JPH04279247A - 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法 - Google Patents

圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法

Info

Publication number
JPH04279247A
JPH04279247A JP4385591A JP4385591A JPH04279247A JP H04279247 A JPH04279247 A JP H04279247A JP 4385591 A JP4385591 A JP 4385591A JP 4385591 A JP4385591 A JP 4385591A JP H04279247 A JPH04279247 A JP H04279247A
Authority
JP
Japan
Prior art keywords
steel
toughness
alloy
weight
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4385591A
Other languages
English (en)
Other versions
JP2579841B2 (ja
Inventor
Koichi Yamamoto
広一 山本
Koji Takeshima
竹島 康志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3043855A priority Critical patent/JP2579841B2/ja
Publication of JPH04279247A publication Critical patent/JPH04279247A/ja
Application granted granted Critical
Publication of JP2579841B2 publication Critical patent/JP2579841B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、建造物の構造部材とし
て用いられる耐火性、靱性の優れた圧延形鋼の製造方法
に関するものである。
【0002】
【従来の技術】建築物の超高層化、建築設計技術の高度
化などから耐火設計の見直しが建設省総合プロジェクト
により行われ、昭和62年3月に「新耐火設計法」が制
定された。この規定により、旧法令による火災時に鋼材
の温度を350℃以下にするように耐火被覆するとした
制限は解除され、鋼材の高温強度と建築物の実荷重との
兼ね合いにより、それに適合する耐火被覆方法を決定で
きるようになった。即ち、600℃での設計高温強度を
確保できる場合はそれに見合い耐火被覆を削減できるよ
うになった。
【0003】このような動向に対応し、先に特開平2−
77523号公報で耐火性の優れた建築用低降伏比鋼お
よび鋼材並びにその製造方法が提案されている。この先
願発明の要旨は600℃での降伏点が常温時の70%以
上となるようにMo、Nbを添加し、高温強度を向上さ
せたものである。鋼材の設計高温強度を600℃に設定
したのは、合金元素による鋼材費の上昇とそれによる耐
火被覆施工費との兼ね合いから最も経済的であるという
知見に基づいたものである。
【0004】
【発明が解決しようとする課題】一般に、フランジを有
する形鋼、例えばH形鋼をユニバーサル圧延により製造
すると、圧延造形上の制約およびその固有の形状からウ
エブ、フランジ、フィレットの各部位で圧延仕上げ温度
、圧下率、冷却速度に差を生じる。その結果、強度、延
性、靱性がバラツキ、例えば溶接構造用圧延鋼材(JI
S  G3106)等の基準に満たない部位が生じる。
【0005】本発明者等は前述の先願技術によって製造
された鋼材を各種の形鋼、特に複雑な形状から厳しい圧
延造形上の制約を有するH形鋼の素材に適用することを
試みた結果、部位により組織、特にベイナイト割合が著
しく異なり、常温・高温強度、延性、靱性がバラツキ、
基準に満たない部位が生じた。本発明は、上記の課題を
解決するために、製鋼工程において適正な予備脱酸処理
を行い、溶鋼の高清浄化、溶存酸素濃度の制御と凝固直
前に脱酸元素をモールド添加する方法により多数の微細
な酸化物を分散させ、上述したような形鋼特有の圧延条
件下においても、オーステナイト粒内から粒内フェライ
ト(以下、IGFと称す)を生成させ、ミクロ組織を細
粒化し、高温強度特性、材質特性に対し圧延仕上げ温度
、圧延圧下比、鋼板厚(冷却速度)依存性が少なく、材
質特性に優れた安価で経済的な耐火性、靱性に優れた圧
延形鋼を提供することを目的とするものである。
【0006】
【課題を解決するための手段】本発明は、前述の問題を
解決するためになされたものであり、その要旨とすると
ころは下記のとおりである。 (1)  溶鉄に真空脱ガス処理に加え脱酸元素Al,
Si,Ca,Mgの単独かそれらの合金併用添加による
予備脱酸処理を施し、溶存酸素を重量%で0.003〜
0.015%に溶製後、合金添加により、重量%でC:
0.04〜0.20%、Si:0.05〜0.50%、
Mn:0.4〜2.0%、Mo:0.3〜0.7%、V
:0.05〜0.20%、N:0.006〜0.015
%、Al≦0.005%を含み、残部がFeおよび不可
避不純物からなる溶鋼に調整し、さらに連続鋳造モール
ド内で該溶鋼にTi−Cu、Ti−Ni、Ti−Fe合
金のいずれかを連続添加して最終脱酸し、Ti含有量が
溶鋼の溶存酸素〔O%〕に対し−0.006≦〔Ti%
〕−2〔O%〕≦0.008の関係を満たす重量%の鋳
片に鋳造し、該鋳片を1100〜1300℃の温度域に
再加熱後、熱間圧延を行い750〜1050℃の温度範
囲で圧延を終了することを特徴とする耐火性及び靱性の
優れた粒内フェライト系圧延形鋼の製造方法。
【0007】(2)  溶鉄に真空脱ガス処理に加え脱
酸元素Al,Si,Ca,Mgの単独かそれらの合金併
用添加による予備脱酸処理を施し、溶存酸素を重量%で
0.003〜0.015%に溶製後、合金添加により、
重量%でC:0.04〜0.20%、Si:0.05〜
0.50%、Mn:0.4〜2.0%、Mo:0.3〜
0.7%、V:0.05〜0.20%、N:0.006
〜0.015%、Al≦0.005%を含み、加えてC
r≦0.7%、Ni≦1.0%、Nb≦0.05%、C
u≦1.0%の1種または2種以上を含み、残部がFe
および不可避不純物からなる溶鋼に調整し、さらに連続
鋳造モールド内で該溶鋼にTi−Cu、Ti−Ni、T
i−Fe合金を連続添加して最終脱酸し、Ti含有量が
溶鋼の溶存酸素〔O%〕に対し−0.006≦〔Ti%
〕−2〔O%〕≦0.008の関係を満たす重量%の鋳
片に鋳造し、該鋳片を1100〜1300℃の温度域に
再加熱後、熱間圧延を行い750〜1050℃の温度範
囲で圧延を終了することを特徴とする耐火性及び靱性の
優れた粒内フェライト系圧延形鋼の製造方法。
【0008】
【作用】以下、本発明について詳細に説明する。鋼材の
高温強度は鉄の融点のほぼ1/2の温度の700℃以下
では常温での強化機構とほぼ同様であり、フェライト結
晶粒径の微細化、合金元素による固溶体強化、硬化相に
よる分散強化、微細析出物による析出強化等によって支
配される。
【0009】一般に高温強度の上昇はMo、Crの添加
による析出強化と転位の消失抑制による高温での軟化抵
抗を高めることにより達成されている。しかしMo、C
rの添加は著しく焼入れ性を上げ、母材のフェライト+
パーライト組織をベーナイト組織化し易くする。ベーナ
イト組織を生成し易い成分系鋼を圧延形鋼に適応した場
合は、その特異な形状からウェブ、フランジ、フィレッ
トの各部位で、圧延仕上げ温度、圧下率、冷却速度に差
を生じるため、各部位によりベーナイト組織割合が大き
く変化する。その結果として常温・高温強度、延性、靱
性がバラツキ、基準に満たない部位が生じる。加えて、
これらの元素の添加により溶接部を著しく硬化させ、靱
性を低下させる。
【0010】本発明の特徴は、溶鋼の溶存酸素量の制御
と、脱酸元素の添加手順の選択により、鋼中に分散させ
たTi系酸化物、Si・Mn系酸化物などの酸化物粒子
を核にしたMnS、TiNとVNの複合析出によるオー
ステナイト粒内からの粒内フェライト変態の促進効果を
活用し、H形鋼の各部位のベーナイトとフェライトの組
織割合の変化を少なくし、母材の機械特性の均一化を達
成したことと、高温強度をV炭窒化物による析出強化に
よりを向上させたところにある。
【0011】溶接熱影響部(以下HAZと称す)は鉄の
融点直下の高温に加熱され、オーステナイト粒の著しい
粗粒化を生じ、その結果、組織の粗粒化を招き、靱性を
著しく低下させる。本発明により鋼中に分散させたTi
酸化物、Si・Mn酸化物などの酸化物粒子は針状の粒
内フェライト生成機能に優れ、これを核に粒内フェライ
ト組織を生成し、組織を著しく微細化し靱性を向上させ
る特徴を有している。
【0012】次に本発明の対象鋼の基本成分範囲の限定
理由について述べる。まず、Cは鋼の強度を向上させる
有効な成分として添加するもので、0.04%未満では
構造用鋼として必要な強度が得られず、また、0.20
%を超える過剰の添加は、母材靱性、耐溶接割れ性、H
AZ靱性などを著しく低下させるので上限を0.20%
とした。
【0013】次に、Siは母材の強度確保、Si系酸化
物の生成などに必要であるが、0.50%を超えると熱
処理組織内に硬化組織の高炭素マルテンサイトを生成し
、靱性を著しく低下させる。また、0.05%未満では
必要なSi系酸化物が生成できないため、Si含有量を
0.05〜0.50%に限定した。Mnは母材の強度、
靱性の確保には0.4%以上の添加が必要であるが、溶
接部の靱性、耐割れ性などの許容できる範囲で上限を2
.0%とした。
【0014】Alは強力な脱酸元素であり、0.005
%を超えて含有すると粒内フェライト変態を促進するT
i系酸化物、Si・Mn系酸化物などが形成されず、靱
性の低下がもたらされることと、過剰の固溶AlはNと
化合してAlNを形成し本発明対象鋼の特徴であるVN
の析出量を低減させるため0.005%以下に限定した
【0015】NはVNの析出には極めて重要な元素であ
り、0.006%未満ではVNの析出量が不足し、粒内
フェライト組織の十分な生成量が得られず、また600
℃での高温強度も確保できないため0.006%以上と
した。含有量が0.015%を超えると母材靱性を低下
させ、連続鋳造時に鋼片に表面割れを生じさせるため0
.015%以下に限定した。
【0016】Moは母材強度および高温強度の確保に有
効な元素である。0.3%未満ではVNの析出強化との
複合作用によっても十分な高温強度が確保できず、0.
7%超では焼入れ性が上昇しすぎて母材靱性、HAZ靱
性が劣化するため、0.3〜0.7%に限定した。Vは
VNとして粒内フェライト組織の生成とその細粒化、高
温強度の確保のために極めて重要であり、0.05%未
満ではVNの析出量が不十分であり、0.20%超では
析出量が過剰になり母材靱性、溶接部靱性が低下するた
め、0.05〜0.20%に限定した。
【0017】不可避不純物として含有するP,Sはその
量について特に限定しないが、凝固偏析による溶接割れ
、靱性などの低下を生じるので極力低減すべきであり、
望ましくはP,S量はそれぞれ0.02%未満である。 以上が本発明の対象鋼の基本成分であるが、母材強度の
上昇および母材の靱性向上の目的で、Cr、Ni、Nb
、Cuの1種または2種以上を含有することができる。
【0018】まず、Niは母材の強靱性を高める極めて
有効な元素であるが、1.0%を超える添加は合金コス
トを増加させて経済的でないので、上限を1.0%とし
た。Crは焼き入れ性の向上と析出硬化により、母材の
強化、高温強化に有効である。しかし上限を超える過剰
の添加は、靱性および硬化性の観点から有害となるため
、上限を0.7%とした。
【0019】Nbは、母材の強靱化に有効であるが上限
を超える過剰の添加は、靱性及び硬化性の観点から有害
となるため0.05%以下とした。Cuは母材の強化、
耐候性に有効な元素であるが、応力除去焼鈍による焼き
戻し脆性、耐溶接割れ性、熱間加工割れなどを考慮して
、上限を1.0%とした。溶鉄の真空脱ガス処理および
Al、Si、Ca、Mgの金属かそれらの合金併用添加
による予備脱酸処理は、溶鉄を高清浄化すると同時に、
溶存酸素を重量%で0.003〜0.015%に制御す
るために極めて重要な処理である。
【0020】溶鉄の高清浄化が不十分で溶鋼中に粗大な
酸化物が残存すると、それを核生成サイトとして、Ti
合金のモールド添加により生成する粒内フェライト生成
に効果を持つ微細な二次脱酸酸化物が付着、凝集して粗
大酸化物を生成し、その個数の減少と粗大酸化物により
靱性低下をもたらす。さらに予備脱酸後の〔O〕濃度が
0.003%未満では粒内フェライト変態を促進するT
i系酸化物などの粒内フェライト生成核が減少し、細粒
化ができず、靱性を向上できない。一方、0.015%
を超える場合は、他の条件を満たしていても、溶鋼中及
び凝固時に酸化物が粗粒化して脆性破壊の起点となり、
靱性を低下させる。そのため、予備脱酸後の〔O〕濃度
を重量%で0.003〜0.015%に限定した。
【0021】なお、予備脱酸処理に真空脱ガスおよびA
l、Si、Ca、Mg等による脱酸を選択したのは、真
空脱ガス処理は直接溶鋼中の酸素をガスおよびCOガス
として除去し、またAl、Si、Ca、Mgなどの強脱
酸により生成する酸化物系介在物は浮上、除去し易いた
め、溶鋼の清浄化に極めて効果的であることから採用し
た。
【0022】Tiを最終脱酸としてモールド添加するの
は、鋳片内に微細なTi系酸化物を均一分散析出させる
ための処理である。なぜならば、溶鋼段階で析出する一
次脱酸酸化物は凝集粗大化し易いため、Ti添加後、で
きる限り短時間に出鋼、凝固させる必要がある。それに
は連続鋳造においてTiをモールド添加する方法が最も
有効なためである。
【0023】この処理の添加剤にTi−Cu、Ti−N
i、Ti−Fe合金を選択したのは、連続鋳造のモール
ドで溶鋼中に、できる限り短時間に添加したTiを均一
拡散させる必要があり、それには融点の低いTi合金が
有効なことと、Cu,Ni,Feは材質特性にほとんど
影響を及ぼさない金属のためである。その各々の合金の
主組成は重量%でTi:30〜60%、残部はCu、T
i:30〜80%、残部はNi、Ti:40〜75%、
残部はFeからなるもので、何れも純Tiに比べ低融点
の合金である。添加はこれらの合金をワイヤーもしくは
粒状に加工し、連続してモールド添加すればよい。
【0024】なお、Ti含有量を溶鋼の溶存酸素〔O%
〕に対し−0.006≦〔Ti%〕−2〔O%〕≦0.
008の関係を満たす重量%とするという制限を与えた
のは、この関係式において重量%でTiが〔O〕濃度に
対し過剰である場合は過剰なTiが必要以上のTiNを
生成し、本発明の特徴であるVNの析出量を低減させ、
重量%でTiが〔O〕濃度に対し過小である場合は粒内
フェライト核となるTi系酸化物及びSi・Mn系酸化
物個数の総計が必要数の40個/mm2 を超えなくな
るため限定したものである。
【0025】再加熱温度を1100〜1300℃の温度
域に規制したのは、熱間加工による形鋼の製造には塑性
変形を容易にするため1100℃以上の加熱が必要であ
り、且つV,Moによる高温での降伏点を増大させるに
は、これらの元素を十分に固溶させる必要があるため、
再加熱温度の下限を1100℃とした。その上限は加熱
炉の性能、経済性から1300℃とした。
【0026】熱間加工終了温度を750〜1050℃と
したのは、低温圧延ほど靱性は向上するが、形鋼の造形
上750℃未満での加工は困難であり、また1050℃
超での加工は粗粒組織を生成し、靱性が低下するためで
ある。以下に実施例によりさらに本発明の効果を示す。
【0027】
【実施例】試作形鋼は転炉溶製し、真空脱ガス処理後、
Al,Si,Ca,Mgの合金を添加して予備脱酸処理
を行い、さらに連続鋳造のモールドでTi合金を連続的
に添加し、250〜300mm厚鋳片に鋳造した後、圧
延造形によりフランジ厚み毎に表1に示す種々の寸法の
H形鋼を製造した。
【0028】機械特性は図1に示すフランジ2の板厚t
2 の中心部(1/2・t2 )でフランジ幅全長Bの
1/4、1/2幅(1/4B,1/2B)から試験片を
採取して求めた。溶接継手シャルピー試験片は図2、図
3に示すフランジの板厚中心部(1/2・t2 )で幅
全長の1/4幅(1/4B)から採取した。なお、これ
らの箇所の特性を求めたのはフランジ1/4F部はH形
鋼のほぼ平均的な機械特性を示し、フランジ1/2F部
はその特性が最も低下するため、この2箇所によりH形
鋼の機械試験特性を代表できると判断したためである。
【0029】溶接部の靱性はレ型開先(図2)およびK
型開先(図3)による多層潜孤溶接を行い、2mmVノ
ッチシャルピー試験により評価した。溶接は電流700
A,電圧32V,溶接速度30cm/min ,入熱量
45kJ/cmの1電極潜孤溶接である。表2、表3(
表2つづき)は試作鋼の化学成分、表4、表5(表4の
つづき)は圧延条件および機械試験特性を示す。なお、
圧延加熱温度は1280℃に揃えた。その理由は、一般
的に加熱温度の低下により機械特性を向上させることは
周知であり、高温加熱条件は機械特性の最低値を示すと
推定され、この値がそれ以下の加熱温度での特性を代表
できると判断したためである。
【0030】表4、表5に示すように、本発明による鋼
1〜8は圧延仕上げ温度、フランジ板厚(冷却速度)の
変化に対して、目標の母材機械特性の常温強度である6
00℃での高温強度と、0℃でのシャルピー値3.5k
gf−m 以上を十分に満たしている。さらに、溶接継
手・HAZ部の0℃でのシャルピー値も3.5kgf−
m 以上を十分に満たしている。一方、比較鋼の鋼9〜
12は常温強度、高温強度は満たすものの、フランジの
板厚1/2部で幅1/2部の靱性は何れも目標の値を満
足しない。その原因は鋼9、11、12はAl脱酸処理
によりTi添加前の溶鋼の酸素濃度がその制限範囲の下
限値を外れ、また鋼10はCa−Si合金予備脱酸によ
り酸素濃度は制限範囲内にあるものの、鋼9、11、1
2と同様、Ti合金のモールド添加処理を加えていない
ため、IGF核生成サイトとして働く微細酸化物+Mn
S+TiNの個数が不足し、IGFが生成せず、細粒化
による靱性改善ができなかったためである。
【0031】即ち、本発明の製造法の要件が総て満たさ
れた時に、表4、表5に示される形鋼1〜8のように、
圧延形鋼の機械試験特性の最も保証しにくいフランジ板
厚1/2、幅1/2部においても十分な強度、靱性を有
し、フランジ板厚1/2、幅1/4部においても十分な
常温、高温強度と溶接HAZ靱性を持つ、耐火性および
靱性の優れた圧延形鋼の製造が可能になる。なお、本発
明が対象とする圧延形鋼は上記実施例のH形鋼に限らず
、I形鋼、山形鋼、溝形鋼、不等辺不等厚山形鋼等のフ
ランジを有する形鋼にも適用できることは勿論である。
【0032】
【表1】
【0033】
【表2】
【0034】
【表3】
【0035】
【表4】
【0036】
【表5】
【0037】
【発明の効果】本発明により、圧延形鋼は機械試験特性
の最も保証しにくいフランジ板厚1/2、幅1/2部に
おいても十分な強度、靱性を有し、高温特性、溶接性に
優れ、耐火材の被覆厚さが従来の20〜50%で耐火目
的を達成できる優れた耐火性及び靱性を持つ圧延形鋼の
製造が圧延ままで可能になり、施工コスト低減、工期の
短縮による大幅なコスト削減が可能になり、大型建造物
の信頼性向上、安全性の確保、経済性等の産業上の効果
は極めて顕著なものがある。
【図面の簡単な説明】
【図1】図1はH形鋼の断面形状及び機械試験片の採取
位置を示す図である。
【図2】図2は溶接継手部のレ型開先形状及び溶接形状
の概略図である。
【図3】図3は溶接継手部のK型開先形状及び溶接形状
の概略図である。
【符号の説明】
1    H形鋼 2    フランジ 3    ウェブ

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】  溶鉄に真空脱ガス処理に加え脱酸元素
    Al,Si,Ca,Mgの単独かそれらの合金併用添加
    による予備脱酸処理を施し、溶存酸素を重量%で0.0
    03〜0.015%に溶製後、合金添加により、重量%
    でC:0.04〜0.20%、Si:0.05〜0.5
    0%、Mn:0.4〜2.0%、Mo:0.3〜0.7
    %、V:0.05〜0.20%、N:0.006〜0.
    015%、Al≦0.005%を含み、残部がFe及び
    不可避不純物からなる溶鋼に調整し、さらに連続鋳造モ
    ールド内で該溶鋼にTi−Cu、Ti−Ni、Ti−F
    e合金のいずれかを連続添加して最終脱酸し、Ti含有
    量が溶鋼の溶存酸素〔O%〕に対し−0.006≦〔T
    i%〕−2〔O%〕≦0.008の関係を満たす重量%
    の鋳片に鋳造し、該鋳片を1100〜1300℃の温度
    域に再加熱後、熱間圧延を行い750〜1050℃の温
    度範囲で圧延を終了することを特徴とする耐火性及び靱
    性の優れた粒内フェライト系圧延形鋼の製造方法。
  2. 【請求項2】  溶鉄に真空脱ガス処理に加え脱酸元素
    Al,Si,Ca,Mgの単独かそれらの合金併用添加
    による予備脱酸処理を施し、溶存酸素を重量%で0.0
    03〜0.015%に溶製後、合金添加により、重量%
    でC:0.04〜0.20%、Si:0.05〜0.5
    0%、Mn:0.4〜2.0%、Mo:0.3〜0.7
    %、V:0.05〜0.20%、N:0.006〜0.
    015%、Al≦0.005%を含み、加えてCr≦0
    .7%、Ni≦1.0%、Nb≦0.05%、Cu≦1
    .0%の1種または2種以上を含み、残部がFe及び不
    可避不純物からなる溶鋼に調整し、さらに連続鋳造モー
    ルド内で該溶鋼にTi−Cu、Ti−Ni、Ti−Fe
    合金を連続添加して最終脱酸し、Ti含有量が溶鋼の溶
    存酸素〔O%〕に対し−0.006≦〔Ti%〕−2〔
    O%〕≦0.008の関係を満たす重量%の鋳片に鋳造
    し、該鋳片を1100〜1300℃の温度域に再加熱後
    、熱間圧延を行い750〜1050℃の温度範囲で圧延
    を終了することを特徴とする耐火性及び靱性の優れた粒
    内フェライト系圧延形鋼の製造方法。
JP3043855A 1991-03-08 1991-03-08 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法 Expired - Lifetime JP2579841B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043855A JP2579841B2 (ja) 1991-03-08 1991-03-08 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043855A JP2579841B2 (ja) 1991-03-08 1991-03-08 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法

Publications (2)

Publication Number Publication Date
JPH04279247A true JPH04279247A (ja) 1992-10-05
JP2579841B2 JP2579841B2 (ja) 1997-02-12

Family

ID=12675324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043855A Expired - Lifetime JP2579841B2 (ja) 1991-03-08 1991-03-08 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法

Country Status (1)

Country Link
JP (1) JP2579841B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023083A1 (fr) * 1995-01-26 1996-08-01 Nippon Steel Corporation Acier soudable de haute resistance ayant une durete excellente a basse temperature
EP1026275A1 (en) * 1998-07-31 2000-08-09 Nippon Steel Corporation High-strength, high-toughness rolled shape steel and production method thereof
WO2013089089A1 (ja) * 2011-12-15 2013-06-20 新日鐵住金株式会社 高強度極厚h形鋼
CN104399945A (zh) * 2014-11-14 2015-03-11 柳州市中配橡塑配件制造有限公司 辊形结构件的制造工艺
WO2015093321A1 (ja) * 2013-12-16 2015-06-25 新日鐵住金株式会社 H形鋼及びその製造方法
US9482005B2 (en) 2012-11-26 2016-11-01 Nippon Steel & Sumitomo Metal Corporation H-Section steel
CN106834906A (zh) * 2017-01-10 2017-06-13 首钢京唐钢铁联合有限责任公司 超低碳钢及其生产方法
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
JP2021526587A (ja) * 2018-06-19 2021-10-07 山東鋼鉄股▲ふん▼有限公司Shandong Iron And Steel Co., Ltd. 500MPaグレードの降伏強度を有する厚いゲージの熱間圧延されるH字型鋼及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (ja) * 1984-09-28 1986-04-23 Nippon Steel Corp 溶接継手熱影響部靭性のすぐれた鋼材の製造法
JPH01191765A (ja) * 1988-01-26 1989-08-01 Nippon Steel Corp 微細粒チタン酸化物、硫化物を分散した溶接部靭性の優れた低温用高張力鋼
JPH0277523A (ja) * 1988-06-13 1990-03-16 Nippon Steel Corp 耐火性の優れた建築用低降伏比鋼材の製造方法およびその鋼材を用いた建築用鋼材料
JPH02220735A (ja) * 1989-02-20 1990-09-03 Nippon Steel Corp チタン酸化物を含有する溶接・低温用高張力鋼の製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (ja) * 1984-09-28 1986-04-23 Nippon Steel Corp 溶接継手熱影響部靭性のすぐれた鋼材の製造法
JPH01191765A (ja) * 1988-01-26 1989-08-01 Nippon Steel Corp 微細粒チタン酸化物、硫化物を分散した溶接部靭性の優れた低温用高張力鋼
JPH0277523A (ja) * 1988-06-13 1990-03-16 Nippon Steel Corp 耐火性の優れた建築用低降伏比鋼材の製造方法およびその鋼材を用いた建築用鋼材料
JPH02220735A (ja) * 1989-02-20 1990-09-03 Nippon Steel Corp チタン酸化物を含有する溶接・低温用高張力鋼の製造法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023083A1 (fr) * 1995-01-26 1996-08-01 Nippon Steel Corporation Acier soudable de haute resistance ayant une durete excellente a basse temperature
AU680590B2 (en) * 1995-01-26 1997-07-31 Nippon Steel Corporation Weldable high-tensile steel excellent in low-temperature toughness
US5798004A (en) * 1995-01-26 1998-08-25 Nippon Steel Corporation Weldable high strength steel having excellent low temperature toughness
EP1026275A1 (en) * 1998-07-31 2000-08-09 Nippon Steel Corporation High-strength, high-toughness rolled shape steel and production method thereof
EP1026275A4 (en) * 1998-07-31 2001-01-17 Nippon Steel Corp HIGH-STRENGTH, HIGH-SPEED ROLLED STEEL AND METHOD FOR THE PRODUCTION THEREOF
US6364967B1 (en) 1998-07-31 2002-04-02 Nippon Steel Corporation High-strength, high-toughness rolled shape steel and method of producing the same
WO2013089089A1 (ja) * 2011-12-15 2013-06-20 新日鐵住金株式会社 高強度極厚h形鋼
JP5565531B2 (ja) * 2011-12-15 2014-08-06 新日鐵住金株式会社 高強度極厚h形鋼
US9863022B2 (en) 2011-12-15 2018-01-09 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-thick H-beam steel
US9482005B2 (en) 2012-11-26 2016-11-01 Nippon Steel & Sumitomo Metal Corporation H-Section steel
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
WO2015093321A1 (ja) * 2013-12-16 2015-06-25 新日鐵住金株式会社 H形鋼及びその製造方法
JPWO2015093321A1 (ja) * 2013-12-16 2017-03-16 新日鐵住金株式会社 H形鋼及びその製造方法
US10060002B2 (en) 2013-12-16 2018-08-28 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
CN104399945A (zh) * 2014-11-14 2015-03-11 柳州市中配橡塑配件制造有限公司 辊形结构件的制造工艺
CN106834906A (zh) * 2017-01-10 2017-06-13 首钢京唐钢铁联合有限责任公司 超低碳钢及其生产方法
JP2021526587A (ja) * 2018-06-19 2021-10-07 山東鋼鉄股▲ふん▼有限公司Shandong Iron And Steel Co., Ltd. 500MPaグレードの降伏強度を有する厚いゲージの熱間圧延されるH字型鋼及びその製造方法

Also Published As

Publication number Publication date
JP2579841B2 (ja) 1997-02-12

Similar Documents

Publication Publication Date Title
JP2760713B2 (ja) 耐火性及び靱性の優れた制御圧延形鋼の製造方法
JP2661845B2 (ja) 含オキサイド系耐火用形鋼の制御圧延による製造方法
JP4464486B2 (ja) 高強度高靱性圧延形鋼とその製造方法
JP2579841B2 (ja) 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法
JP2607796B2 (ja) 靭性の優れた低合金圧延形鋼の製造方法
JPH0483821A (ja) 耐火性及び溶接部靭性の優れたh形鋼の製造方法
JP3397271B2 (ja) 耐火用圧延形鋼およびその製造方法
JP2579842B2 (ja) 圧延ままで靱性に優れ、かつ溶接部靱性に優れた粒内フェライト系形鋼の製造方法
JP2596853B2 (ja) 圧延ままで母材靱性に優れると共に、溶接部靱性に優れた粒内フエライト系形鋼の製造方法
JP2601961B2 (ja) 靭性の優れた圧延形鋼の製造方法
JP3241199B2 (ja) 酸化物粒子分散鋳片及びその鋳片を素材とする靭性の優れた圧延形鋼の製造方法
JP3181448B2 (ja) 含酸化物分散鋳片及びその鋳片による靱性の優れた圧延形鋼の製造方法
JP3285732B2 (ja) 耐火用圧延形鋼およびその製造方法
JP3472017B2 (ja) 耐火圧延形鋼およびその製造方法
JP3107698B2 (ja) 強度・靱性および耐火性の優れたフランジを有する形鋼の製造方法
JP3426425B2 (ja) 耐火圧延形鋼用鋳片およびそれを素材とする耐火用圧延形鋼の製造方法
JP3107697B2 (ja) 強度・靱性および溶接性の優れたフランジを有する形鋼の製造方法
JP3107695B2 (ja) 強度・靱性および溶接性の優れたフランジを有する形鋼の製造方法
JP3107696B2 (ja) 強度・靱性および耐火性の優れたフランジを有する形鋼の製造方法
JP3241198B2 (ja) 耐火用酸化物粒子分散鋳片及びこの鋳片を素材とした耐火用圧延形鋼の製造方法
JPH03249149A (ja) 耐火性及び靭性の優れたh形鋼並びにその製造方法
JP2543282B2 (ja) 靭性の優れた制御圧延形鋼の製造方法
JP2834500B2 (ja) 抵温靭性の優れた高張力鋼板の製造法
JPH0790473A (ja) 耐火用含酸化物鋳片及びその鋳片による耐火用圧延形鋼の製造方法
JP3285731B2 (ja) 耐火用圧延形鋼およびその製造方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15