure of a stacked capacitor type memory cell of a conventional dynamic RAM.

【符号の説明】[Explanation of symbols]

1a            添加のSi基板1b  
          P型Si基板2        
      P型単結晶Si層3          
    素子分離及び層間絶縁膜4         
     ワード線5              キ
ャパシタの電極6              キャパ
シタ誘電体膜7              キャパシ
タの対向電極8              層間絶縁
膜9              キャパシタの電極5
と接触するn型拡散層 10            ビット線13と接触する
n型拡散層11            誘電体層12
            拡散層10とビット線13を
接続する拡散領域 13a,13b  ビット線
1a Added Si substrate 1b
P-type Si substrate 2
P-type single crystal Si layer 3
Element isolation and interlayer insulation film 4
Word line 5 Capacitor electrode 6 Capacitor dielectric film 7 Capacitor counter electrode 8 Interlayer insulating film 9 Capacitor electrode 5
n-type diffusion layer 10 in contact with bit line 13 n-type diffusion layer 11 in contact with bit line 13 dielectric layer 12
Diffusion regions 13a and 13b connecting the diffusion layer 10 and the bit line 13 Bit line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ダイナミックRAMのメモリセル部に
おいて、活性層の下部に誘電体層を設け、該誘電体層の
下にビット線を配置してなることを特徴とする半導体装
置。
1. A semiconductor device characterized in that, in a memory cell portion of a dynamic RAM, a dielectric layer is provided below an active layer, and a bit line is arranged under the dielectric layer.
JP3069107A 1991-03-07 1991-03-07 Semiconductor device Pending JPH04280469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3069107A JPH04280469A (en) 1991-03-07 1991-03-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3069107A JPH04280469A (en) 1991-03-07 1991-03-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04280469A true JPH04280469A (en) 1992-10-06

Family

ID=13393076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069107A Pending JPH04280469A (en) 1991-03-07 1991-03-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04280469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031260A (en) * 1995-09-19 2000-02-29 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
JP2011155259A (en) * 2010-01-14 2011-08-11 Soitec Silicon On Insulator Technologies Device having contact between semiconductor layers through buried insulating layer, and process for fabricating the device
DE102005046774B4 (en) * 2005-09-29 2011-11-10 Altis Semiconductor A semiconductor memory device with a buried ground contact and method for its production
JP2012186468A (en) * 2011-02-17 2012-09-27 Semiconductor Energy Lab Co Ltd Semiconductor memory device and manufacturing method for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031260A (en) * 1995-09-19 2000-02-29 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
US6258650B1 (en) 1995-09-19 2001-07-10 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor memory device
DE102005046774B4 (en) * 2005-09-29 2011-11-10 Altis Semiconductor A semiconductor memory device with a buried ground contact and method for its production
JP2011155259A (en) * 2010-01-14 2011-08-11 Soitec Silicon On Insulator Technologies Device having contact between semiconductor layers through buried insulating layer, and process for fabricating the device
TWI455270B (en) * 2010-01-14 2014-10-01 Soitec Silicon On Insulator Device having a contact between semiconductor regions through a buried insulating layer, and process for fabricating said device
US9490264B2 (en) 2010-01-14 2016-11-08 Soitec Device having a contact between semiconductor regions through a buried insulating layer, and process for fabricating said device
JP2012186468A (en) * 2011-02-17 2012-09-27 Semiconductor Energy Lab Co Ltd Semiconductor memory device and manufacturing method for the same
US9257432B2 (en) 2011-02-17 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method of manufacturing semiconductor memory device

Similar Documents

Publication Publication Date Title
KR950009890B1 (en) Semiconductor memory device
US4974060A (en) Semiconductor integrated circuit device and method of manufacturing the same
KR960043227A (en) DRAM (DRAM) cell and manufacturing method thereof
JPH0345550B2 (en)
JPS62286270A (en) Semiconductor memory
KR100195845B1 (en) Highly integrated semiconductor device having stepwise bit lines
JP2950392B2 (en) Semiconductor device and manufacturing method thereof
JPH04280469A (en) Semiconductor device
US5981989A (en) Semiconductor memory device having improved stacked capacitor cells
JPH05243517A (en) Semiconductor device
JP2830496B2 (en) Semiconductor memory
JPH03230561A (en) Semiconductor device and manufacture thereof
JPH05121693A (en) Semiconductor memory cell
JPS639383B2 (en)
JP3389845B2 (en) Dielectric memory
JPS636868A (en) Memory device
JPS62200758A (en) Semiconductor memory
JPS6358959A (en) Field-effect type semiconductor device with capacitor
JPS6395657A (en) Semiconductor memory
JPS62136869A (en) Semiconductor memory device
JPH03272169A (en) Semiconductor storage device
JPH03108752A (en) Semiconductor device
JP2827377B2 (en) Semiconductor integrated circuit
JPH0951074A (en) Semiconductor device with capacitor
JP2949739B2 (en) Semiconductor integrated circuit device