JPH04277096A - Method for treating organic waste water by photosynthesized microorganism - Google Patents
Method for treating organic waste water by photosynthesized microorganismInfo
- Publication number
- JPH04277096A JPH04277096A JP3063774A JP6377491A JPH04277096A JP H04277096 A JPH04277096 A JP H04277096A JP 3063774 A JP3063774 A JP 3063774A JP 6377491 A JP6377491 A JP 6377491A JP H04277096 A JPH04277096 A JP H04277096A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- liq
- organic wastewater
- org
- bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 244000005700 microbiome Species 0.000 title claims description 11
- 239000010815 organic waste Substances 0.000 title abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title description 27
- 230000000243 photosynthetic effect Effects 0.000 claims abstract description 40
- 239000002351 wastewater Substances 0.000 claims abstract description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000000835 fiber Substances 0.000 claims abstract description 14
- 239000002253 acid Substances 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 238000000855 fermentation Methods 0.000 claims abstract description 11
- 230000004151 fermentation Effects 0.000 claims abstract description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 239000011574 phosphorus Substances 0.000 claims abstract description 10
- 241000190834 Chromatiaceae Species 0.000 claims abstract description 9
- 241000131970 Rhodospirillaceae Species 0.000 claims abstract description 8
- 241000894006 Bacteria Species 0.000 claims description 40
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims description 32
- 239000001257 hydrogen Substances 0.000 claims description 32
- 238000011282 treatment Methods 0.000 claims description 26
- 230000001580 bacterial effect Effects 0.000 claims description 24
- 241000195628 Chlorophyta Species 0.000 claims description 20
- 241000192700 Cyanobacteria Species 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 10
- 239000010865 sewage Substances 0.000 claims description 8
- 238000004065 wastewater treatment Methods 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 244000063299 Bacillus subtilis Species 0.000 claims description 4
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 claims description 2
- 239000003527 fibrinolytic agent Substances 0.000 claims description 2
- 230000003480 fibrinolytic effect Effects 0.000 claims description 2
- 231100000719 pollutant Toxicity 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 22
- 239000007789 gas Substances 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 16
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 abstract description 9
- 239000001301 oxygen Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 abstract 1
- 238000007599 discharging Methods 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 32
- 229910002092 carbon dioxide Inorganic materials 0.000 description 16
- 239000005416 organic matter Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 150000001735 carboxylic acids Chemical class 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 244000144972 livestock Species 0.000 description 7
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 6
- 230000002062 proliferating effect Effects 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 241000195585 Chlamydomonas Species 0.000 description 5
- 241000190831 Chromatium Species 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 230000029553 photosynthesis Effects 0.000 description 5
- 238000010672 photosynthesis Methods 0.000 description 5
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 4
- 241000191025 Rhodobacter Species 0.000 description 4
- 239000000386 donor Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000010800 human waste Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010792 warming Methods 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 241000192497 Oscillatoria Species 0.000 description 3
- 241000282887 Suidae Species 0.000 description 3
- 241000499912 Trichoderma reesei Species 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000192542 Anabaena Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 241000108056 Monas Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 230000009569 heterotrophic growth Effects 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
Landscapes
- Fodder In General (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Fertilizers (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、光合成微生物による有
機性汚水の処理方法に係り、特に各種の汚濁性有機物、
硫化物及び/又は窒素、リンなどを濃厚に含むし尿、家
畜汚水、及び各種の有機性廃水を、主として光合成細菌
と微細藻類のそれぞれの機能を合理的に組み合せた生物
処理プロセスを構成することによって、汚水中に含まれ
る有機物、硫化物及び/又は水をクリーンエネルギーで
ある水素に変換すると同時に、窒素とリンをも除去し、
さらに残渣としての繊維分及び増殖菌体から家畜の飼料
等の有価な物質を生産、抽出する処理技術に関するもの
である。また、本発明において、主として関与している
のは光合成微生物であり、これらは大気中のCO2 を
大量に固定化できるので、当然ながら地球環境汚染の解
消にも著しく貢献する優れた処理技術である。
【0002】
【従来の技術】従来、汚濁負荷の高いし尿、下水汚泥、
濃厚有機性廃水は、通常、嫌気性細菌の機能を有効に利
用したメタン発酵法で処理するか、あるいは濃厚なまま
好気性菌の機能を利用して生物学的に酸化処理する方法
が採用されてきた。また廃水中に窒素、リンなどの富栄
養化原因物質を含有する場合には、生物学的脱窒法、生
物学的脱リン法又は生物学的脱窒素脱リン法などの処理
技術が適用されてきた。これらの処理技術には、宿命的
に多量の有機性汚泥の処理が伴ない、さらに放流先の環
境によって高度処理を付加する必要がある場合には、極
めて処理しにくい凝集汚泥がこれに追加されることにな
る。
【0003】前記した各種の処理技術は、ほとんど例外
なくエネルギー多消費型、資源多消費型の処理技術であ
った。これらの欠陥を解消するために、長期間に渡り各
機関での各種の研究が行なわれているが、これらの技術
上の問題点は現時点においても、ほとんど未解決のまま
残されている。さらに、ここ数年来、地球の温暖化問題
が顕在化してきており、地球的視野にたっての解決およ
び改善が強く要望されている。このような観点から、従
来の生物処理技術を評価してみると、嫌気性処理、好気
性処理とも多量のCO2 ガスを発生し、特に全プロセ
スの中でも汚泥の乾燥、焼却工程からは集中的に濃厚な
CO2 ガスが多量に発生する。そのために、水処理分
野においても地球環境の改善に寄与できる新しい有機性
廃水の処理技術の研究開発が急務となっている。
【0004】
【発明が解決しようとする課題】以上詳述したように、
従来の廃水処理技術、方法はエネルギー、資源ともに多
消費型であるうえに地球の温暖化を助長する炭酸ガスを
多量に発生する。本発明は、この従来技術の宿命的な欠
陥を改善したものであり、全く新規な発想による革新的
な有機性汚水の処理方法を提供し、多機能な新しい生物
処理プロセスを提供することを目的とする。
【0005】
【課題を解決するための手段】前記の目的を達成するた
めに、本発明では、酸発酵菌及び光合成微生物のそれぞ
れの機能を合理的に組み合わせ、機能を複合化、多機能
化した新規な発想による革新的な有機性廃水の処理方法
としたものである。すなわち、本発明は有機性汚水を生
物学的手段によって処理する方法において、有機性汚水
を、まず該汚水中に含まれる高分子化合物を酸発酵させ
る酸発酵工程で処理後、紅色非硫黄細菌、紅色硫黄細菌
の単一系及び/又は混合系による光合成細菌培養工程で
処理し、次いで、らん藻類を培養するらん藻培養工程で
処理することにより、水素生産と同時に菌体内に汚水中
の窒素・リンを同化せしめることを特徴とする有機性汚
水の処理方法である。
【0006】また、本発明は前記の処理方法において、
らん藻培養工程での処理の後に、さらに、緑藻培養工程
又は光合成細菌培養工程を設けて処理し、水素を生産す
る有機性汚水の処理方法である。上記の緑藻培養工程で
処理後の流出水を、さらに生物酸化工程で処理して、残
留する汚濁成分を分解除去することができる。また、前
記の各培養工程で培養した微生物は、各工程から系外に
取り出し、脱水乾燥して家畜の飼料等の有価物として回
収することができる。
【0007】上記のように、本発明は濃厚に汚濁性高分
子有機物、その他の有機物、硫化物及び/又は窒素、リ
ンなどを含む有機性汚水を、まず酸発酵菌の作用によっ
て低級カルボン酸にまで低分子化したのち、有機物、硫
化物を電子供与体として水素を生産する紅色非硫黄細菌
及び/又は紅色硫黄細菌と、水を電子供与体として水素
を生産することができる微細藻類を生物処理プロセス内
で合理的に組み合わせることによって、有機性廃水を処
理すると同時にクリーンエネルギーである水素を生産し
、かつ増殖菌体から有価な物質を生産することを可能に
した斬新な有機性廃水の処理方法である。
【0008】次に本発明を図1及び図2を用いて詳細に
説明する。先ず、し尿、下水汚泥、工場廃水に代表され
る濃厚有機性汚水1を必要により繊維分除去装置2を経
由せしめて繊維分(セルロースおよびヘミセルロース)
を除去したのち酸発酵槽3に導入せしめ、糖類、その他
の高分子有機物を低級カルボン酸(酢酸、酪酸、プロピ
オン酸など)にまで低分子化する。次に、この廃水はロ
ドバクター ( Rhodobacter )などの紅
色非硫黄細菌及び/又はクロマチウム ( Chrom
atium ) などの紅色硫黄細菌が培養されている
光合成細菌培養槽5に導入される。
光合成細菌培養槽5には、大量光集光装置によって集光
された太陽光エネルギーあるいは人工光エネルギーが光
ファイバー、平面や曲面の発光体、ゲル発光体などの所
謂光伝送発光装置によって、槽内5に伝送され、光合成
細菌の増殖エネルギーとして利用される。
【0009】一方、光合成細菌によって固定されるCO
2 7は、通常大気を導入することによって槽内5に供
給される。この大気は、必要に応じてPSA、ガス分離
膜などの分離、濃縮手段であるガス分離装置によってO
2 を可及的に分離するか、あるいは発生ガスを適当に
循環することによって、酸素分圧を低くしたガス体が光
合成細菌の増殖と水素生産のために供給される。光合成
細菌培養槽5の内部は、基本的には等容積に2分割され
、廃水はそれぞれ交互に導入される。一方の槽で培養さ
れている光合成細菌類は、廃水(主として低級カルボン
酸、硫化物)の供給と光エネルギー6、CO2 7の供
給をうけ、菌体内に充分にポリ−β−ハイドロキシ酪酸
を蓄積した成熟菌体となる。この状態になった時点で、
光エネルギーの供給下、かつ窒素ガス分圧の低い条件下
で水素を生産させる。さらに、もう一方の槽も同様の操
作条件で運転し、光合成細菌培養槽5の両槽を交互に使
用してH2 を連続的に発生させる。
【0010】光合成細菌培養槽5で増殖した余剰菌体は
、増殖菌体引抜き管20によって系外に取り出され、有
価物の抽出及び/又は飼料などに加工される。増殖菌体
には通常ポリ−β−ハイドロキシ酪酸が多量に蓄積され
るので、生分解性ポリマーの生産又はポリリン酸など付
加価値の高い物質を生産することが可能である。光合成
細菌培養槽5における紅色非硫黄細菌及び紅色硫黄細菌
の光合成による有機物生産と水素生産の生物反応式は次
の通りである。
【0011】
紅色非硫黄細菌(例えばロドバクター( Rhodob
acter ))
電子供与体 → 主として低級カルボン酸 ■
光合成
6CO2 +12H2 O → C6 H
12O6 +6O2 +6H2 O ■ 水素生産
C6 H12O6 +6H2 O → 6
CO2 +12H2 +680kcal紅色硫黄細菌(
例えばクロマチウム( Chromatium ) )
電子供与体 → 硫化物
■ 光合成
6CO2 +12H2 S → C6 H
12O6 +12S+6H2 O ■ 水素生産
C6 H12O6 +6H2 O → 6
CO2 +12H2 +680kcal【0012】光
合成細菌培養槽5から発生したH2 は、ガス輸送管8
によって輸送され、輸送管8の途中で水素吸蔵合金9に
よって純粋なH2 に分離され、さらに空気10を混合
したのちに燃料電池などの電気エネルギー変換装置11
によって、あるいはガスタービンによって電気エネルギ
ーに変換される。またガス輸送管8をそのまま経由して
熱エネルギーとして使用することも可能である。次に光
合成細菌培養槽5の流出水は処理水移送管によってらん
藻培養槽13に導入される。この槽13では、オッシラ
トリア ( Oscillatoria ) 、アナベ
ナ( Anabaena )などによって代表されるら
ん藻類が光エネルギー14、大気から供給されるCO2
15及び/又は緑藻暗培養槽17の排気から供給され
るCO2 18によって、さらに槽13への流入水から
供給される窒素、リンによって光合成が行われ、菌体の
増殖と有機物が生産される。
【0013】この槽13も光合成細菌培養槽5と同様に
槽内は2分割され、槽5の操作条件と全く同様に菌体の
充分な成熟と、その後の窒素欠乏条件下における水素生
産が行なわれ、2分割した槽13は同様の目的、操作で
それぞれ交互に使用される。らん藻類による水素生産は
水の分解によって行なわれるが、その生物反応式は次の
通りであり、同時に多目的に利用できる酸素が発生する
。
2H2 O → 2H2 +O2 水素を充分に発
生せしめたのち、余剰菌体は菌体引抜き管20によって
系外に排出され、有価物の抽出及び/又は生産の目的に
供せられる。
【0014】またらん藻培養槽13から発生する水素ガ
スは、ガス輸送管8によって電気エネルギー変換装置1
1及び/又は分配管を経由して、それぞれ電気エネルギ
ー、及び熱エネルギー12として有効に利用される。電
気エネルギー変換装置11として燃料電池を使用する場
合には、ガス輸送管8によって移送される過程において
、水素含有発生ガスは水素吸蔵合金によって濃縮、分離
され、さらに空気を随伴して燃焼電池11に供給される
。次に、らん藻培養槽13からの流出水は緑藻暗培養槽
17に導入され、クラミドモナス( Chlamydo
monas ) 、クロレラ( Chlorella
) などの所謂緑藻類の暗培養によって有機物分解によ
るH2 の生産が行なわれる。
【0015】らん藻培養槽13で水素生産を目的として
培養されるらん藻類は、種類によっては光合成で生産し
た有機物を可成りの量菌体外に溶出するものがある。通
常、前記したオッシラトリア ( Oscillato
ria ) 、アナベナ( Anabaena )は光
エネルギーの存在下で固定したCO2 の約30%程度
を、多糖類、酢酸(CH3 COOH)、グリコール酸
〔CH2 (OH)COOH〕などの低級カルボン酸と
して菌体外に放出する。処理水量が比較的多い場合には
、緑藻類の明培養と暗培養によって水と有機物からH2
を取り出すほうが有利であるが、処理水量が少ない場
合には暗培養によって有機物だけから水素を取り出すほ
うが、緑藻の増殖速度が速く、また光エネルギーの供給
も必要としないので有利である。
【0016】緑藻暗培養槽17では通常クラミドモナス
( Chlamydomonas ) 、クロレラ(
Chlorella ) などの緑藻類が、酢酸( C
H3 COOH)、グリコール酸〔CH2 (OH)C
OOH〕などの低級カルボン酸、その他をエネルギー源
として、前工程のらん藻培養槽13で生産された酸素、
およびブロワー19から供給される空気中の酸素によっ
て、好気的条件下で有機物を分解し、ヘテロトロフィッ
ク増殖により多量の水素を生産する。その生物反応式は
次の通りである。
CH3 COOH+2H2 O → 2CO2 +
4H2 CH2 OHCOOH+H2 O → 2
CO2 +2H2 【0017】緑藻暗培養槽17から
発生した水素ガスは、ガス輸送管8を経由して、その前
の工程から発生した水素と合流され、電気エネルギー1
1あるいは熱エネルギー12として有利に利用される。
また、この槽17からの増殖菌体は菌体引抜き管20に
よって系外に取り出し、その前の工程からの増殖菌体と
合流され、濃縮槽21によって適度に濃縮されてから、
飼料、土壌改良剤として加工されるか、あるいは付加価
値の高い物質を抽出する目的に使用される。ここで、緑
藻暗培養槽で他栄養的に培養された緑藻類はクロロフィ
ルが欠損するので、余剰菌体は濃縮槽21に移送される
過程で、太陽光を受光できる開放系の曝気槽31により
1日間程度曝気され、クロロフィルを形成させる。水処
理の最終段階として、緑藻暗培養槽17からの流出水は
、型式を特定しない生物酸化槽22に導入され、微量な
がら残存する有機物を、ブロワー23から供給されるO
2 の存在下で好気性微生物によって分解され、処理水
排出管24によって外部に放流される。
【0018】次に、図1によって、詳細に説明した生物
学的プロセスの変法として、図2を説明する。前述した
通り、らん藻培養槽13の流出水に含まれている有機物
は、そのほとんどが酢酸(CH3 COOH)、グリコ
ール酸〔CH2 (OH)COOH〕によって代表され
る低級カルボン酸である。光合成細菌は本来栄養源、エ
ネルギー源として低級カルボン酸を極めてよく消化する
ので、図2に示したように、緑藻暗培養槽の代りに光合
成細菌培養槽30を設け、ロドバクター( Rhodo
bacter ) などによって代表される紅色非硫黄
細菌を、光エホルギー25、CO2 26の供給下で低
級カルボン酸を電子供与体として、有機物からH2 を
生産せしめてもよい。この場合には、流入水中に硫化物
は実質的に存在しないので、クロマチウム( Chro
matium )などの紅色硫黄細菌を介在させる必要
はなく、培養も簡単である。
【0019】この変法プロセスでは、流出水中にはほと
んど有機物が残留しないので、通常図2に示した生物酸
化槽22、空気供給23は省略することができるので、
プロセスは単純化され、かつ経済的であることは論を俟
たない。最後に、繊維分除去装置2及び/又は酸発酵槽
3から排出される繊維分を主成分とする未消化物は飼料
製造装置4に送られる。未消化物は前記のとおり繊維分
がほとんどであるが、処理対象となるし尿、家畜汚水あ
るいは有機性廃水の各種成分が同伴することは避けられ
ず、通常悪臭をともなう。
【0020】従って、未消化物は水溶液のまま4に送ら
れ、ここで繊維素分解菌であるトリコデルマ リーセ
イ変種( Trichoderma reesei v
ar. )及び納豆菌であるバチルス ズブチリス変
種( Bacillus subtilis var.
)の2種類の微生物が接種され、好気的条件下でセル
ラーゼ、ヘミセルラーゼ、蛋白質分解酵素、ペプチド分
解酵素、および臭気成分分解酵素(未同定)などの有用
酵素によって充分に栄養価が高く、かつエネルギー源と
しても利用できる物質に転換される。この発酵生産物は
乾燥してから飼料(添加剤)として提供される。
【0021】光合成細菌培養槽5、30、らん藻培養槽
13に供給されるべき光エネルギーは当然菌体濃度によ
って決定されるが、実験の結果から判断して概略8〜1
0kw/m3 ・hrの範囲(太陽エネルギーから95
%以上を確保する)で設定すれば大過ない。また本発明
を実施する場所が、太陽エネルギーが強大で、かつ日照
時間が長い地域では、太陽光エネルギーに100%依存
しても、さほどの有意差は生じない。また発光体の表面
に伝送されるべき光エネルギーの供給速度は25〜45
W/m2 ・hrもあれば充分である。なお、光合成細
菌及び/又は各種の微細藻類を培養するにあたって、適
宜明暗の間歇培養を行うことが好ましいが、明培養又は
暗培養でもかまわない。
【0022】
【作用】本発明の処理方法は、酸発酵菌、光合成細菌及
び微細藻類のそれぞれの機能の相互作用及び相乗作用に
よって、省エネルギー的に有機性廃水中の汚濁性有機物
、硫化物を分解し、これら及び系内の水を電子供与体と
することによって、水素を生産するとともに、未消化物
及び/又は増殖菌体から有機物、特に飼料等を生産する
ことを可能とした新規の生物処理技術である。従来技術
では多量の汚泥が発生し、その処理は非常に厄介である
だけでなく、多額の建設費および経常費を必要としてい
る。
【0023】これに対して、本発明の処理技術では未消
化物及び余剰(増殖)菌体を再資源化して利用するため
に、所謂、従来の厄介な汚泥処理から解放されるだけで
なく、各種の目的に有効に利用された有価物(飼料、そ
の他)は、自然の生態系に調和して取り込まれ、自然界
の物質循環サイクルに抵抗なく受け入れられるものであ
る。また、この新規プロセスから発生するCO2 ガス
の量は極めて僅かであり、逆に地球温暖化の原因物質で
あるCO2 ガスを大量に固定して有価物に転換する。
光合成微生物による光反応によって生産される水素は極
めてクリーンなエネルギー物質であり、燃焼しても全く
無害なH2 Oとなる。従って、本発明はトータルプロ
セスとして、地球環境の改善に著しく寄与する画期的な
有機性廃水の処理方法である。
【0024】
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
実施例1
濃厚有機性汚水として成豚の豚舎汚水を選定した。この
成豚は配合飼料で飼育されており、廃水から固形物(主
として繊維分)を約60%除去した廃水の水質は表1(
A)のとおりである。またこの廃水を3日間滞留(廃水
量0.5リットル/日)の容積をもつ酸発酵槽で有機酸
発酵を行なった廃水の水質を表1(B)に示す。
【0025】
【表1】
【0026】光合成細菌培養槽5、らん藻培養槽13お
よび緑藻暗培養槽17として使用した光バイオリアクタ
ーおよび暗培養リアクターの容積は全て4リットルであ
るが、5と13の槽はそれぞれ2リットルの等容積に内
部を分割し、それぞれ交互に使用した。また廃水処理プ
ロセスの最終段階の生物酸化槽の容積は1リットルの角
型槽であり、充填材は通常の粒状活性炭を採用し、廃水
は下向流で通水し、空気は酸化槽の下部から供給した。
この条件での廃水は、各工程で浄化され、最終的な放流
水の水質は表2の通りであるが、これをみても判るとお
り極めて良好な処理水が得られた。
【0027】
【表2】
【0028】光合成細菌槽における廃水当りの滞留時間
は4日(2日+2日)、使用した菌株は本発明者らが自
然水系からスクリーニングしたロドバクタ菌(Rhod
obactersp. )、クロマチウム菌( Chr
omatium sp.)を用いた。またらん藻培養で
使用した菌株は、同様にオッシラトリア菌 (Osci
llatoriasp. )、緑藻はクラミドモナス菌
( Chlamydominas sp. )である。
光合成細菌培養槽、らん藻培養槽および緑藻暗培養槽で
の菌体分離には孔径5μのセラミックフィルターを用い
た。菌体濃度は、光合成細菌に関しては3,500〜4
,500mg/l、微細藻類は7,000〜8,000
mg/lの範囲となるように調整した。
【0029】光エネルギーの供給は、定量的データをと
るためにキセノンランプ(可視光のみ)によって行ない
、光エネルギーの供給速度は、槽容積に対して5kw/
m3 ・hr、光ファイバーの発光面積当りでは25w
/m2 ・hrに固定した。以上の条件において約5ケ
月間連続運転を行ない、全体の系が定常状態になったこ
とを確認してから、各槽からの水素生産量の測定を行な
った。表3に2ケ月間の水素発生についての平均データ
を示す。
【0030】
【表3】
【0031】本発明の生物学的水素生産プロセスにより
、表1(B)に記載した成豚飼育廃水の可溶化液を25
m3 /日(成豚約6,000頭当量)処理することを
想定し、連続実験から得られた水素生産量をベースにし
て、創出される熱エネルギーを計算すると約600〜6
50kw/hrとなり、この熱エネルギーを燃料電池で
電気エネルギーに変換するものとすれば概略300〜3
25kw/hrとなる(燃料電池の効率は50%と仮定
する)。
【0032】実施例2
繊維分除去装置から排出される固形物(A)および酸発
酵槽の未消化物(B)の排出比は概略10:1である。
3リットルの回分式小型曝気槽に(A),(B)を10
:1になるように調整した試料を2リットル注入し、こ
れに対してバチルス ズブチリス変種( Bacil
lus subtilis var.)を菌体重量とし
て0.5g、同様にトリコデルマ リーセイ変種(
Trichoderma reesei var.)1
gを加え、小型ブロワーで液の溶存酸素を1〜2mg/
lとなるように送気し、3日間培養した。その結果を表
4に示すが、これをみても判るように、液状製品は家畜
の飼料(添加物)として充分に価値があることが証明さ
れた。
【0033】
【表4】表 4
【0034】実施例3
光合成細菌培養槽、らん藻培養槽および緑藻暗培養槽か
らのそれぞれの余剰菌体を乾燥し、乾燥物を等重量混合
してから微粉砕してアミノ酸組成を測定したところ、必
須アミノ酸の含有量は全般的に高く、家畜及び/又は魚
類の飼料として利用価値の高いことが証明された。分析
結果を表5に示す。
【0035】
【表5】
【0036】
【発明の効果】本発明によると、次のような効果を奏す
ることができる。
(1)極めて省エネルギー、省資源的に濃厚有機性廃水
中の有機物、硫化物及び窒素、リンを効率的に除去する
ことができる。
(2)地球温暖化の主たる誘因物質であるCO2 を大
量に固定することができ、まさに地球環境と人に優しい
処理技術である。
(3)本発明は、大気中のCO2 固定と同様に有機物
、硫化物、水を水素供与体(電子供与体)として大量の
水素を生産することが可能であり、新しい技術思想に基
づく創エネルギー的な処理技術である。
【0037】(4)従来技術のように処理しにくい有機
性汚泥の発生がなく、増殖余剰菌体はそのままか、ある
いは加工することによって有価物への質的転換が可能で
ある。
(5)廃水中に含まれる繊維分からも、特定の微生物の
機能を利用することによって家畜、魚類の飼料を生産す
ることができる。
今後は、光合成細菌と微細藻類の機能を合理的に組み合
わせた本発明の思想に基づく生物処理プロセスが、次世
代の処理技術の主流になるであろうことは疑がう余地が
ない。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating organic wastewater using photosynthetic microorganisms, and in particular, it relates to a method for treating organic wastewater using photosynthetic microorganisms.
By configuring a biological treatment process that rationally combines the respective functions of mainly photosynthetic bacteria and microalgae, human waste, livestock sewage, and various organic wastewaters containing concentrated sulfide and/or nitrogen and phosphorus can be treated. , converts organic matter, sulfide and/or water contained in wastewater into hydrogen, which is clean energy, and at the same time removes nitrogen and phosphorus,
Furthermore, the present invention relates to a processing technology for producing and extracting valuable substances such as livestock feed from fiber components and proliferating bacterial cells as residues. In addition, in the present invention, photosynthetic microorganisms are mainly involved, and since these can fix large amounts of CO2 in the atmosphere, it is an excellent treatment technology that will naturally contribute significantly to eliminating global environmental pollution. . [0002] Conventionally, human waste, sewage sludge, and
Concentrated organic wastewater is usually treated with methane fermentation, which effectively utilizes the functions of anaerobic bacteria, or biologically oxidized, which utilizes the functions of aerobic bacteria, while remaining concentrated. It's here. In addition, when wastewater contains substances that cause eutrophication such as nitrogen and phosphorus, treatment techniques such as biological denitrification, biological dephosphorization, or biological denitrification and dephosphorization are applied. Ta. These treatment technologies inevitably involve the treatment of large amounts of organic sludge, and if it is necessary to add advanced treatment depending on the environment of the discharge destination, flocculated sludge, which is extremely difficult to treat, may be added to this. That will happen. [0003] The various processing techniques described above are, almost without exception, energy-intensive and resource-intensive processing techniques. In order to eliminate these deficiencies, various research organizations have been conducting research for a long time, but these technical problems remain largely unsolved at this time. Furthermore, over the past few years, the problem of global warming has become more apparent, and there is a strong demand for solutions and improvements from a global perspective. If we evaluate conventional biological treatment technologies from this perspective, we find that both anaerobic and aerobic treatments generate a large amount of CO2 gas, and that sludge drying and incineration processes, in particular, produce a large amount of CO2 gas. A large amount of concentrated CO2 gas is generated. For this reason, there is an urgent need to research and develop new organic wastewater treatment technologies that can contribute to improving the global environment in the water treatment field. [Problems to be Solved by the Invention] As detailed above,
Conventional wastewater treatment technologies and methods consume a lot of energy and resources, and also generate large amounts of carbon dioxide, which contributes to global warming. The present invention improves this fateful defect of the conventional technology, and aims to provide an innovative method for treating organic wastewater based on a completely new idea, and to provide a new multifunctional biological treatment process. shall be. [Means for Solving the Problems] In order to achieve the above object, the present invention rationally combines the respective functions of acid-fermenting bacteria and photosynthetic microorganisms, making the functions complex and multifunctional. This is an innovative method for treating organic wastewater based on a new idea. That is, the present invention provides a method for treating organic sewage by biological means, in which organic sewage is first treated with an acid fermentation step in which polymer compounds contained in the sewage are acid-fermented, and then red non-sulfur bacteria, By performing a photosynthetic bacteria culture process using a single system and/or a mixed system of purple sulfur bacteria, and then performing a cyanobacteria culture process in which cyanobacteria are cultivated, nitrogen and nitrogen in the sewage are produced within the bacterial cells while producing hydrogen. This is a method for treating organic wastewater characterized by assimilating phosphorus. [0006] The present invention also provides the above treatment method,
This is a method for treating organic wastewater in which hydrogen is produced by further performing a green algae cultivation step or a photosynthetic bacteria cultivation step after the treatment in the cyanobacterial cultivation step. The effluent after being treated in the green algae culturing process described above can be further treated in a biological oxidation process to decompose and remove remaining pollutant components. Moreover, the microorganisms cultured in each of the above-mentioned culture steps can be taken out of the system from each step, dehydrated and dried, and recovered as valuables such as feed for livestock. As described above, the present invention first converts organic wastewater containing polluting high-molecular organic substances, other organic substances, sulfides and/or nitrogen, phosphorus, etc. into lower carboxylic acids through the action of acid-fermenting bacteria. After reducing the molecular weight to a low molecular weight, biological treatment is applied to purple non-sulfur bacteria and/or purple sulfur bacteria that produce hydrogen using organic matter and sulfide as electron donors, and microalgae that can produce hydrogen using water as an electron donor. A novel organic wastewater treatment method that makes it possible to simultaneously process organic wastewater, produce hydrogen, which is clean energy, and produce valuable substances from proliferating bacterial cells by rationally combining them within the process. It is. Next, the present invention will be explained in detail using FIGS. 1 and 2. First, if necessary, concentrated organic wastewater 1 such as human waste, sewage sludge, and industrial wastewater is passed through a fiber removal device 2 to remove fibers (cellulose and hemicellulose).
After removing the acid, it is introduced into the acid fermentation tank 3, and the sugars and other high-molecular organic substances are reduced in molecular weight to lower carboxylic acids (acetic acid, butyric acid, propionic acid, etc.). This wastewater is then contaminated with purple non-sulfur bacteria such as Rhodobacter and/or Chromatium.
The photosynthetic bacteria are introduced into a photosynthetic bacteria culture tank 5 in which purple sulfur bacteria such as P. atium are cultured. In the photosynthetic bacteria culture tank 5, sunlight energy or artificial light energy collected by a mass-light concentrator is transmitted to the inside of the tank 5 using a so-called light transmission light emitting device such as an optical fiber, a flat or curved light emitter, or a gel light emitter. and is used as energy for the growth of photosynthetic bacteria. On the other hand, CO fixed by photosynthetic bacteria
2 7 is normally supplied to the tank 5 by introducing atmospheric air. This atmosphere is converted to O
By separating as much as possible or appropriately circulating the generated gas, a gaseous body with a low oxygen partial pressure is supplied for the growth of photosynthetic bacteria and hydrogen production. The inside of the photosynthetic bacteria culture tank 5 is basically divided into two equal volumes, and wastewater is introduced alternately into each part. Photosynthetic bacteria cultivated in one tank are supplied with wastewater (mainly lower carboxylic acids and sulfides), light energy 6 and CO2 7, and sufficiently accumulate poly-β-hydroxybutyric acid within their cells. It becomes a mature bacterial cell. When this state is reached,
Hydrogen is produced under the supply of light energy and under conditions of low nitrogen gas partial pressure. Further, the other tank is operated under the same operating conditions, and both of the photosynthetic bacteria culture tanks 5 are used alternately to continuously generate H2. [0010] Surplus bacteria grown in the photosynthetic bacteria culture tank 5 are taken out of the system through a growth bacteria extraction tube 20 and processed to extract valuables and/or feed. Since a large amount of poly-β-hydroxybutyric acid is normally accumulated in the proliferating cells, it is possible to produce biodegradable polymers or high value-added substances such as polyphosphoric acid. The biological reaction formula for organic matter production and hydrogen production through photosynthesis of purple non-sulfur bacteria and purple sulfur bacteria in the photosynthetic bacteria culture tank 5 is as follows. [0011] Purple non-sulfur bacteria (eg Rhodobacter
acter )) Electron donor → Mainly lower carboxylic acid ■
Photosynthesis 6CO2 +12H2 O → C6 H
12O6 +6O2 +6H2 O ■ Hydrogen production C6 H12O6 +6H2 O → 6
CO2 +12H2 +680kcal purple sulfur bacteria (
For example, Chromatium
Electron donor → sulfide ■ Photosynthesis 6CO2 +12H2 S → C6 H
12O6 +12S+6H2 O ■ Hydrogen production C6 H12O6 +6H2 O → 6
CO2 +12H2 +680kcal [0012] H2 generated from the photosynthetic bacteria culture tank 5 is transferred to the gas transport pipe 8.
The hydrogen storage alloy 9 separates it into pure H2 along the transport pipe 8, and after mixing it with air 10, it is transferred to an electrical energy conversion device 11 such as a fuel cell.
or converted into electrical energy by a gas turbine. It is also possible to directly use the gas as thermal energy via the gas transport pipe 8. Next, the outflow water from the photosynthetic bacteria culture tank 5 is introduced into the cyanobacteria culture tank 13 through the treated water transfer pipe. In this tank 13, cyanobacteria such as Oscillatoria and Anabaena are exposed to light energy 14 and CO2 supplied from the atmosphere.
15 and/or from the exhaust gas of the green algae dark culture tank 17, and nitrogen and phosphorus supplied from the water flowing into the tank 13, photosynthesis is carried out, and bacterial cells multiply and organic matter is produced. Similar to the photosynthetic bacteria culture tank 5, this tank 13 is divided into two parts, and under the same operating conditions as the tank 5, sufficient maturation of the bacterial cells and subsequent hydrogen production under nitrogen-deficient conditions are carried out. The two divided tanks 13 are used alternately for the same purpose and operation. Hydrogen production by cyanobacteria is carried out by water decomposition, and the biological reaction formula is as follows, and at the same time oxygen, which can be used for many purposes, is generated. 2H2 O → 2H2 +O2 After sufficient hydrogen has been generated, excess bacterial cells are discharged from the system through the bacterial cell extraction tube 20 and are used for the purpose of extraction and/or production of valuable substances. Hydrogen gas generated from the cyanobacterial culture tank 13 is transferred to the electrical energy conversion device 1 through the gas transport pipe 8.
1 and/or distribution pipes, the energy is effectively utilized as electrical energy and thermal energy 12, respectively. When a fuel cell is used as the electrical energy conversion device 11 , the generated hydrogen-containing gas is concentrated and separated by the hydrogen storage alloy during the process of being transferred through the gas transport pipe 8 , and is further transported to the combustion cell 11 along with air. Supplied. Next, the outflow water from the cyanobacteria culture tank 13 is introduced into the green algae dark culture tank 17, where Chlamydomonas (Chlamydomonas)
monas), Chlorella (Chlorella
) H2 is produced by the decomposition of organic matter by dark culturing of so-called green algae such as green algae. Depending on the type of cyanobacteria cultivated in the cyanobacteria culture tank 13 for the purpose of hydrogen production, a considerable amount of organic matter produced by photosynthesis may be eluted out of the cells. Usually, the above-mentioned Oscillato
ria), Anabaena converts about 30% of the fixed CO2 into bacterial cells as polysaccharides, lower carboxylic acids such as acetic acid (CH3 COOH), and glycolic acid [CH2 (OH) COOH] in the presence of light energy. release it outside. When the amount of treated water is relatively large, H2 is removed from water and organic matter by light and dark cultivation of green algae.
However, when the amount of water to be treated is small, it is more advantageous to extract hydrogen only from organic matter by dark culture because the growth rate of green algae is faster and it does not require the supply of light energy. [0016] In the green algae dark culture tank 17, Chlamydomonas (Chlamydomonas) and Chlorella (
Green algae such as Chlorella) produce acetic acid (C
H3 COOH), glycolic acid [CH2 (OH)C
Oxygen produced in the cyanobacterial culture tank 13 in the previous step using lower carboxylic acids such as OOH] and others as energy sources,
The organic matter is decomposed under aerobic conditions by the oxygen in the air supplied from the blower 19, and a large amount of hydrogen is produced by heterotrophic growth. The biological reaction formula is as follows. CH3 COOH+2H2 O → 2CO2 +
4H2 CH2 OHCOOH+H2 O → 2
CO2 +2H2 [0017] The hydrogen gas generated from the green algae dark culture tank 17 passes through the gas transport pipe 8 and is combined with the hydrogen generated from the previous process to generate electrical energy 1
1 or thermal energy 12. In addition, the proliferating bacterial cells from this tank 17 are taken out of the system through the bacterial cell extraction tube 20, combined with the proliferating bacterial cells from the previous step, and moderately concentrated in the concentrating tank 21.
It is processed as feed, soil conditioner, or used to extract value-added substances. Here, since the green algae heterotrophically cultured in the green algae dark culture tank lacks chlorophyll, the excess bacterial cells are transferred to the enrichment tank 21 in the process of being transferred to the aeration tank 31, which is an open system that can receive sunlight. It is aerated for about a day to form chlorophyll. As the final stage of water treatment, the outflow water from the green algae dark culture tank 17 is introduced into an unspecified biological oxidation tank 22, and the remaining organic matter is removed by oxygen supplied from the blower 23.
The treated water is decomposed by aerobic microorganisms in the presence of water, and is discharged to the outside through the treated water discharge pipe 24. FIG. 2 will now be explained with reference to FIG. 1 as a modification of the biological process described in detail. As described above, most of the organic substances contained in the outflow water from the cyanobacteria culture tank 13 are lower carboxylic acids represented by acetic acid (CH3 COOH) and glycolic acid [CH2 (OH) COOH]. Since photosynthetic bacteria naturally digest lower carboxylic acids extremely well as a source of nutrients and energy, a photosynthetic bacteria culture tank 30 is provided in place of the green algae dark culture tank as shown in Figure 2, and Rhodobacter (Rhodo)
H2 may be produced from organic matter using a lower carboxylic acid as an electron donor under the supply of light ephorgy25 and CO226 using purple non-sulfur bacteria such as Bacter. In this case, there is virtually no sulfide present in the influent water, so chromatium (Chro
It is not necessary to use purple sulfur bacteria such as M. matium), and cultivation is simple. In this modified process, almost no organic matter remains in the effluent water, so the biological oxidation tank 22 and air supply 23 shown in FIG. 2 can be omitted.
There is no doubt that the process is simplified and economical. Finally, the undigested material mainly composed of fiber discharged from the fiber removal device 2 and/or the acid fermentation tank 3 is sent to the feed manufacturing device 4. As mentioned above, most of the undigested material is fiber, but it is inevitable that various components of the human waste, livestock sewage, or organic wastewater to be treated will accompany the undigested material, and it usually has a bad odor. [0020] Therefore, the undigested material is sent as an aqueous solution to 4, where it is treated with Trichoderma reesei var., which is a fibrinolytic bacterium.
ar. ) and Bacillus subtilis var., which is Bacillus natto.
) were inoculated with two types of microorganisms under aerobic conditions, and were sufficiently nutritious with useful enzymes such as cellulases, hemicellulases, proteolytic enzymes, peptide-degrading enzymes, and odor-degrading enzymes (unidentified). It is also converted into a substance that can be used as an energy source. This fermentation product is dried and then provided as feed (additive). The light energy to be supplied to the photosynthetic bacteria culture tanks 5 and 30 and the cyanobacterial culture tank 13 is naturally determined by the bacterial cell concentration, but judging from the experimental results, it is approximately 8 to 1.
0kw/m3 ・hr range (from solar energy to 95
% or more) is no big deal. Further, in a region where the present invention is implemented in an area where solar energy is strong and sunlight hours are long, even if the present invention is 100% dependent on solar energy, there will not be much significant difference. Also, the supply rate of light energy to be transmitted to the surface of the light emitter is 25 to 45
W/m2・hr is also sufficient. In culturing photosynthetic bacteria and/or various microalgae, it is preferable to carry out intermittent light and dark culture as appropriate, but light culture or dark culture may also be used. [Operation] The treatment method of the present invention decomposes polluting organic matter and sulfide in organic wastewater in an energy-saving manner through the interaction and synergistic effect of the respective functions of acid-fermenting bacteria, photosynthetic bacteria, and microalgae. However, by using these and the water in the system as electron donors, it is a new biological treatment that makes it possible to produce hydrogen as well as organic matter, especially feed, etc. from undigested matter and/or proliferating bacterial cells. It's technology. The conventional technology generates a large amount of sludge, which is not only very troublesome to dispose of, but also requires a large amount of construction and current costs. On the other hand, the treatment technology of the present invention recycles and utilizes undigested matter and surplus (proliferated) bacterial cells, so it is not only free from the so-called troublesome conventional sludge treatment; Valuable materials (feed, etc.) that are effectively used for various purposes are harmoniously incorporated into the natural ecosystem and accepted without resistance into the material circulation cycle of the natural world. Furthermore, the amount of CO2 gas generated from this new process is extremely small; on the contrary, a large amount of CO2 gas, which is a cause of global warming, is fixed and converted into valuable materials. Hydrogen produced through photoreactions by photosynthetic microorganisms is an extremely clean energy substance, and even when burned, it becomes H2O, which is completely harmless. Therefore, the present invention is an innovative organic wastewater treatment method that significantly contributes to the improvement of the global environment as a total process. [Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. Example 1 Pig pen wastewater from adult pigs was selected as the concentrated organic wastewater. These adult pigs are fed a compound feed, and the water quality of the wastewater after removing approximately 60% of solids (mainly fiber) is shown in Table 1 (
A). Table 1 (B) shows the water quality of the wastewater obtained by carrying out organic acid fermentation in an acid fermenter having a capacity to retain this wastewater for 3 days (wastewater amount: 0.5 liters/day). [Table 1] [0026] The volumes of the photobioreactor and dark culture reactor used as the photosynthetic bacteria culture tank 5, cyanobacterial culture tank 13, and green algae dark culture tank 17 were all 4 liters, but 5 and 13 The interior of each tank was divided into equal volumes of 2 liters, and each was used alternately. In addition, the capacity of the biological oxidation tank at the final stage of the wastewater treatment process is a square tank with a capacity of 1 liter, and the filling material is ordinary granular activated carbon. Supplied from. The wastewater under these conditions was purified in each step, and the final water quality of the effluent is shown in Table 2. As can be seen from this table, extremely good treated water was obtained. [Table 2] [0028] The residence time per wastewater in the photosynthetic bacteria tank was 4 days (2 days + 2 days), and the bacterial strain used was Rhodobacterium (Rhodobacter), which the present inventors screened from natural water systems.
obactersp. ), Chromatium bacterium ( Chr
omatium sp. ) was used. In addition, the bacterial strain used in the cyanobacteria culture was also Oscillatoria (Oscilatria).
llatoriasp. ), the green alga is Chlamydomonas sp. Ceramic filters with a pore size of 5 μm were used for bacterial cell separation in the photosynthetic bacteria culture tank, cyanobacteria culture tank, and green alga dark culture tank. The bacterial cell concentration is 3,500 to 4 for photosynthetic bacteria.
, 500mg/l, microalgae 7,000-8,000
It was adjusted to be in the range of mg/l. Light energy was supplied by a xenon lamp (visible light only) in order to obtain quantitative data, and the light energy supply rate was 5 kW/100 kW per tank volume.
m3 ・hr, 25W per light emitting area of optical fiber
It was fixed at /m2/hr. After continuous operation for about 5 months under the above conditions and confirming that the entire system was in a steady state, the amount of hydrogen produced from each tank was measured. Table 3 shows the average data for hydrogen generation over two months. [Table 3] [0031] By the biological hydrogen production process of the present invention, the solubilized solution of the adult pig breeding wastewater listed in Table 1 (B) is
m3/day (equivalent to about 6,000 adult pigs), and based on the hydrogen production obtained from continuous experiments, calculate the generated thermal energy to be approximately 600 to 600 m3/day.
50kw/hr, and if this thermal energy is converted into electrical energy using a fuel cell, it will be approximately 300 to 300 kw/hr.
25kw/hr (assuming the efficiency of the fuel cell is 50%). Example 2 The discharge ratio of the solid matter (A) discharged from the fiber removal device and the undigested matter (B) from the acid fermenter was approximately 10:1. 10 pieces of (A) and (B) in a 3 liter batch type small aeration tank
2 liters of the sample adjusted to 1:1 was injected, and Bacillus subtilis var.
lus subtilis var. ) as a bacterial weight of 0.5 g, and similarly Trichoderma reesei variety (
Trichoderma reesei var. )1
Add 1-2mg/g of dissolved oxygen to the solution using a small blower.
The cells were cultured for 3 days by supplying air to the cells so that the volume of the cells was 1. The results are shown in Table 4, and as can be seen from the table, the liquid product was proven to have sufficient value as livestock feed (additive). [Table 4] Table 4 [0034] Example 3 Excess bacterial cells from the photosynthetic bacteria culture tank, cyanobacterial culture tank, and green algae dark culture tank were dried, and the dry matter was mixed in equal weight and then microorganized. When the amino acid composition was measured after crushing, it was found that the content of essential amino acids was generally high, and it was proved that it has high utility value as feed for livestock and/or fish. The analysis results are shown in Table 5. [Table 5] [Effects of the Invention] According to the present invention, the following effects can be achieved. (1) Organic matter, sulfide, nitrogen, and phosphorus in concentrated organic wastewater can be efficiently removed in an extremely energy-saving and resource-saving manner. (2) It is a treatment technology that is friendly to the global environment and people, as it can fix large amounts of CO2, which is the main cause of global warming. (3) The present invention is capable of producing a large amount of hydrogen by using organic matter, sulfide, and water as hydrogen donors (electron donors) in the same way as CO2 fixation in the atmosphere, and enables energy creation based on a new technical idea. This is a unique processing technology. (4) There is no generation of organic sludge that is difficult to treat as in the prior art, and the surplus bacterial cells can be qualitatively converted into valuable materials either as they are or by being processed. (5) Feed for livestock and fish can be produced from the fibers contained in wastewater by utilizing the functions of specific microorganisms. There is no doubt that the biological treatment process based on the idea of the present invention, which rationally combines the functions of photosynthetic bacteria and microalgae, will become the mainstream of next-generation treatment technology in the future.
【図1】本発明の処理方法の一例を示す工程図である。FIG. 1 is a process diagram showing an example of the treatment method of the present invention.
【図2】本発明の処理方法の他の例を示す部分工程図で
ある。FIG. 2 is a partial process diagram showing another example of the treatment method of the present invention.
1:濃厚汚水、2:繊維除去装置、3:酸発酵槽、4:
飼料製造装置、5:光合成細菌培養槽、6、14、25
:光エネルギー、7、15、18、26:CO2 供給
、8:水素ガス移送管、9:水素吸蔵合金、11:電気
エネルギー変換装置、12:熱エネルギー、13:らん
藻培養槽、17:緑藻暗培養槽、20:増殖菌体移送管
、21:濃縮槽、22:生物酸化槽、23:空気、24
:排出水、25:光合成細菌培養槽1: Concentrated sewage, 2: Fiber removal device, 3: Acid fermenter, 4:
Feed manufacturing equipment, 5: Photosynthetic bacteria culture tank, 6, 14, 25
: Light energy, 7, 15, 18, 26: CO2 supply, 8: Hydrogen gas transfer pipe, 9: Hydrogen storage alloy, 11: Electrical energy conversion device, 12: Thermal energy, 13: Cyanobacteria culture tank, 17: Green algae Dark culture tank, 20: Growth cell transfer tube, 21: Concentration tank, 22: Biological oxidation tank, 23: Air, 24
: Effluent water, 25: Photosynthetic bacteria culture tank
Claims (7)
理する方法において、有機性汚水を、まず該汚水中に含
まれる高分子化合物を酸発酵させる酸発酵工程で処理後
、紅色非硫黄細菌、紅色硫黄細菌の単一系及び/又は混
合系による光合成細菌培養工程で処理し、次いで、らん
藻類を培養するらん藻培養工程で処理することにより、
水素生産と同時に菌体内に汚水中の窒素・りんを同化せ
しめることを特徴とする有機性汚水の処理方法。1. A method for treating organic wastewater by biological means, in which the organic wastewater is first treated with an acid fermentation step in which polymer compounds contained in the wastewater are acid-fermented, and then purple non-sulfur bacteria, By treating with a photosynthetic bacteria cultivation step using a single system and/or a mixed system of purple sulfur bacteria, and then treating with a cyanobacteria cultivation step of culturing cyanobacteria,
A method for treating organic wastewater characterized by assimilating nitrogen and phosphorus in the wastewater into bacterial cells at the same time as producing hydrogen.
に緑藻培養工程で処理して水素を生産することを特徴と
する請求項1記載の有機性汚水の処理方法。2. The method for treating organic wastewater according to claim 1, wherein after the treatment in the cyanobacteria cultivation step, hydrogen is produced by further treatment in a green algae cultivation step.
に光合成細菌培養工程で処理して水素を生産することを
特徴とする請求項1記載の有機性汚水の処理方法。3. The method for treating organic wastewater according to claim 1, wherein after the treatment in the cyanobacterial cultivation step, the organic wastewater is further treated in a photosynthetic bacteria cultivation step to produce hydrogen.
物酸化工程で処理して、残留する汚濁成分を分解除去す
ることを特徴とする請求項2記載の有機性汚水の処理方
法。4. The method for treating organic wastewater according to claim 2, wherein the effluent after being treated in the green algae cultivation step is treated in a biological oxidation step to decompose and remove remaining pollutant components.
設けることを特徴とする請求項1〜4のいずれか1項記
載の有機性汚水の処理方法。5. The method for treating organic wastewater according to claim 1, wherein a fiber removal step is provided before the acid fermentation step.
から排出される未消化・未分解の繊維分に、繊維素分解
菌及び納豆菌を接種して好気的条件下に分解し、家畜の
飼料を生産することを特徴とする請求項5記載の有機性
汚水の処理方法。6. Undigested and undecomposed fiber discharged from the fiber removal step and/or acid fermentation step is inoculated with fibrinolytic bacteria and Bacillus natto and decomposed under aerobic conditions, and 6. The method for treating organic sewage according to claim 5, wherein feed is produced.
程から系外に取り出し、脱水乾燥して有価物として回収
することを特徴とする請求項1、2又は3記載の有機性
汚水の処理方法。7. The organic wastewater treatment according to claim 1, 2 or 3, wherein the microorganisms cultured in each culture step are taken out of the system from each step, dehydrated and dried, and recovered as valuable materials. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3063774A JP2511326B2 (en) | 1991-03-06 | 1991-03-06 | Method for treating organic wastewater with photosynthetic microorganisms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3063774A JP2511326B2 (en) | 1991-03-06 | 1991-03-06 | Method for treating organic wastewater with photosynthetic microorganisms |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04277096A true JPH04277096A (en) | 1992-10-02 |
JP2511326B2 JP2511326B2 (en) | 1996-06-26 |
Family
ID=13239056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3063774A Expired - Fee Related JP2511326B2 (en) | 1991-03-06 | 1991-03-06 | Method for treating organic wastewater with photosynthetic microorganisms |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2511326B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002272447A (en) * | 2001-03-15 | 2002-09-24 | Mitsui Eng & Shipbuild Co Ltd | Photobioreactor |
JP2008114130A (en) * | 2006-11-02 | 2008-05-22 | Masayoshi Kitamichi | Treatment method for high moisture content waste such as shochu lees and animal and plant broth, and its treatment apparatus |
JP2009536830A (en) * | 2006-05-12 | 2009-10-22 | アリゾナ ボード オブ リージェンツ, ア ボディー コーポレイト オブ ザ ステート オブ アリゾナ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステート ユニバーシティー | New Chlorella species and their use |
CN102583767A (en) * | 2011-01-14 | 2012-07-18 | 江南大学 | System for treating sewage and producing biological oil by using microalgae and method |
CN116161799A (en) * | 2022-01-07 | 2023-05-26 | 南通聚益成广生物科技有限公司 | Method for treating food waste water by utilizing photosynthetic bacteria |
-
1991
- 1991-03-06 JP JP3063774A patent/JP2511326B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002272447A (en) * | 2001-03-15 | 2002-09-24 | Mitsui Eng & Shipbuild Co Ltd | Photobioreactor |
JP4523187B2 (en) * | 2001-03-15 | 2010-08-11 | 三井造船株式会社 | Photobioreactor |
JP2009536830A (en) * | 2006-05-12 | 2009-10-22 | アリゾナ ボード オブ リージェンツ, ア ボディー コーポレイト オブ ザ ステート オブ アリゾナ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステート ユニバーシティー | New Chlorella species and their use |
JP2008114130A (en) * | 2006-11-02 | 2008-05-22 | Masayoshi Kitamichi | Treatment method for high moisture content waste such as shochu lees and animal and plant broth, and its treatment apparatus |
CN102583767A (en) * | 2011-01-14 | 2012-07-18 | 江南大学 | System for treating sewage and producing biological oil by using microalgae and method |
CN116161799A (en) * | 2022-01-07 | 2023-05-26 | 南通聚益成广生物科技有限公司 | Method for treating food waste water by utilizing photosynthetic bacteria |
CN116161799B (en) * | 2022-01-07 | 2024-04-26 | 南通聚益成广生物科技有限公司 | Method for treating food waste water by utilizing photosynthetic bacteria |
Also Published As
Publication number | Publication date |
---|---|
JP2511326B2 (en) | 1996-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5464539A (en) | Process for the production of hydrogen by microorganisms | |
Al-Mallahi et al. | Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: A review | |
CN105695310A (en) | Organic waste stepped-conversion and energy-generation system and method | |
CN101701197A (en) | Novel microorganism flora mixture and mixed nutrient medium thereof | |
US12060291B2 (en) | Method for treatment and resource utilization of acidic organic wastewater | |
JP2511336B2 (en) | Method and equipment for hydrogen production from organic wastewater and sludge | |
CN115259391B (en) | Multi-element fungus and algae composition for sewage treatment, complexing agent and application thereof | |
JPH04277096A (en) | Method for treating organic waste water by photosynthesized microorganism | |
CN114605030B (en) | Method for recycling carbon-sink oxygen-release type cultivation sewage | |
CN108410754B (en) | High-efficiency JM (JM) bacteria technology for treating high-salt heavy-metal degradation-resistant organic wastewater and resisting bacteria and deodorizing | |
CN113562928B (en) | Algae, microorganism and domestic sewage treatment system and process thereof | |
JP3184970B2 (en) | Anaerobic digestion method of organic wastewater and / or organic waste using light and method of producing photosynthetic bacteria | |
CN215756903U (en) | Algae, microorganism and domestic sewage treatment system | |
JP2003053309A (en) | Method of treating organic solid waste | |
CN115196838A (en) | Denitrification method of strongly-adaptive bacteria-algae immobilization system for rare earth wastewater | |
CN110963658B (en) | Method for recycling livestock and poultry waste | |
JP2511327B2 (en) | Organic wastewater treatment method | |
CN113045133A (en) | System and method for treating livestock and poultry breeding wastewater by anaerobic fermentation coupled with microalgae organisms | |
JPH08294396A (en) | Production of hydrogen gas | |
CN111979129A (en) | Method for converting methane into single-cell protein by using mixed microorganism system | |
JP2511325B2 (en) | Method for treating organic wastewater with photosynthetic microorganisms | |
JP3931221B2 (en) | Methods for treating hazardous chemical substances | |
CN201381258Y (en) | High-concentration organic wastewater treatment system | |
CN110921812A (en) | Photoelectrocatalysis coupling autotrophic denitrification microorganism nitrogen and phosphorus removal process method | |
CN111003881A (en) | Method for recycling food waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |