JPH04280453A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPH04280453A
JPH04280453A JP4321191A JP4321191A JPH04280453A JP H04280453 A JPH04280453 A JP H04280453A JP 4321191 A JP4321191 A JP 4321191A JP 4321191 A JP4321191 A JP 4321191A JP H04280453 A JPH04280453 A JP H04280453A
Authority
JP
Japan
Prior art keywords
wiring
melting point
insulating film
metal material
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4321191A
Other languages
Japanese (ja)
Inventor
Akira Haruta
亮 春田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4321191A priority Critical patent/JPH04280453A/en
Publication of JPH04280453A publication Critical patent/JPH04280453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce number of steps of a manufacturing process and to prevent short circuit between wirings in a manufacturing method for a semiconductor integrated circuit device. CONSTITUTION:In a manufacturing method for a semiconductor integrated circuit device having the steps of selectively burying a high melting point metal material 7 in a connecting hole 6 formed in an interlayer insulating film 5 on a lower layer interconnection 4 by a vapor chemical growing method, and electrically connecting an upper layer interconnection 10 formed on the film 5 to the interconnection 4 through the material 7, the steps of forming the interconnection 10, and then selectively removing a foreign matter 8 adhered between the interconnections 10 on the film 5 with hydrogen peroxide water, are provided. The material 7 is formed of any of W, Mo and Ti.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体集積回路装置に
関し、特に、下層配線上の層間絶縁膜に形成された接続
孔内に選択CVD法(気相化学成長法)で選択的に高融
点金層材を埋込み、この高融点金属材を通して前記層間
絶縁膜上に形成される上層配線と前記下層配線とを電気
的に接続する半導体集積回路装置に適用して有効な技術
に関するものである。
[Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and in particular, the present invention relates to a semiconductor integrated circuit device, and in particular, the present invention relates to a semiconductor integrated circuit device. The present invention relates to a technique that is effective when applied to a semiconductor integrated circuit device in which a gold layer material is buried and the upper layer wiring formed on the interlayer insulating film and the lower layer wiring are electrically connected through the high melting point metal material.

【0002】0002

【従来の技術】半導体集積回路装置に塔載される回路シ
ステムの半導体素子間を電気的に接続する配線は前記回
路システムの高集積化に伴い微細化の傾向にある。この
配線の微細化は、例えば2層配線構造を有する半導体集
積回路装置において、下層配線に上層配線を電気的に接
続するための層間絶縁膜に形成される接続孔のアスペク
ト比(深さ/直径)を増大している。このため、接続孔
部で上層配線のステップカバレッジが低下し、接続不良
(断線)を生じるという問題があった。
2. Description of the Related Art Wiring that electrically connects semiconductor elements of a circuit system mounted on a semiconductor integrated circuit device tends to be miniaturized as the circuit systems become more highly integrated. For example, in a semiconductor integrated circuit device having a two-layer wiring structure, the miniaturization of wiring is related to the aspect ratio (depth/diameter) of a contact hole formed in an interlayer insulating film for electrically connecting an upper layer wiring to a lower layer wiring. ) is increasing. For this reason, there is a problem in that the step coverage of the upper layer wiring is reduced at the connection hole portion, resulting in connection failure (disconnection).

【0003】このような配線層間における技術的な課題
を解決する技術として、下層配線上の層間絶縁膜に形成
された接続孔内に選択CVD法で選択的に例えばタング
ステン(W)膜の高融点金属材を埋込み、前記層間絶縁
膜に形成される上層配線を前記高融点金属材を通して前
記下層配線に電気的に接続する半導体集積回路装置の製
造方法が開発されている。
As a technique for solving such technical problems between wiring layers, for example, high melting point tungsten (W) film is selectively injected into the connection hole formed in the interlayer insulating film on the lower wiring layer using selective CVD. A method of manufacturing a semiconductor integrated circuit device has been developed in which a metal material is embedded and an upper layer wiring formed in the interlayer insulating film is electrically connected to the lower layer wiring through the high melting point metal material.

【0004】ところが、前記半導体集積回路装置の製造
方法は、層間絶縁膜の接続孔内に選択CVD法で選択的
にW膜の高融点材を埋込む際、選択性が低下した場合、
前記層間絶縁膜上にWを核とした異物が発生し、この異
物により上層配線間が短絡するという問題があった。
However, in the method for manufacturing a semiconductor integrated circuit device, when the high melting point material of the W film is selectively embedded in the contact hole of the interlayer insulating film by the selective CVD method, if the selectivity decreases,
There is a problem in that foreign matter with W as its nucleus is generated on the interlayer insulating film, and this foreign matter causes a short circuit between upper layer wirings.

【0005】そこで、上層配線間における技術的な課題
を解決する技術として、例えばリフトオフにより異物を
除去する半導体集積回路装置の製造方法が特開平2−2
35331号公開公報に記載されている。
Therefore, as a technique for solving the technical problem between upper layer wirings, a method for manufacturing a semiconductor integrated circuit device in which foreign matter is removed by lift-off, for example, is disclosed in Japanese Unexamined Patent Publication No. 2-2.
It is described in Publication No. 35331.

【0006】前記半導体集積回路装置の製造方法は、下
層配線上に層間絶縁膜を形成し、この層間絶縁膜上の全
面に回転塗布法で例えばPIQ膜を塗布した後にベーク
処理を施して第2絶縁膜を形成する。次に、前記第2絶
縁膜上に所定のパターンのフォトレジスト膜を形成した
後、このフォトレジスト膜をエッチングマスクとして使
用し、前記第2絶縁膜及び層間絶縁膜に下層配線の表面
が露出する接続孔を形成する。次に、前記接続孔内に選
択CVD法で選択的に例えばW膜の高融点金属材を埋込
む。この時、選択性が低下した場合、第2絶縁膜上に異
物が発生する。次に、前記第2絶縁膜をエッチングして
、この第2絶縁膜を除去すると共に前記異物を除去する
。次に、前記高融点金属材上を含む層間絶縁膜上の全面
に例えばアルミニウム膜を堆積した後、所定のパターン
のエッチングマスクを使用し、前記アルミニウム膜をパ
ターンニングして上層配線を形成する。
The method for manufacturing a semiconductor integrated circuit device includes forming an interlayer insulating film on the lower wiring, applying a PIQ film, for example, on the entire surface of the interlayer insulating film by a spin coating method, and then performing a baking process to form a second layer. Form an insulating film. Next, after forming a photoresist film in a predetermined pattern on the second insulating film, this photoresist film is used as an etching mask, and the surface of the lower wiring is exposed to the second insulating film and the interlayer insulating film. Form a connection hole. Next, a high melting point metal material such as a W film is selectively filled into the connection hole using a selective CVD method. At this time, if the selectivity decreases, foreign matter will be generated on the second insulating film. Next, the second insulating film is etched to remove the second insulating film and the foreign matter. Next, for example, an aluminum film is deposited on the entire surface of the interlayer insulating film including the high melting point metal material, and then the aluminum film is patterned using an etching mask with a predetermined pattern to form an upper layer wiring.

【0007】これにより、層間絶縁膜に形成された接続
孔内に選択的にW膜を埋込む際に発生した異物を除去で
き、上層配線間の短絡を防止できる。
[0007] This makes it possible to remove foreign matter generated when selectively embedding the W film into the connection hole formed in the interlayer insulating film, thereby preventing short circuits between upper layer wirings.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記半導体集
積回路装置の製造方法は、層間絶縁膜上に除去用の第2
絶縁膜を形成しているので、この工程数に相当する分、
製造プロセスの工程数が増加するという問題があった。
[Problems to be Solved by the Invention] However, in the method for manufacturing a semiconductor integrated circuit device, a second layer for removal is formed on the interlayer insulating film.
Since an insulating film is formed, the number of steps equivalent to this number is
There was a problem in that the number of steps in the manufacturing process increased.

【0009】本発明の目的は、下層配線上の層間絶縁膜
に形成された接続孔内に選択CVD法で選択的に高融点
金属材を埋込み、前記層間絶縁膜上に形成される上層配
線を前記高融点金属材を通して前記下層配線に電気的に
接続する半導体集積回路装置において、製造プロセスの
工程数を低減すると共に、上層配線間の短絡を防止する
ことが可能な技術を提供することにある。
An object of the present invention is to selectively embed a high melting point metal material into the connection hole formed in the interlayer insulating film on the lower layer wiring by selective CVD method, and to connect the upper layer wiring formed on the interlayer insulating film. It is an object of the present invention to provide a technology capable of reducing the number of manufacturing process steps and preventing short circuits between upper layer wirings in a semiconductor integrated circuit device that is electrically connected to the lower layer wiring through the high melting point metal material. .

【0010】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
になるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記のとおりである。
[Means for Solving the Problems] Among the inventions disclosed in this application, a brief overview of typical inventions will be as follows.
It is as follows.

【0012】下層配線上の層間絶縁膜に形成された接続
孔内に選択CVD法で選択的に高融点金属材を埋込み、
前記層間絶縁膜上に形成される上層配線を前記高融点金
属材を通して前記下層配線に電気的に接続する半導体集
積回路装置の製造法において、前記下層配線上に層間絶
縁膜を形成する工程と、前記層間絶縁膜の下層配線上の
一部に前記下層配線の表面が露出する接続孔を形成する
工程と、この接続孔内から露出する下層配線上に選択C
VD法で選択的に高融点金属材を形成する工程と、前記
層間絶縁膜上に配線層を形成し、この配線層の一部を前
記接続孔内に形成された高融点金属材に接続する工程と
、前記配線層の接続孔内の高融点金属材との接続部分を
除き、この配線層に異方性エッチングを使用して選択的
にパターンニングを施し、残存する配線層で上層配線を
形成する工程と、前記層間絶縁膜上の配線層がパターン
ニングで除去された領域に前記選択CVD法で選択的に
高融点金属材を形成した際に付着される異物を選択的に
除去する工程とを備える。前記高融点金属材は、W、M
o又はTiのいずれかで形成される。前記異物を除去す
る工程は、過酸化水素水を使用したエッチングで行う。
[0012] A high melting point metal material is selectively embedded in the connection hole formed in the interlayer insulating film on the lower wiring by selective CVD method,
In a method for manufacturing a semiconductor integrated circuit device in which an upper layer wiring formed on the interlayer insulating film is electrically connected to the lower layer wiring through the high melting point metal material, forming an interlayer insulating film on the lower layer wiring; A step of forming a connection hole in which the surface of the lower layer wiring is exposed on a part of the lower layer wiring of the interlayer insulating film, and a step of forming a selected C on the lower layer wiring exposed from inside the connection hole.
A step of selectively forming a high melting point metal material by a VD method, forming a wiring layer on the interlayer insulating film, and connecting a part of this wiring layer to the high melting point metal material formed in the connection hole. This wiring layer is selectively patterned using anisotropic etching, except for the connection part with the refractory metal material in the connection hole of the wiring layer, and the remaining wiring layer is used to connect the upper layer wiring. and a step of selectively removing foreign matter that adheres when the high melting point metal material is selectively formed by the selective CVD method in the area where the wiring layer on the interlayer insulating film has been removed by patterning. Equipped with. The high melting point metal material is W, M
It is formed of either O or Ti. The step of removing the foreign matter is performed by etching using hydrogen peroxide.

【0013】[0013]

【作用】上述した手段によれば、層間絶縁膜上の上層配
線以外の領域に選択CVD法で選択的に高融点金属材を
形成する際に発生する異物を上層配線形成後の1度の除
去工程で除去できるので、半導体集積回路装置の製造プ
ロセスの工程数を低減できると共に、接続孔内に高融点
金属材を埋込み、上層配線で高融点金属材を被覆した後
、層間絶縁膜上に付着する異物を選択的に除去したので
、異物を除去する際に上層配線がマスクとなり、高融点
金属材の表面のダメージをなくすことができる。
[Operation] According to the above-mentioned means, foreign matter generated when selectively forming a high melting point metal material in areas other than the upper layer wiring on the interlayer insulating film by the selective CVD method is removed once after the upper layer wiring is formed. Since it can be removed during the process, it is possible to reduce the number of steps in the manufacturing process of semiconductor integrated circuit devices, and after embedding the high melting point metal material in the connection hole and covering the high melting point metal material with the upper layer wiring, it is attached to the interlayer insulating film. Since the foreign matter is selectively removed, the upper layer wiring serves as a mask when removing the foreign matter, and damage to the surface of the high melting point metal material can be eliminated.

【0014】また、層間絶縁膜上の上層配線間の異物を
除去できるので、異物による上層配線間の短絡を防止で
きる。
Furthermore, since foreign matter between the upper layer wirings on the interlayer insulating film can be removed, short circuits between the upper layer wirings due to foreign matter can be prevented.

【0015】以下、本発明の構成について、2層配線構
造を有する半導体集積回路装置に本発明を適用した一実
施例とともに説明する。
The structure of the present invention will be described below along with an embodiment in which the present invention is applied to a semiconductor integrated circuit device having a two-layer wiring structure.

【0016】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
In all the figures for explaining the embodiment, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

【0017】[0017]

【実施例】本発明の一実施例である2層配線構造を有す
る半導体集積回路装置の概略構成を図1(要部断面図)
に示す。
[Embodiment] FIG. 1 (cross-sectional view of essential parts) shows a schematic configuration of a semiconductor integrated circuit device having a two-layer wiring structure, which is an embodiment of the present invention.
Shown below.

【0018】図1に示すように、2層配線構造を有する
半導体集積回路装置は、単結晶珪素からなるp−型半導
体基板1を主体に構成されている。このp−型半導体基
板1の主面には、図示していないが、活性領域(素子形
成領域)が設けられている。
As shown in FIG. 1, a semiconductor integrated circuit device having a two-layer wiring structure is mainly composed of a p-type semiconductor substrate 1 made of single crystal silicon. Although not shown, an active region (element formation region) is provided on the main surface of the p-type semiconductor substrate 1.

【0019】前記活性領域には例えばメモリセルを構成
するMOSトランジスタ、容量素子等の半導体素子が形
成されている。この活性領域は、主にp−型半導体基板
1及びフィールド絶縁膜(素子間分離絶縁膜)2で他の
活性領域と電気的に分離されている。
Semiconductor elements such as MOS transistors and capacitive elements constituting memory cells are formed in the active region. This active region is electrically isolated from other active regions mainly by a p-type semiconductor substrate 1 and a field insulating film (element isolation insulating film) 2.

【0020】前記フィールド絶縁膜2は、p−型半導体
基板1の主面上の非活性領域に形成されている。このフ
ィールド絶縁膜2上及び前記半導体素子上には層間絶縁
膜3を介在して第1層目の配線4が延在している。配線
4は、層間絶縁膜3に形成された接続孔(図示せず)を
通して前記MOSトランジスタのソース領域及びドレイ
ン領域である一対の半導体領域に電気的に接続されてい
る。 つまり、層間絶縁膜3は、前記半導体素子と配線4とを
絶縁分離する目的として使用される。
The field insulating film 2 is formed in a non-active region on the main surface of the p-type semiconductor substrate 1. A first layer wiring 4 extends over the field insulating film 2 and the semiconductor element with an interlayer insulating film 3 interposed therebetween. The wiring 4 is electrically connected to a pair of semiconductor regions, which are the source region and drain region of the MOS transistor, through a contact hole (not shown) formed in the interlayer insulating film 3. That is, the interlayer insulating film 3 is used for the purpose of insulating and separating the semiconductor element and the wiring 4.

【0021】前記第1層目の配線4上には層間絶縁膜5
を介在して第2層目の配線10が延在している。配線1
0は層間絶縁膜5に形成された接続孔6内に選択CVD
(気相化学成長法)法で選択的に埋込んだ高融点金属材
7を通して配線4に電気的に接続されている。また、配
線10は、図示していないが、この配線10と同一製造
工程で形成される外部端子(ボンディングパッド)に電
気的に接続されている。
An interlayer insulating film 5 is formed on the first layer wiring 4.
A second layer wiring 10 extends between the two layers. Wiring 1
0 is selective CVD in the connection hole 6 formed in the interlayer insulating film 5.
It is electrically connected to the wiring 4 through a high melting point metal material 7 that is selectively embedded using a (vapor phase chemical growth) method. Although not shown, the wiring 10 is electrically connected to an external terminal (bonding pad) formed in the same manufacturing process as the wiring 10.

【0022】前記配線10及び外部端子は最終保護膜1
1で覆われている。この最終保護膜11の外部端子が配
置される領域にはボンディング開口(図示せず)が形成
されている。
The wiring 10 and external terminals are covered with a final protective film 1.
Covered by 1. A bonding opening (not shown) is formed in a region of this final protective film 11 where an external terminal is arranged.

【0023】次に、前記半導体集積回路装置の製造方法
について、図2乃至図6(各製造工程毎に示す要部断面
図)を用いて簡単に説明する。
Next, a method for manufacturing the semiconductor integrated circuit device will be briefly explained using FIGS. 2 to 6 (cross-sectional views of main parts shown for each manufacturing process).

【0024】まず、単結晶珪素からなるp−型半導体基
板1を用意する。
First, a p-type semiconductor substrate 1 made of single crystal silicon is prepared.

【0025】次に、前記p−型半導体基板1の主面の活
性領域にウエル領域(図示せず)を形成した後、周知の
選択酸化法で前記p−型半導体基板1の主面上の非活性
領域にフィールド絶縁膜2を形成する。
Next, after forming a well region (not shown) in the active region on the main surface of the p-type semiconductor substrate 1, a well region (not shown) is formed on the main surface of the p-type semiconductor substrate 1 by a well-known selective oxidation method. A field insulating film 2 is formed in the non-active region.

【0026】次に、前記p−型半導体基板1の主面の活
性領域にMOSトランジスタ、容量素子等の半導体素子
を形成した後、前記活性領域上及び非活性領域上を含む
基板の全面に層間絶縁膜3を形成する。層間絶縁膜3は
例えばCVD法で堆積した酸化珪素膜で形成されている
Next, after semiconductor elements such as MOS transistors and capacitive elements are formed in the active region of the main surface of the p-type semiconductor substrate 1, an interlayer is formed on the entire surface of the substrate including the active region and the inactive region. An insulating film 3 is formed. The interlayer insulating film 3 is formed of, for example, a silicon oxide film deposited by the CVD method.

【0027】次に、前記層間絶縁膜3上にホトリソグラ
フィ技術で所定のパターンのフォトレジスト膜を形成し
た後、このフォトレジスト膜をエッチングマスクとして
使用し、層間絶縁膜3に前記MOSトランジスタのソー
ス領域及びドレイン領域である一対の半導体領域の表面
を露出する接続孔(図示せず)を形成する。
Next, after forming a photoresist film with a predetermined pattern on the interlayer insulating film 3 by photolithography, this photoresist film is used as an etching mask, and the source of the MOS transistor is formed on the interlayer insulating film 3. A contact hole (not shown) is formed to expose the surfaces of a pair of semiconductor regions, which are a region and a drain region.

【0028】次に、前記フォトレジスト膜を除去した後
、前記半導体領域の表面上を含む層間絶縁膜3上の全面
に例えばスパッタ法でW膜を堆積する。このW膜の一部
は、前記接続孔を通してMOSトランジスタの半導体領
域に電気的に接続される。
Next, after removing the photoresist film, a W film is deposited over the entire surface of the interlayer insulating film 3, including the surface of the semiconductor region, by, for example, sputtering. A part of this W film is electrically connected to the semiconductor region of the MOS transistor through the connection hole.

【0029】次に、前記W膜上に所定のパターンのフォ
トレジスト膜を形成した後、このフォトレジスト膜をエ
ッチングマスクとして使用し、異方性エッチングで前記
W膜にパターンニングを施して、残存するW膜で第1層
目の配線4を形成する。
Next, after forming a photoresist film with a predetermined pattern on the W film, this photoresist film is used as an etching mask, and the W film is patterned by anisotropic etching to remove the remaining The first layer wiring 4 is formed using a W film.

【0030】次に、前記フォトレジスト膜を除去した後
、配線4上を含む層間絶縁膜3上の全面に層間絶縁膜5
を形成する。この層間絶縁膜5は例えば3層構造の酸化
珪素膜で形成されている。まず、配線4上を含む層間絶
縁膜3上の全面にプラズマCVD法で第1層目の酸化珪
素膜を堆積する。次に、前記第1層目の酸化珪素膜上の
全面にSOG法で第2層目の酸化珪素膜を塗布し、ベー
ク処理した後に全面エッチングを施して前記第1層目の
酸化珪素膜の表面の段差を緩和する。次に、前記2層目
の酸化珪素膜上の全面に再度プラズマCVD法で第3層
目の酸化珪素膜を堆積する。これにより、3層構造の酸
化珪素膜が形成される。尚、前記層間絶縁膜5は例えば
CVD法で堆積するPSG(リンシリケートガラス)膜
で形成してもよい。
Next, after removing the photoresist film, an interlayer insulating film 5 is formed on the entire surface of the interlayer insulating film 3 including the wiring 4.
form. This interlayer insulating film 5 is formed of a silicon oxide film having a three-layer structure, for example. First, a first layer of silicon oxide film is deposited on the entire surface of the interlayer insulating film 3 including the wiring 4 by plasma CVD. Next, a second layer of silicon oxide film is coated on the entire surface of the first layer of silicon oxide film using the SOG method, and after baking, the entire surface is etched to remove the first layer of silicon oxide film. Alleviate surface level differences. Next, a third silicon oxide film is deposited again on the entire surface of the second silicon oxide film by plasma CVD. As a result, a silicon oxide film having a three-layer structure is formed. Note that the interlayer insulating film 5 may be formed of, for example, a PSG (phosphosilicate glass) film deposited by a CVD method.

【0031】次に、前記層間絶縁膜5上に所定のパター
ンのフォトレジスト膜を形成する。この後、前記フォト
レジスト膜をエッチングマスクとして使用し、図2に示
すように、層間絶縁膜5の下層の配線4上の一部に配線
4の表面が露出する接続孔6を形成する。
Next, a photoresist film having a predetermined pattern is formed on the interlayer insulating film 5. Thereafter, using the photoresist film as an etching mask, as shown in FIG. 2, a connection hole 6 is formed in a part of the wiring 4 under the interlayer insulating film 5, exposing the surface of the wiring 4.

【0032】次に、前記フォトレジスト膜を除去し、N
F3 プラスマで前処理を施した後、前記層間絶縁膜5
の接続孔6内に選択的に高融点金属材7を形成する。高
融点金属材7は、モノシラン(SiH4)と6フッ化タ
ングステン(WF6)を反応ガスとした選択CVD法で
前記接続孔6内の露出する配線4の表面上に選択的に堆
積したW膜で形成されている。この製造工程において、
選択性が低下した場合、図3に示すように、層間絶縁膜
5上にWを核とした異物8が発生(付着)する。尚、前
記高融点金属材7はモリブデン(Mo)又はチタン(T
i)等の金属膜で形成してもよい。
Next, the photoresist film is removed, and N
After pretreatment with F3 plasma, the interlayer insulating film 5
A high melting point metal material 7 is selectively formed in the connection hole 6 of. The high melting point metal material 7 is a W film selectively deposited on the surface of the wiring 4 exposed in the connection hole 6 by a selective CVD method using monosilane (SiH4) and tungsten hexafluoride (WF6) as reaction gases. It is formed. In this manufacturing process,
When the selectivity decreases, as shown in FIG. 3, foreign matter 8 with W as its nucleus is generated (attached) on the interlayer insulating film 5. Incidentally, the high melting point metal material 7 is molybdenum (Mo) or titanium (T).
It may be formed of a metal film such as i).

【0033】次に、図4に示すように、前記高融点金属
材7上を含む層間絶縁膜5上の全面に配線層9を形成す
る。配線層9は、例えばスパッタ法で堆積したアルミニ
ウム(Al)膜で形成されている。配線層9の一部は、
前記層間絶縁膜5の接続孔6内に形成された高融点金属
材7に電気的に接続されている。前記異物8は配線層9
で覆われている。尚、前記配線層9はAl合金膜等の合
金膜又は銅(Cu)膜等の金属膜で形成してもよい。
Next, as shown in FIG. 4, a wiring layer 9 is formed over the entire surface of the interlayer insulating film 5 including the high melting point metal material 7. The wiring layer 9 is formed of an aluminum (Al) film deposited by sputtering, for example. A part of the wiring layer 9 is
It is electrically connected to a high melting point metal material 7 formed in the connection hole 6 of the interlayer insulating film 5 . The foreign matter 8 is in the wiring layer 9
covered with. Note that the wiring layer 9 may be formed of an alloy film such as an Al alloy film or a metal film such as a copper (Cu) film.

【0034】次に、前記配線層9上に所定のパターンの
フォトレジスト膜を形成した後、このフォトレジスト膜
をエッチングマスクとして使用し、前記配線層9の接続
孔6内の高融点金属材7との接続部分を除き、異方性エ
ッチングで前記配線層9にパターンニングを施して、図
5に示すように、残存する配線層9で第2層目の配線1
0を形成すると共に外部端子(図示せず)を形成する。 配線10は、高融点金属材7を通して第1層目の配線4
に電気的に接続され、また、外部端子に電気的に接続さ
れる。つまり、配線10は高融点金属材7の表面を被覆
している。この製造工程において、層間絶縁膜5上の配
線層9がパターンニングで除去された領域に前記高融点
材7を形成した際に付着された異物8は配線10間に露
出される。
Next, after forming a photoresist film in a predetermined pattern on the wiring layer 9, this photoresist film is used as an etching mask to remove the high melting point metal material 7 in the connection hole 6 of the wiring layer 9. The wiring layer 9 is patterned by anisotropic etching except for the connection portion with the wiring layer 9, and as shown in FIG.
0 and also form external terminals (not shown). The wiring 10 passes through the high melting point metal material 7 to the first layer wiring 4.
and is also electrically connected to an external terminal. In other words, the wiring 10 covers the surface of the high melting point metal material 7. In this manufacturing process, the foreign matter 8 that was attached when the high melting point material 7 was formed in the area where the wiring layer 9 on the interlayer insulating film 5 was removed by patterning is exposed between the wirings 10.

【0035】次に、前記層間絶縁膜5上の配線10間に
付着している異物8を過酸化水素水(H2O2)を使用
して図6に示すように除去する。過酸化水素水は、W、
Mo、Ti等の高融点金属を選択的にエッチングできる
。 この製造工程において、高融点金属材7の表面は配線1
0で覆われているので、高融点金属材7はエッチングさ
れない。尚、配線10下に付着している異物8はそのま
ま残存される。
Next, foreign matter 8 adhering between the wirings 10 on the interlayer insulating film 5 is removed using hydrogen peroxide (H2O2) as shown in FIG. Hydrogen peroxide solution is W,
High melting point metals such as Mo and Ti can be selectively etched. In this manufacturing process, the surface of the high melting point metal material 7 is
0, the high melting point metal material 7 is not etched. Note that the foreign matter 8 attached below the wiring 10 remains as it is.

【0036】次に、前記配線10上及び層間絶縁膜5上
の全面に例えばスパッタ法で堆積したPSG膜の最終保
護膜11を形成する。この後、最終保護膜11の外部端
子が配置される領域にボンディング開口を形成して、図
1に示すように、2配線構造の半導体集積回路装置がほ
ぼ完成する。
Next, a final protective film 11 of a PSG film deposited by sputtering, for example, is formed on the entire surface of the wiring 10 and the interlayer insulating film 5. Thereafter, bonding openings are formed in the regions of the final protective film 11 where external terminals are to be arranged, and as shown in FIG. 1, a semiconductor integrated circuit device with a two-wire structure is almost completed.

【0037】このように、第1層目の配線(下層配線)
4上の層間絶縁膜5に形成された接続孔6内に選択CV
D法で選択的に高融点金属材7を埋込み、前記層間絶縁
膜5上に形成される第2層目の配線(上層配線)10を
前記高融点金属材7を通して前記配線4に電気的に接続
する半導体集積回路装置の製造法において、前記配線4
上に層間絶縁膜5を形成する工程と、前記層間絶縁膜5
の下層の配線4上の一部に前記配線4の表面が露出する
接続孔6を形成する工程と、この接続孔6内から露出す
る配線4上に選択CVD法で選択的に高融点金属材7を
形成する工程と、前記層間絶縁膜5上に配線層9を形成
し、この配線層9の一部を前記接続孔6内に形成された
高融点材7に接続する工程と、前記配線層9の接続孔6
内の高融点金属材7との接続部分を除き、この配線層9
に異方性エッチングを使用して選択的にパターンニング
を施し、残存する配線層9で配線10を形成する工程と
、前記層間絶縁膜5上の配線層9がパターンニングで除
去された領域に前記選択CVD法で選択的に高融点金属
材7を形成した際に付着される異物8を選択的に除去す
る工程とを備える。前記高融点金属材7は、W、Mo又
はTiのいずれかで形成される。前記異物8を除去する
工程は、過酸化水素水を使用したエッチングで行う。こ
れにより、層間絶縁膜5上の配線10以外の領域に選択
CVD法で高融点金属材7を形成した際に発生する異物
8を配線10の形成工程後の1度の除去工程で除去でき
るので、半導体集積回路装置の製造プロセスの工程数を
低減できると共に、接続孔6内に高融点金属材7を埋込
み、配線10で高融点金属材7の表面を被覆した後、層
間絶縁膜上に付着する異物8を選択的に除去したので、
異物8を除去する際に配線10がマスクとなり、高融点
金属材7の表面のダメージをなくすことができる。
In this way, the first layer wiring (lower layer wiring)
A selective CV is formed in the connection hole 6 formed in the interlayer insulating film 5 on the
A high melting point metal material 7 is selectively embedded using method D, and a second layer wiring (upper layer wiring) 10 formed on the interlayer insulating film 5 is electrically connected to the wiring 4 through the high melting point metal material 7. In the method for manufacturing a semiconductor integrated circuit device to be connected, the wiring 4
a step of forming an interlayer insulating film 5 thereon; and a step of forming an interlayer insulating film 5 thereon;
A step of forming a connection hole 6 in which the surface of the wiring 4 is exposed on a part of the wiring 4 in the lower layer, and selectively using a high melting point metal material on the wiring 4 exposed from inside the connection hole 6 using a selective CVD method. 7, forming a wiring layer 9 on the interlayer insulating film 5, and connecting a part of this wiring layer 9 to the high melting point material 7 formed in the connection hole 6; Connection hole 6 in layer 9
This wiring layer 9 except for the connection part with the high melting point metal material 7 inside
selectively patterning using anisotropic etching to form wiring 10 using the remaining wiring layer 9; and a step of selectively removing foreign matter 8 that is attached when the high melting point metal material 7 is selectively formed by the selective CVD method. The high melting point metal material 7 is made of W, Mo, or Ti. The step of removing the foreign matter 8 is performed by etching using hydrogen peroxide. As a result, the foreign matter 8 generated when the high melting point metal material 7 is formed on the interlayer insulating film 5 other than the wiring 10 by the selective CVD method can be removed in a single removal step after the wiring 10 is formed. , the number of steps in the manufacturing process of a semiconductor integrated circuit device can be reduced, and the high melting point metal material 7 is embedded in the connection hole 6, the surface of the high melting point metal material 7 is covered with the wiring 10, and then it is attached on the interlayer insulating film. Since we selectively removed the foreign matter 8,
The wiring 10 serves as a mask when removing the foreign matter 8, and damage to the surface of the high melting point metal material 7 can be eliminated.

【0038】また、層間絶縁膜5上の配線10間の異物
8を除去できるので、異物8による配線10間の短絡を
防止できる。
Furthermore, since the foreign matter 8 between the wirings 10 on the interlayer insulating film 5 can be removed, short circuits between the wirings 10 due to the foreign matter 8 can be prevented.

【0039】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論である
As described above, the invention made by the present inventor is as follows.
Although the present invention has been specifically described based on the above-mentioned embodiments, it goes without saying that the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways without departing from the gist thereof.

【0040】例えば、本発明は、3層配線構造又はそれ
以上の配線構造を有する半導体集積回路装置に適用でき
る。
For example, the present invention can be applied to a semiconductor integrated circuit device having a three-layer wiring structure or more.

【0041】また、本発明は、半導体素子を構成する半
導体領域上の層間絶絶縁膜に形成された接続孔内に選択
的に高融点金属材を埋込み、前記層間絶縁膜上に形成さ
れる配線を前記高融点金属材を通して前記半導体領域に
電気的に接続する半導体集積回路装置に適用することが
できる。
The present invention also provides a method for selectively embedding a high-melting point metal material into a contact hole formed in an interlayer insulating film on a semiconductor region constituting a semiconductor element, and forming wirings formed on the interlayer insulating film. can be applied to a semiconductor integrated circuit device that is electrically connected to the semiconductor region through the high melting point metal material.

【0042】[0042]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。
Effects of the Invention A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

【0043】半導体集積回路装置の製造プロセスの工程
数を低減できると共に、配線間の短絡を防止できる。
[0043] The number of steps in the manufacturing process of a semiconductor integrated circuit device can be reduced, and short circuits between wirings can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例である半導体集積回路装置の
概略構成を示す要部断面図。
FIG. 1 is a cross-sectional view of main parts showing a schematic configuration of a semiconductor integrated circuit device according to an embodiment of the present invention.

【図2】前記半導体集積回路装置の製造方法を各製造工
程毎に示す要部断面図。
FIG. 2 is a cross-sectional view of a main part showing each manufacturing process of the method for manufacturing the semiconductor integrated circuit device.

【図3】前記半導体集積回路装置の製造方法を各製造工
程毎に示す要部断面図。
FIG. 3 is a cross-sectional view of a main part showing each manufacturing process of the method for manufacturing the semiconductor integrated circuit device.

【図4】前記半導体集積回路装置の製造方法を各製造工
程毎に示す要部断面図。
FIG. 4 is a cross-sectional view of a main part showing each manufacturing process of the method for manufacturing the semiconductor integrated circuit device.

【図5】前記半導体集積回路装置の製造方法を各製造工
程毎に示す要部断面図。
FIG. 5 is a cross-sectional view of a main part showing each manufacturing process of the method for manufacturing the semiconductor integrated circuit device.

【図6】前記半導体集積回路装置の製造方法を各製造工
程毎に示す要部断面図。
FIG. 6 is a cross-sectional view of a main part showing each manufacturing process of the method for manufacturing the semiconductor integrated circuit device.

【符号の説明】[Explanation of symbols]

1  p−型半導体基板 3  層間絶縁膜 4  第1層目の配線 5  層間絶縁膜 6  接続孔 7  高融点金属材 8  異物 10  第2層目の配線 11  最終保護膜 1 p-type semiconductor substrate 3 Interlayer insulation film 4 First layer wiring 5 Interlayer insulation film 6 Connection hole 7 High melting point metal material 8 Foreign matter 10 Second layer wiring 11 Final protective film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  下層配線上の層間絶縁膜に形成された
接続孔内に気相化学成長法で選択的に高融点金属材を埋
込み、前記層間絶縁膜上に形成される上層配線を前記高
融点金属材を通して前記下層配線に電気的に接続する半
導体集積回路装置の製造法において、前記下層配線上に
層間絶縁膜を形成する工程と、前記層間絶縁膜の下層配
線上の一部に前記下層配線の表面が露出する接続孔を形
成する工程と、この接続孔内から露出する下層配線上に
気相化学成長法で選択的に高融点金属材を形成する工程
と、前記層間絶縁膜上に配線層を形成し、この配線層の
一部を前記接続孔内に形成された高融点金属材に接続す
る工程と、前記配線層の接続孔内の高融点金属材との接
続部分を除き、この配線層に異方性エッチングを使用し
て選択的にパターンニングを施し、残存する配線層で上
層配線を形成する工程と、前記層間絶縁膜上の配線層が
パターンニングで除去された領域に前記気相化学成長法
で選択的に高融点金属材を形成した際に付着される異物
を選択的に除去する工程とを備えたことを特徴とする半
導体集積回路装置の製造方法。
1. A high melting point metal material is selectively buried in a contact hole formed in an interlayer insulating film on a lower layer wiring by a vapor phase chemical growth method, and the upper layer wiring formed on the interlayer insulating film is In a method of manufacturing a semiconductor integrated circuit device in which a semiconductor integrated circuit device is electrically connected to the lower wiring through a melting point metal material, the step of forming an interlayer insulating film on the lower wiring; A step of forming a connection hole through which the surface of the wiring is exposed, a step of selectively forming a high melting point metal material on the lower layer wiring exposed from inside the connection hole by a vapor phase chemical growth method, and a step of forming a high melting point metal material on the interlayer insulating film. Excluding the step of forming a wiring layer and connecting a part of this wiring layer to the high melting point metal material formed in the connection hole, and the connecting part of the wiring layer to the high melting point metal material in the connection hole, This wiring layer is selectively patterned using anisotropic etching, and the remaining wiring layer is used to form an upper layer wiring. A method for manufacturing a semiconductor integrated circuit device, comprising the step of selectively removing foreign matter that adheres when the high melting point metal material is selectively formed by the vapor phase chemical growth method.
【請求項2】  前記高融点金属材は、W、Mo又はT
iのいずれかで形成されることを特徴とする請求項1に
記載の半導体集積回路装置の製造方法。
2. The high melting point metal material is W, Mo or T.
2. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is formed of any one of i.
【請求項3】  前記異物を除去する工程は、過酸化水
素水を使用したエッチングで行うことを特徴とする請求
項1又は請求項2に記載の半導体集積回路装置の製造方
法。
3. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the step of removing the foreign matter is performed by etching using a hydrogen peroxide solution.
JP4321191A 1991-03-08 1991-03-08 Manufacture of semiconductor integrated circuit device Pending JPH04280453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4321191A JPH04280453A (en) 1991-03-08 1991-03-08 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4321191A JPH04280453A (en) 1991-03-08 1991-03-08 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH04280453A true JPH04280453A (en) 1992-10-06

Family

ID=12657586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4321191A Pending JPH04280453A (en) 1991-03-08 1991-03-08 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH04280453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160273A (en) * 1991-12-05 1993-06-25 Sharp Corp Contact plug of semiconductor device and formation thereof, and multilayer wiring of semiconductor device and formation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160273A (en) * 1991-12-05 1993-06-25 Sharp Corp Contact plug of semiconductor device and formation thereof, and multilayer wiring of semiconductor device and formation thereof

Similar Documents

Publication Publication Date Title
KR100659801B1 (en) Wire bonding to copper
US6518092B2 (en) Semiconductor device and method for manufacturing
US4824803A (en) Multilayer metallization method for integrated circuits
US6297563B1 (en) Bonding pad structure of semiconductor device
JP4564166B2 (en) Method for forming wafer passivation layer
JP3600598B2 (en) Semiconductor device and manufacturing method thereof
US6492683B2 (en) Semiconductor device with SOI structure and method of manufacturing the same
JP4125485B2 (en) Novel passivation structure and manufacturing method thereof
WO1997022144A1 (en) Reverse damascene via structures
JPH10163319A (en) Manufacture of semiconductor insulated circuit device
US6818539B1 (en) Semiconductor devices and methods of fabricating the same
US6639314B2 (en) Solder bump structure and a method of forming the same
KR100691051B1 (en) Dual damascene bond pad structure for lowering stress and allowing circuitry under pads and a process to form the same
JPH1140564A (en) Semiconductor device and manufacture thereof
JPH04280453A (en) Manufacture of semiconductor integrated circuit device
JP2006203025A (en) Semiconductor device and manufacturing method thereof
JPH08204002A (en) Manufacturing method for semiconductor integrated circuit device
JPH10173051A (en) Wiring forming method
KR100591134B1 (en) Method of manufacturing semiconductor device
JPH0287526A (en) Manufacture of semiconductor device
JPH1167764A (en) Semiconductor device
JPH02238630A (en) Semiconductor device
KR100559513B1 (en) Method for forming bump of metal line in semiconductor
JPH09213789A (en) Semiconductor device
JPH01241845A (en) Manufacture of semiconductor device