JP2511336B2 - Method and equipment for hydrogen production from organic wastewater and sludge - Google Patents

Method and equipment for hydrogen production from organic wastewater and sludge

Info

Publication number
JP2511336B2
JP2511336B2 JP3138566A JP13856691A JP2511336B2 JP 2511336 B2 JP2511336 B2 JP 2511336B2 JP 3138566 A JP3138566 A JP 3138566A JP 13856691 A JP13856691 A JP 13856691A JP 2511336 B2 JP2511336 B2 JP 2511336B2
Authority
JP
Japan
Prior art keywords
sludge
hydrogen
fermentation
reduced pressure
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3138566A
Other languages
Japanese (ja)
Other versions
JPH0596294A (en
Inventor
泰典 遠矢
光市 桐山
正人 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP3138566A priority Critical patent/JP2511336B2/en
Publication of JPH0596294A publication Critical patent/JPH0596294A/en
Application granted granted Critical
Publication of JP2511336B2 publication Critical patent/JP2511336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/04Bioreactors or fermenters combined with combustion devices or plants, e.g. for carbon dioxide removal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/06Photobioreactors combined with devices or plants for gas production different from a bioreactor of fermenter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機性汚水や汚泥から
の水素の生産方法に係り、特に水素発生細菌と光合成細
菌の共働作用による各種の汚濁性物質を含む有機性汚水
や汚泥からの水素生産方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen from organic sewage or sludge, and more particularly to the production of hydrogen from organic sewage or sludge containing various pollutants due to the synergistic action of hydrogen-producing bacteria and photosynthetic bacteria. Hydrogen production method and device.

【0002】[0002]

【従来の技術】従来、有機性汚水や汚泥は、通常高温メ
タン発酵法、中温メタン発酵法及び/又はUASB法
(上向流式スラッジブランケット型メタン発酵法)等の
嫌気性処理(嫌気性消化法)などによって汚濁性有機物
を、最終的にはエネルギー物質であるメタン(CH4
と炭酸ガスに変換し、メタン発酵消化液は通常嫌気性処
理によって残存する有機物を微生物学的に酸化安定化し
て放流する方法が適用されてきた。これらの処理技術
は、メタン発酵法に限定すれば省エネルギー的な処理技
術であると評価できるが、発生ガス中には、水素資化性
メタン細菌の基質である炭酸ガス(CO2 )に対して水
素の絶対量が不足するために、約40%のエネルギー源
として全く価値のない炭酸ガスが残存する。
2. Description of the Related Art Conventionally, organic sewage and sludge are usually subjected to anaerobic treatment (anaerobic digestion) such as high-temperature methane fermentation method, medium-temperature methane fermentation method and / or UASB method (upflow sludge blanket type methane fermentation method). Method, etc., to pollute polluted organic matter, and finally methane (CH 4 ) which is an energy substance.
A method has been applied in which methane-fermented digested liquid is converted to carbon dioxide and methane-fermented digested liquid is usually anaerobicly treated to oxidatively stabilize the remaining organic matter and released. These treatment technologies can be evaluated as energy-saving treatment technologies if limited to the methane fermentation method. However, in the generated gas, carbon dioxide (CO 2 ) which is a substrate of hydrogen-utilizing methane bacteria is included. Since the absolute amount of hydrogen is insufficient, about 40% of carbon dioxide, which has no value, remains as an energy source.

【0003】また、エネルギー物質としてのメタン(C
4 )も燃焼すると、次の式に示す通り炭酸ガス(CO
2 )を発生する。 CH4 +2O2 → CO2 +2H2 O 周知の通り、ここ数年来地球環境汚染が世界的な重大問
題として取り上げられ、地球的視野にたっての解決およ
び改善が強く要望されている。これらの中でも特に地球
の温暖化問題は極めて身近で、かつ深刻な問題である。
このような観点から、従来技術としてのメタン発酵法
は、温暖化に直接影響を与える炭酸ガスを集中的に多量
に発生する。そのために、地球環境改善に寄与できる新
しい有機性汚水や汚泥の処理技術の研究・開発が急務と
なっている。
In addition, methane (C
When H 4 ) also burns, carbon dioxide (CO
2 ) occurs. CH 4 + 2O 2 → CO 2 + 2H 2 O As is well known, global environmental pollution has been taken up as a serious global problem for several years, and there is a strong demand for a solution and improvement from a global perspective. Among these, the global warming problem is a particularly familiar and serious problem.
From such a viewpoint, the methane fermentation method as a conventional technique intensively generates a large amount of carbon dioxide gas which directly affects global warming. Therefore, there is an urgent need to research and develop new organic sewage and sludge treatment technologies that can contribute to the improvement of the global environment.

【0004】[0004]

【発明が解決しようとする課題】以上詳述したように、
従来技術としてのメタン発酵法は、省エネルギー型であ
ると同時にエネルギー物質であるメタン(CH4 )を発
生するが、これを燃焼することにより地球の温暖化を助
長するCO2 を発生し、またメタン発酵ガス中にも約4
0%のCO2 が常に存在する。本発明者らは、この従来
技術の宿命的な欠陥を改善すべく、鋭意研究を続け、全
く新規な発現による革新的な有機性汚水や汚泥の処理方
法を提供し、多機能な新しい生物処理プロセスを提供す
ることを目的とする。
As described in detail above,
The methane fermentation method as a conventional technique is an energy-saving type and at the same time generates methane (CH 4 ) which is an energy substance, but by burning this, CO 2 which promotes global warming is generated, and methane is also generated. About 4 in fermentation gas
0% CO 2 is always present. The inventors of the present invention have conducted extensive studies to improve this fatal defect of the conventional technique, provide an innovative method for treating organic sewage and sludge by a completely new expression, and provide a new multifunctional biological treatment. The purpose is to provide a process.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、有機性汚水や汚泥をメタン発酵槽で処
理するに当り、予め特定のメタン発酵ブロッキング剤を
加え、減圧発酵処理することにより水素を生産すること
を特徴とする有機性汚水や汚泥からの水素生産法とした
ものであり、また、本発明は、前記減圧発酵処理の後
に、CO2 の供給条件下で紅色細菌類による明・嫌気条
件の光合成細菌培養処理することを特徴とする有機性汚
水や汚泥からの水素生産法としたものである。
In order to achieve the above object, in the present invention, when treating organic sewage or sludge in a methane fermentation tank, a specific methane fermentation blocking agent is added in advance and the fermentation treatment is carried out under reduced pressure. The present invention provides a method for producing hydrogen from organic wastewater or sludge, which is characterized in that hydrogen is produced by the method. Further, the present invention provides the red-colored bacteria under the condition of supplying CO 2 after the reduced pressure fermentation treatment. The method for producing hydrogen from organic sewage and sludge is characterized by culturing photosynthetic bacteria under light and anaerobic conditions.

【0006】また、上記他の目的を達成するために、本
発明では、減圧発酵槽と、該発酵槽内液に連通する減圧
放散塔とを有し、前記減圧発酵槽には、汚水や汚泥導入
管と排水管を有し、該汚水や汚泥導入管にはメタン発酵
ブロッキング剤の導入口を接続すると共に、該発酵槽内
容液を減圧放散塔の塔頂に循環する循環路を設け、ま
た、前記減圧放散塔には、真空ポンプを介したガス移送
管を設けたことを特徴とする有機性汚水や汚泥からの水
素生産装置としたものであり、また、本発明の水素生産
装置には、さらに明・嫌気光合成細菌培養槽を有し、前
記減圧発酵槽の排水管を該光合成細菌培養槽に接続し、
また、前記減圧放散塔からのガス移送管を該培養槽底部
に接続すると共に、該ガス移送管に培養槽の排出ガス管
を接続したことを特徴とする有機性汚水や汚泥からの水
素生産装置としたものである。
In order to achieve the above-mentioned other objects, the present invention has a reduced pressure fermenter and a reduced pressure diffusion column communicating with the liquid in the fermenter, and the reduced pressure fermenter contains waste water and sludge. It has an introduction pipe and a drain pipe, the sewage and sludge introduction pipe is connected to an inlet for a methane fermentation blocking agent, and a circulation path for circulating the fermentation tank content liquid is provided at the top of the reduced pressure diffusion tower, and The reduced-pressure stripping tower is a hydrogen production device from organic wastewater or sludge, characterized in that a gas transfer pipe through a vacuum pump is provided, and the hydrogen production device of the present invention is , Further has a light and anaerobic photosynthetic bacterial culture tank, the drainage pipe of the reduced pressure fermentation tank is connected to the photosynthetic bacterial culture tank,
Further, a hydrogen production apparatus from organic wastewater or sludge characterized in that a gas transfer pipe from the reduced pressure diffusion tower is connected to the bottom of the culture tank, and an exhaust gas pipe of the culture tank is connected to the gas transfer pipe. It is what

【0007】すなわち、本発明では、メタン発酵槽内容
液中に野性的に棲息している酢酸資化性メタン菌、水素
資化性メタン菌及び/又はホモ酢酸メタン菌が、それぞ
れの基質からメタンを生成するに必要な補酵素コ・エン
ザイムM(CO−enzyme−M)を生成しているが、この生
成を阻害するメタン発酵ブロッキング剤及び/又はメタ
ン菌に直接作用する抗生物質を、処理対象とする有機性
汚水や汚泥に添加し、これを減圧放散塔を設けた発酵槽
で減圧発酵し、液中に溶存する水素および反応後のメタ
ン発酵ブロッキング剤を気相中に放散せしめて、高速、
高効率な水素発酵を行なわしめる有機性汚水や汚泥の処
理方法である。
That is, according to the present invention, acetic acid-assimilating methane bacteria, hydrogen-assimilating methane bacteria and / or homoacetic acid methane bacteria which are wildly inhabiting in the methane fermentation tank contents liquid are converted from their respective substrates with methane. A co-enzyme M (CO-enzyme-M), which is necessary for the production of methane, is produced, and a methane fermentation blocking agent that inhibits this production and / or an antibiotic that directly acts on methane bacteria are treated. Add to organic sewage or sludge to be, fermented under reduced pressure in a fermenter equipped with a decompression diffusion tower, to disperse hydrogen dissolved in the liquid and methane fermentation blocking agent after the reaction into the gas phase, high speed ,
It is a method of treating organic wastewater and sludge that enables highly efficient hydrogen fermentation.

【0008】さらに本発明は、減圧発酵液中に含まれる
低級脂肪酸を光合成細菌、すなわち紅色細菌であるロド
シュウドモナス( Rhodopseudomonas ) 、ロドスピリル
ム(Rhodospirillum )及び/又はクロマチウム( Chrom
atium )などの混合体によって明・嫌気条件下で水素に
変転する工程を含む処理方法でもある。本発明は、また
光合成細菌培養槽で増殖した菌体を飼料及び/又は有価
物に再資源化することをも企画した処理方法でもある。
Further, the present invention uses lower fatty acids contained in the reduced pressure fermentation broth as photosynthetic bacteria, that is, the red-colored bacteria Rhodopseudomonas, Rhodospirillum and / or Chromium.
It is also a treatment method that includes a step of converting to hydrogen under a light / anaerobic condition by a mixture such as atium). The present invention is also a treatment method designed to recycle the bacterial cells grown in the photosynthetic bacterial culture tank into feed and / or valuable materials.

【0009】次に本発明を詳細に説明する。本発明は、
各種の有機性汚濁物質を含む有機性汚水や汚泥に、特定
のメタン発酵ブロッキング剤を添加して、減圧発酵条件
下で水素生産を行ない、さらに次の光合成細菌(紅色細
菌)培養槽において、紅色細菌の機能により、低級脂肪
酸(主として酢酸)を水素に変換せしめるものである。
このように、各種の水素細菌と光合成細菌(紅色細菌)
の機能を合理的に組み合わせることにより、有機性汚水
や汚泥を処理すると同時に、クリーンエネルギーである
水素を生産し、かつ増殖菌体を有効に利用することによ
って物質生産をも可能にした斬新な有機性汚水や汚泥か
らの水素生産(発酵)法に関するものである。
Next, the present invention will be described in detail. The present invention
A specific methane fermentation blocking agent is added to organic sewage or sludge containing various organic pollutants to produce hydrogen under reduced pressure fermentation conditions, and in the next photosynthetic bacteria (red bacterium) culture tank, a red color is produced. It transforms lower fatty acids (mainly acetic acid) into hydrogen by the function of bacteria.
Thus, various hydrogen bacteria and photosynthetic bacteria (purple bacteria)
By combining the functions of the above, it is possible to treat organic sewage and sludge, and at the same time produce hydrogen, which is a clean energy, as well as a novel organic material that enables the production of substances by effectively utilizing the growing cells. The present invention relates to a method for producing hydrogen (fermentation) from sewage and sludge.

【0010】次に、本願発明の優れた機能および作用効
果を図1によって説明する。先づ、図1において、例え
ば、有機性汚水は、予めメタン発酵ブロッキング剤、例
えば四塩化炭素(CCl4 )、クロロフォルム(CHC
3 )、メチレンクロライド(例えばCH2 Cl2 )、
2−ブロモエタンスルフォン酸(BrCH2 ・CH2
3 H)などを、1μmol /l〜500μmol /l及び
/又はメチルビオロゲン( Methylviologen )、ベンジ
ルビオロゲン( Benzylviologen )などの抗生物質を1
μmol /l〜50μmol /lの濃度範囲で添加してから
汚水や汚泥導入管1によって減圧発酵槽2に導入され
る。減圧発酵槽2には、塔状の減圧放散塔4を設け、同
放散塔の下部末端は、減圧発酵槽内容液の液面下にまで
連通している。さらに同放散塔内は真空ポンプ5によっ
て−400〜5,000mmAqの減圧状態に維持される。
Next, the excellent function and effect of the present invention will be described with reference to FIG. First, referring to FIG. 1, for example, the organic wastewater is previously treated with a methane fermentation blocking agent such as carbon tetrachloride (CCl 4 ), chloroform (CHC).
l 3 ), methylene chloride (eg CH 2 Cl 2 ),
2-Bromoethanesulfonic acid (BrCH 2 · CH 2 S
O 3 H) or the like in an amount of 1 μmol / l to 500 μmol / l and / or an antibiotic such as methyl viologen (Methylviologen) or benzyl viologen (Benzylviologen).
After being added in a concentration range of μmol / l to 50 μmol / l, it is introduced into the reduced pressure fermentation tank 2 through the sewage or sludge introduction pipe 1. The vacuum fermentation tank 2 is provided with a tower-shaped vacuum diffusion tower 4, and the lower end of the diffusion tower communicates with the liquid below the liquid content of the vacuum fermentation tank. Further, the inside of the diffusion tower is maintained at a reduced pressure of -400 to 5,000 mmAq by the vacuum pump 5.

【0011】この減圧条件下の放散塔に対して、減圧発
酵槽2の内容液が循環ポンプ3によって複数回循環し、
槽内容液の適度の攪拌と同時に内容液に溶存している水
素及び/又は揮発性のメタン発酵ブロッキング剤を放散
させる。この減圧放散の操作を加えることによって減圧
発酵槽内での水素発酵は高速、高効率に遅退なく行なわ
れるとともに、メタン発酵ブロッキング剤も回収され、
回収された同剤はガス移送管7によって、処理対象汚水
に吸込まれる。(放散ガスには酸素は含まれていないの
で、嫌気性発酵は全く阻害されない) また、減圧発酵槽内容液に溶存する水素を極小値とする
ために、槽内出し入れ自由の可動式バスケットにブラケ
ット状の水素吸蔵合金19を充填し、賦活再利用する方
法も採用できる。
With respect to the stripping tower under the reduced pressure condition, the content liquid of the reduced pressure fermentation tank 2 is circulated a plurality of times by the circulation pump 3,
Hydrogen and / or volatile methane fermentation blocking agent dissolved in the content liquid is diffused at the same time as the content liquid in the tank is appropriately stirred. By adding the operation of this reduced pressure diffusion, hydrogen fermentation in the reduced pressure fermenter is performed at high speed, with high efficiency without delay, and the methane fermentation blocking agent is also recovered.
The recovered same agent is sucked into the wastewater to be treated by the gas transfer pipe 7. (Since the released gas does not contain oxygen, anaerobic fermentation is not impeded at all.) In addition, in order to minimize the amount of hydrogen dissolved in the liquid contained in the vacuum fermentation tank, a bracket is attached to a movable basket that can be freely taken in and out of the tank. It is also possible to adopt a method in which the hydrogen storage alloy 19 in the form of a ring is filled and activated for reuse.

【0012】減圧発酵槽2で可溶化された有機物をヘキ
ソーズ(ブドウ糖)で代表させ、同槽内での水素発酵の
生物反応式を示すと次の通りになる。 有機物(ヘキソーズ)からの水素生産 C6 126 +2H2 O → 2CH3 COOH+2CO2 +4H2 (1) 次に、減圧発酵槽2で水素発酵を終えた所謂発酵消化液
は、式(1)で示されるように酢酸を含んでいるだけで
なく、減圧発酵で液化できない難分解性のSS分を可成
り多量に含んでいる。従って、減圧発酵槽から消化液を
光合成細菌培養槽10に移送する流出管8の中間に、通
常の重力式沈殿池あるいは遠心分離機などの固液分離装
置を設け、可及的にSS分を除去してから消化液を光合
成細菌培養槽10に導入する。光合成細菌培養槽10は
嫌気的条件に維持されており、同槽10には、太陽光集
光装置11によって集光された太陽光エネルギーが、槽
内10にセットされた光ファイバー12に伝送され、同
槽は明・嫌気の培養条件に保持される。
The organic reaction material solubilized in the reduced pressure fermentation tank 2 is represented by hexose (glucose), and the biological reaction formula of hydrogen fermentation in the same tank is shown below. Hydrogen production from organic matter (hexose) C 6 H 12 O 6 + 2H 2 O → 2CH 3 COOH + 2CO 2 + 4H 2 (1) Next, the so-called fermentation digestion liquid after hydrogen fermentation in the reduced pressure fermentation tank 2 is represented by the formula (1) Not only does it contain acetic acid as shown in, but it also contains a considerable amount of persistent SS components that cannot be liquefied by vacuum fermentation. Therefore, a solid-liquid separation device such as an ordinary gravity type sedimentation tank or a centrifuge is provided in the middle of the outflow pipe 8 for transferring the digested liquid from the reduced pressure fermentation tank to the photosynthetic bacterial culture tank 10, and the SS content is reduced as much as possible. After the removal, the digestive juice is introduced into the photosynthetic bacterium culture tank 10. The photosynthetic bacterium culture tank 10 is maintained in an anaerobic condition, and the solar energy collected by the solar light collector 11 is transmitted to the optical fiber 12 set in the tank 10 in the tank 10. The same tank is maintained under light and anaerobic culture conditions.

【0013】また、光合成細菌が必要とするCO2 は、
減圧発酵槽2の減圧放散塔4から放散(引抜かれる)さ
れる発生ガスがガス移送管6によって光合成細菌培養槽
10の底部から供給され、前記の条件のもとで生物学的
に固定されるが、供給されるCO2 はガス循環管9−6
を経由して循環され、紅色細菌によって有効に利用され
る。光合成細菌培養槽10には所謂紅色細菌が流入して
くる酢酸量に対応して濃厚に培養されており、これらは
通常、ロドシュウドモナス( Rhodopseudomonas )、ロ
ドスピリルム( Rhodospirillum ) 及び/又はクロマチ
ウム( Chromatium)の混合培養体であり、これらの紅
色細菌によって、消化液中の酢酸は、次に示す生物反応
式によって水素に転換される。 CH3 COOH+2H2 O → 2CO2 +4H2 (2) この槽10からの発生ガスはガス引抜管13によって槽
外10に取りだされ、クリーンエネルギーとして多目的
に利用される。
CO 2 required by photosynthetic bacteria is
The evolved gas diffused (withdrawn) from the reduced pressure diffusion tower 4 of the reduced pressure fermentation tank 2 is supplied from the bottom of the photosynthetic bacterium culture tank 10 by the gas transfer pipe 6 and biologically fixed under the above conditions. However, the supplied CO 2 is the gas circulation pipe 9-6.
It is circulated through and is effectively used by purple bacteria. In the photosynthetic bacterium culture tank 10, so-called red-colored bacteria are cultivated in a concentrated manner corresponding to the amount of acetic acid, and these are usually Rhodopseudomonas, Rhodospirillum and / or Chromatium. ), The acetic acid in the digestive juice is converted to hydrogen by these red bacteria according to the following biological reaction formula. CH 3 COOH + 2H 2 O → 2CO 2 + 4H 2 (2) The gas generated from the tank 10 is taken out of the tank 10 by the gas drawing pipe 13 and is used as a clean energy for various purposes.

【0014】光合成細菌培養槽10からの流出水には若
干未消化の酢酸が含まれ、そのまま外部に放流するには
問題を起こす可能性もあるので、流出管14を経由し
て、特に限定しない通常の生物酸化装置15に導入し、
ブロワー16によって空気(酸素)を供給しつつ残留有
機物、すなわち微量の酢酸を生物学的に酸化分解し、全
く無害な処理水として外部の河川、湖沼あるいは海洋に
放流管18を経由して放流される。また、前記したよう
に、光合成培養槽10によって増殖した紅色細菌の余剰
菌体には飼料物質として有効な各種の微量成分、生理活
性物質が含まれるので、余剰菌体排出管20によって槽
外に取りだし、飼料として、及び/又は有価物として再
資源化される。
The water flowing out from the photosynthetic bacterium culture tank 10 contains a little undigested acetic acid and may cause a problem in discharging it to the outside as it is. Therefore, there is no particular limitation via the outflow pipe 14. Introduced into a normal bio-oxidizer 15,
While supplying air (oxygen) by the blower 16, residual organic matter, that is, a trace amount of acetic acid is biologically oxidatively decomposed and is discharged as totally harmless treated water to an external river, lake or ocean through a discharge pipe 18. It Further, as described above, since the surplus bacterial cells of the red bacterium grown in the photosynthetic culture tank 10 include various trace components and physiologically active substances effective as a feed substance, the surplus bacterial cell discharge pipe 20 is used to remove them from the tank. It is taken out, used as feed and / or recycled as valuable resources.

【0015】[0015]

【作用】本発明の処理方法は、従来のメタン発酵法に若
干の技術的改善を加えることによって、水素生産性の嫌
気性細菌を優占種として増殖せしめ、これによってメタ
ンに代わるクリーンエネルギーである水素を大量に発生
させることを第1の特徴とし、さらに減圧発酵槽での処
理水に溶存している酢酸をも水素に変換することを第2
の特徴としており、前記の個々の処理工程はそれぞれ単
独でも水素生産の機能および目的を達成することができ
る。この新規プロセスから発生する総水素量は大量であ
り、かつ地球の温暖化の原因物質であるCO2 を資源化
できるだけでなく、発生CO2 の絶対量も少ない。
The treatment method of the present invention is a clean energy that replaces methane by allowing the hydrogen-producing anaerobic bacteria to grow as the dominant species by adding some technical improvements to the conventional methane fermentation method. The first feature is to generate a large amount of hydrogen, and the second is to convert acetic acid dissolved in the treated water in the reduced pressure fermenter into hydrogen.
The above-mentioned individual processing steps can achieve the function and purpose of hydrogen production independently. The total amount of hydrogen generated from this new process is large, and not only can CO 2 which is a causative agent of global warming be recycled, but also the absolute amount of generated CO 2 is small.

【0016】従って、本発明は、トータルプロセスとし
て、地球環境保全および改善に著しく寄与する画期的な
有機性汚水や汚泥からの水素生産法である。さらに本発
明の処理技術では紅色細菌の余剰菌体を資源化して利用
するために、所謂、従来の処理技術の厄介な汚泥処理が
軽減されるだけでなく、各種の目的に有効に利用された
有用物質は自然の生態系に調和して取り込まれ、自然界
での物質循環サイクルに抵抗なく受け入れられる。ま
た、減圧発酵槽で生産される酢酸はこれをあえて紅色細
菌によって水素に変換する必要はなく、酢酸として分離
精製し、有機合成の素材として利用することもできる。
Therefore, the present invention is an epoch-making method for producing hydrogen from organic sewage and sludge, which contributes significantly to global environmental protection and improvement as a total process. Further, in the treatment technology of the present invention, since the surplus bacterial cells of purple bacteria are utilized as resources, so-called not only the troublesome sludge treatment of the conventional treatment technology is alleviated, but it was effectively used for various purposes. Useful substances are incorporated in harmony with the natural ecosystem, and are accepted without difficulty in the material cycle cycle in nature. Further, the acetic acid produced in the reduced pressure fermenter does not need to be converted into hydrogen by the red bacterium, and it can be separated and purified as acetic acid and used as a raw material for organic synthesis.

【0017】[0017]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 水素発酵の処理対称として、都市下水処理場から発生す
る下水汚泥を選択した。実験に使用した投入汚泥は、某
下水処理場の重力沈降濃縮した最初沈殿池汚泥と、機械
濃縮した余剰活性汚泥とを固形物重量比で2:1に混合
し、混合液の全固形物濃度がほぼ30g/lとなるよう
に水道水を加えて調整し、実験期間化に変質しないよう
に3〜5℃に冷蔵した。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 Sewage sludge generated from an urban sewage treatment plant was selected as the treatment symmetry for hydrogen fermentation. The input sludge used in the experiment was a mixture of the first settling tank sludge, which was gravity settled and concentrated at a certain sewage treatment plant, and the mechanically concentrated excess activated sludge, at a solids weight ratio of 2: 1, and the total solids concentration of the mixed liquid. Was adjusted to about 30 g / l by adding tap water and refrigerated at 3 to 5 ° C so as not to deteriorate during the experimental period.

【0018】表1に投入汚泥の組成を示す。Table 1 shows the composition of the input sludge.

【表1】 [Table 1]

【0019】水素発酵槽の容積は実際の水張り容積(有
効容積)が5リットルの円筒型発酵槽を2基製作し、こ
れを35℃の恒温水槽にセットして中温発酵を行なっ
た。2基の発酵槽のうち、1基は対照としてメタン発酵
ブロッキング剤は添加せず、他の1基にはメタン発酵ブ
ロッキング剤として2塩化メタン(CH2 Cl2 )を選
定し、投入汚泥に対して10μmol /lを添加した。ま
た、2基の水素発酵槽は、真空ポンプによって全槽を−
4,000mmAqに減圧し、減圧発酵を行った。減圧発酵
槽に対する汚泥の投入量は0.35リットル/日、従っ
て、発酵日数は両発酵槽とも概略15日である。
Regarding the volume of the hydrogen fermenter, two cylindrical fermenters having an actual water-filled volume (effective volume) of 5 liters were manufactured, and these were set in a constant temperature water bath of 35 ° C. for medium temperature fermentation. Of the two fermenters, one did not add a methane fermentation blocking agent as a control, and the other one selected methane dichloride (CH 2 Cl 2 ) as a methane fermentation blocking agent, and 10 μmol / l was added. In addition, the two hydrogen fermentation tanks are all
The pressure was reduced to 4,000 mmAq, and vacuum fermentation was performed. The amount of sludge input to the reduced pressure fermenter was 0.35 liters / day, and therefore the number of fermentation days in both fermenters was approximately 15 days.

【0020】次に、メタン発酵ブロッキング剤を添加し
た系列においては、発酵消化液を遠心分離機を用いて
3,000Gの遠心力でSS分を除去し、この液を2.
5リットルの光合成細菌培養槽に導入し、ロドシュウド
モナス( Rhodopseudomonas )、ロドスピリルム( Rhod
ospirillum ) 及び/又はクロマチウム( Chromatium)
が混在する培養体に連続系としてほぼ7日間の滞留時間
を与えて水素生産を行なった。処理水温35℃、菌体濃
度は5,000〜6,000mg/l、の範囲で変動し
た。光合成細菌に供給するCO2 は減圧発酵槽からの発
生ガス、即ちH2 +CO2 ガスを使用し、炭酸ガスの利
用効率を高めるためにその一部を循環した。光合成細菌
培養槽に供給されるべき光エネルギーは、菌体濃度、菌
体量によって決定されるが、実験結果から判断して、概
略8〜10kW/m3 ・hrの範囲で設定すればよい。
Next, in the series to which the methane fermentation blocking agent was added, the fermented digested liquid was subjected to centrifugal force of 3,000 G to remove the SS content from the fermented digested liquid.
Introduced into a 5-liter photosynthetic bacterial culture tank, Rhodopseudomonas, Rhodospirillum (Rhod
ospirillum) and / or Chromatium
Hydrogen was produced by giving a residence time of about 7 days as a continuous system to the culture medium in which hydrogen was mixed. The treated water temperature was 35 ° C., and the bacterial cell concentration varied within the range of 5,000 to 6,000 mg / l. As the CO 2 supplied to the photosynthetic bacteria, the gas generated from the reduced pressure fermenter, that is, H 2 + CO 2 gas was used, and a part of it was circulated in order to enhance the utilization efficiency of carbon dioxide gas. The light energy to be supplied to the photosynthetic bacterial culture tank is determined by the bacterial cell concentration and the bacterial cell amount, but it may be set in the range of approximately 8 to 10 kW / m 3 · hr, judging from the experimental results.

【0021】また光エネルギーの表面に伝送されるべき
光エネルギーの供給速度は25〜40W/m2 ・hrもあ
れば充分である。従って本実験でも、この範囲となるよ
うに設定した。以上の実験装置による検証実験は、運転
が定常状態になってから3ケ月間継続し、その中間過程
での1ケ月間の処理成績(平均値)を表2に示した。
The supply rate of the light energy to be transmitted to the surface of the light energy is 25 to 40 W / m 2 · hr, which is sufficient. Therefore, in this experiment also, it was set to fall within this range. The verification experiment by the above experimental apparatus continued for 3 months after the operation was in a steady state, and Table 2 shows the treatment results (average value) for 1 month in the intermediate process.

【表2】 [Table 2]

【0022】表2の実験結果からも明確に判るとおり、
減圧発酵を行なっても、メタン発酵ブロッキング剤を添
加しないかぎり、従来通りメタン発酵が進行し、また減
圧発酵消化液に残留する酢酸濃度(揮発性脂肪酸濃度)
は極めて低濃度であり、従って光合成細菌による水素生
産を行なわせても、その発生量は実質的に皆無に等し
い。これに対してメタン発酵ブロッキング剤を添加して
の減圧発酵では明らかに水素発酵が行なわれ、さらに減
圧発酵消化液中に多量に溶存する酢酸を光合成細菌によ
ってクリーンエネルギーとしての水素に転換することが
できる。
As is clear from the experimental results shown in Table 2,
Even if the fermentation under reduced pressure is performed, unless the methane fermentation blocking agent is added, the methane fermentation proceeds as usual, and the concentration of acetic acid remaining in the digestion liquid under reduced pressure (volatile fatty acid concentration)
Is an extremely low concentration, and therefore, even if hydrogen is produced by photosynthetic bacteria, the amount of hydrogen produced is substantially zero. On the other hand, in the vacuum fermentation with the addition of a methane fermentation blocking agent, obviously hydrogen fermentation is carried out, and further, a large amount of acetic acid dissolved in the vacuum digestion liquid can be converted into hydrogen as clean energy by photosynthetic bacteria. it can.

【0023】[0023]

【発明の効果】本発明によれば、詳述したように、従来
技術とは全く別の観点からの発想による発明であり、次
のような作用効果を奏する。 (1)有機性汚水や汚泥にメタン発酵ブロッキング剤を
極めて微量添加し、減圧発酵することによって、汚濁物
質をクリーンエネルギーである水素に転換することが可
能であり、地球温暖化防止に著しく貢献することができ
る。 (2)水素資化性メタン菌、酢酸資化性メタン菌、およ
びホモ酢酸メタン菌による水素〔H2 〕および酢酸〔C
3 COOH〕からのメタン生成反応はエネルギー消費
反応であり、これを人為的に水素発酵の段階で制御する
ことは、当然ながら省エネルギー的な環境保全技術であ
ると評価できる。
According to the present invention, as described in detail, the present invention is based on an idea from a completely different viewpoint from the prior art, and has the following operational effects. (1) By adding a very small amount of a methane fermentation blocking agent to organic sewage or sludge, and performing vacuum fermentation, it is possible to convert pollutants into hydrogen, which is clean energy, and it significantly contributes to the prevention of global warming. be able to. (2) Hydrogen [H 2 ] and acetic acid [C] produced by hydrogen-utilizing methane bacteria, acetic acid-utilizing methane bacteria, and homoacetic acid methane bacteria
The methane production reaction from [H 3 COOH] is an energy consumption reaction, and it can be evaluated that artificially controlling it in the hydrogen fermentation stage is an energy-saving environmental conservation technology.

【0024】(3)さらに、減圧発酵消化液中に含まれ
ている低級カルボン酸、主として酢酸を明・嫌気条件下
で紅色細菌により水素に転換できるだけでなく、減圧発
酵槽からの発生ガス中に含まれているCO2 を紅色細菌
培養槽に送気することにより、地球温暖化の原因物質を
有価物として固定化することも可能であり、従って、本
発明は創エネルギー的な処理技術であると同時に物質生
産可能な処理技術である。 (4)光合成微生物培養槽で増殖した所謂余剰菌体は家
畜、家きん等の飼料として、及び/又は有価物に変換す
ることができ、地域における物質循環システムを構成す
ることができる。今後は、嫌気性水素生産菌と光合成細
菌の機能を複合化した生物処理プロセスが、次世代の処
理技術の主流になるであろうことは論を俟たない。
(3) Furthermore, not only can lower carboxylic acids, mainly acetic acid, contained in the reduced-pressure fermentation digestion liquid be converted into hydrogen by red-colored bacteria under light and anaerobic conditions, but also in the gas generated from the reduced-pressure fermentation tank. It is also possible to immobilize the causative agent of global warming as a valuable resource by sending the contained CO 2 to a red-colored bacterial culture tank, and therefore, the present invention is an energy-creating treatment technology. At the same time, it is a processing technology capable of producing substances. (4) The so-called surplus cells grown in the photosynthetic microorganism culture tank can be used as feed for livestock, poultry, etc. and / or can be converted into valuable materials, and can form a material circulation system in the area. It is arguable that in the future, biological treatment processes that combine the functions of anaerobic hydrogen-producing bacteria and photosynthetic bacteria will become the mainstream of next-generation treatment technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素生産方法の一例を示すフロー工程
図である。
FIG. 1 is a flow process diagram showing an example of a hydrogen production method of the present invention.

【符号の説明】[Explanation of symbols]

1:汚水や汚泥導入管、1′:ブロッキング剤導入管、
2:減圧発酵槽、3:循環ポンプ、4:減圧放散塔、
5:真空ポンプ、6、7:ガス移送管、8、14:流出
管、9:ガス循環管、10:光合成細菌培養槽、11:
太陽光集光装置、12:光ファイバー、13:ガス引抜
管、15:生物酸化装置、16:ブロワー、21:固液
分離装置
1: Sewage or sludge introduction pipe, 1 ': Blocking agent introduction pipe,
2: reduced pressure fermentation tank, 3: circulation pump, 4: reduced pressure diffusion tower,
5: Vacuum pump, 6, 7: Gas transfer pipe, 8, 14: Outflow pipe, 9: Gas circulation pipe, 10: Photosynthetic bacterium culture tank, 11:
Sunlight concentrator, 12: optical fiber, 13: gas extraction tube, 15: biooxidizer, 16: blower, 21: solid-liquid separator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C12P 3/00 (C12P 3/00 C12R 1:01) C12R 1:01) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // (C12P 3/00 (C12P 3/00 C12R 1:01) C12R 1:01)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機性汚水や汚泥をメタン発酵槽で処理
するに当り、予め特定のメタン発酵ブロッキング剤を加
え、減圧発酵処理することにより水素を生産することを
特徴とする有機性汚水や汚泥からの水素生産法。
1. When treating organic wastewater or sludge in a methane fermentation tank, hydrogen is produced by adding a specific methane fermentation blocking agent in advance and subjecting it to reduced pressure fermentation to produce hydrogen. Method of hydrogen production from Japan.
【請求項2】 前記減圧発酵処理の後に、CO2 の供給
条件下で紅色細菌類による明・嫌気条件の光合成細菌培
養処理することを特徴とする請求項1記載の有機性汚水
や汚泥からの水素生産法。
2. The organic fermented water or sludge according to claim 1, wherein after the reduced pressure fermentation treatment, a photosynthetic bacterium culture treatment with bright red and anaerobic conditions by a red bacterium under CO 2 supply condition is performed. Hydrogen production method.
【請求項3】 減圧発酵槽と、該発酵槽内液に連通する
減圧放散塔とを有し、前記減圧発酵槽には、汚水や汚泥
導入管と排水管を有し、該汚水や汚泥導入管にはメタン
発酵ブロッキング剤の導入口を接続すると共に、該発酵
槽内容液を減圧放散塔の塔頂に循環する循環路を設け、
また、前記減圧放散塔には、真空ポンプを介したガス移
送管を設けたことを特徴とする有機性汚水や汚泥からの
水素生産装置。
3. A reduced pressure fermentation tank and a reduced pressure diffusion tower communicating with the liquid in the fermentation tank, wherein the reduced pressure fermentation tank has a waste water and sludge introduction pipe and a drain pipe, and the waste water and sludge introduction are provided. The pipe is connected to an inlet for a methane fermentation blocking agent, and a circulation path for circulating the fermenter content liquid at the top of the reduced pressure diffusion tower is provided.
Further, the decompression / emission tower is provided with a gas transfer pipe via a vacuum pump, which is a hydrogen production device from organic wastewater or sludge.
【請求項4】 前記水素生産装置には、さらに明・嫌気
光合成細菌培養槽を有し、前記減圧発酵槽の排水管を該
光合成細菌培養槽に接続し、また、前記減圧放散塔から
のガス移送管を該培養槽底部に接続すると共に、該ガス
移送管に培養槽の排出ガス管を接続したことを特徴とす
る請求項3記載の有機性汚水や汚泥からの水素生産装
置。
4. The hydrogen production device further comprises a light / anaerobic photosynthetic bacterial culture tank, a drainage pipe of the vacuum fermentation tank is connected to the photosynthetic bacterial culture tank, and a gas from the vacuum stripping tower is supplied. The hydrogen production device from organic wastewater or sludge according to claim 3, wherein a transfer pipe is connected to the bottom of the culture tank, and an exhaust gas pipe of the culture tank is connected to the gas transfer pipe.
【請求項5】 前記減圧発酵槽と光合成細菌培養槽を結
ぶ排水管には固液分離装置を設けたことを特徴とする請
求項4記載の有機性汚水や汚泥からの水素生産装置。
5. The apparatus for producing hydrogen from organic wastewater or sludge according to claim 4, wherein a solid-liquid separator is provided in a drain pipe connecting the reduced-pressure fermentation tank and the photosynthetic bacteria culture tank.
JP3138566A 1991-05-15 1991-05-15 Method and equipment for hydrogen production from organic wastewater and sludge Expired - Lifetime JP2511336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138566A JP2511336B2 (en) 1991-05-15 1991-05-15 Method and equipment for hydrogen production from organic wastewater and sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138566A JP2511336B2 (en) 1991-05-15 1991-05-15 Method and equipment for hydrogen production from organic wastewater and sludge

Publications (2)

Publication Number Publication Date
JPH0596294A JPH0596294A (en) 1993-04-20
JP2511336B2 true JP2511336B2 (en) 1996-06-26

Family

ID=15225140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138566A Expired - Lifetime JP2511336B2 (en) 1991-05-15 1991-05-15 Method and equipment for hydrogen production from organic wastewater and sludge

Country Status (1)

Country Link
JP (1) JP2511336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249577A (en) * 2011-06-02 2012-12-20 Nihon Univ Efficient recovery method using hydrogen absorbing alloy for hydrogen produced by cyanobacteria and enhanced recovery method for hydrogen

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657763B2 (en) * 1993-09-07 1997-09-24 財団法人地球環境産業技術研究機構 Microbial hydrogen production
FR2744937B1 (en) * 1996-02-21 1998-04-10 Europ Agence Spatiale ORGANIC WASTE TREATMENT PROCESS AND PLANT AND APPLICATIONS OF SUCH PROCESS
EP1457566A4 (en) * 2001-12-19 2006-07-26 Japan Science & Tech Corp Method of producing hydrogen gas by using hydrogen bacteria
JP4401187B2 (en) * 2004-02-16 2010-01-20 サッポロビール株式会社 Biogas production method
EP1720200B1 (en) * 2004-02-25 2014-12-03 Nippon Mining & Metals Co., Ltd. Epitaxially growing equipment
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
KR100822824B1 (en) * 2007-07-11 2008-04-18 한국에너지기술연구원 Flat vertical parallelepiped-type photobioreactor made with transparent acrylic plastic for biological hydrogen production
CN107988110A (en) * 2017-12-25 2018-05-04 周成丽 A kind of sludge fermentation agent and its application method
EP3947262A4 (en) * 2019-03-25 2023-01-18 Hydrobe Pty Ltd Process and system for generating hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249577A (en) * 2011-06-02 2012-12-20 Nihon Univ Efficient recovery method using hydrogen absorbing alloy for hydrogen produced by cyanobacteria and enhanced recovery method for hydrogen

Also Published As

Publication number Publication date
JPH0596294A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
EP0641296B1 (en) Process for degrading organic matter
US4284508A (en) Methane production by attached film
CN101759316A (en) Method for treating wastewater containing molasses alcohol
JP2511336B2 (en) Method and equipment for hydrogen production from organic wastewater and sludge
KR101565503B1 (en) Method for Liquid Fertilizer of livestock excretions using the Selective aeration
CN101781056B (en) Treatment method of waste papermaking water
Hu et al. Start-up and maintenance of indigenous microalgae-bacteria consortium treating toilet wastewater through partial nitrification and nitrite-type denitrification
JPH0731998A (en) Slightly anaerobic hydrogen fermentation method for organic waste
KR100853715B1 (en) Method for producing bio-hydrogen using iron dust
JP2006255538A (en) Method and apparatus for treatment of food waste
FR2543129A1 (en) IMPROVEMENTS IN FACILITIES AND METHODS OF BIOLOGICAL PURIFICATION AND PREPARATION OF COMBUSTIBLE GASES BY ANAEROBIC FERMENTATION IN TWO PHASES
US20210380452A1 (en) Method for treatment and resource utilization of acidic organic wastewater
JPS6291293A (en) Treatment of waste water based on anaerobic treatment
CN114538711A (en) Microbial degradation treatment method for Maotai-flavor liquor wastewater
JPS62282695A (en) Treatment of waste water
JPH0796118B2 (en) Wastewater treatment method
JP2511327B2 (en) Organic wastewater treatment method
CN1199876C (en) Method and device for treatment of organic waste water
JP3931221B2 (en) Methods for treating hazardous chemical substances
JP2511326B2 (en) Method for treating organic wastewater with photosynthetic microorganisms
JPH0731484A (en) Method for biologically producing hydrogen
CN219860841U (en) Device for using sludge from garbage leachate treatment process as denitrification additional carbon source
CN114804328B (en) Method for assimilating resource-based high ammonia nitrogen wastewater by coupling partial full-process nitrification with microalgae
JPH04126595A (en) Treatment of waste water
JPS62176599A (en) Method for methane fermentation of organic aqueous solution