JPS62176599A - Method for methane fermentation of organic aqueous solution - Google Patents

Method for methane fermentation of organic aqueous solution

Info

Publication number
JPS62176599A
JPS62176599A JP61015903A JP1590386A JPS62176599A JP S62176599 A JPS62176599 A JP S62176599A JP 61015903 A JP61015903 A JP 61015903A JP 1590386 A JP1590386 A JP 1590386A JP S62176599 A JPS62176599 A JP S62176599A
Authority
JP
Japan
Prior art keywords
aqueous solution
methane
gas
carbon dioxide
bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015903A
Other languages
Japanese (ja)
Other versions
JPH0667517B2 (en
Inventor
Koichi Kiriyama
桐山 光市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP1590386A priority Critical patent/JPH0667517B2/en
Publication of JPS62176599A publication Critical patent/JPS62176599A/en
Publication of JPH0667517B2 publication Critical patent/JPH0667517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To prevent the lowering of pH by compensating the consumption of alkalinity, by recovering carbon dioxide in generated gas to dissolve the same in the org. aqueous solution flowing in an anaerobic bioreactor to obtain an alkalinity supply source. CONSTITUTION:An org. aqueous solution is introduced into an acid forming tank 9 and receives solubilizing treatment to form an acid. The treated solution is subjected to solid-liquid separation in a solid-liquid separation tank 10 and the sedimented bacterial cells are recirculated to the acid forming tank 9 by a pipe 11. The separated liquid is supplied to a methane fermentation tank 1 to receive methane fermentation treatment while the liquid subjected to methane fermentation treatment is discharged from a treated liquid discharge pipe 3 and the generated gas is separated into methane gas and carbon dioxide by a separation membrane apparatus 6. Separated carbon dioxide is guided to the org. aqueous solution introducing part from a pipe 8 in order to compensate the alkalinity at the org. aqueous solution introducing end part of the acid forming tank 9. By this method, a bioreactor is operated efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機性水溶gをメタン発酵する方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for methane fermentation of organic aqueous g.

〔従来の技術〕[Conventional technology]

従来、都市下水、食品製造関係などの産業廃水、あるい
はし尿等の有機性水溶g全メタン発酵する方法として、
一過流式バイオリアクタによるメタン発酵が行なわれて
い゛る。ところで、この種の一過流式の嫌気バイオリア
クタに有機性水溶液を供給すると、嫌気性バイオリアク
タへの流入口近くで酸発酵が起こり、この近傍でのアル
カリ度を消費しpHが低下する。二相式嫌気性バイオリ
アクタの酸生成相でもこのLうな現象が生じることがあ
る。そして、pHが低下すると有機酸生成反応は停止し
、この有機酸よりメタンを生成する微生物の活性も低下
する。そして、これはメタン生成量の低下あるいはメタ
ン発生の停止につながる。このような現象に対し、薬品
を用いてpHを調整したり、メタン発酵処理液を循環し
てアルカリ度全供給しfcジしている。しかし、薬品に
よるpHの制御は処理コストに薬品コストが加算される
ばかジでなく、とりわけ上向流式の味気性バイオリアク
タの場合にはpHの制御自体が困難である。
Conventionally, as a method for total methane fermentation of organic aqueous substances such as urban sewage, industrial wastewater from food manufacturing, or human waste,
Methane fermentation is carried out using a single flow bioreactor. By the way, when an organic aqueous solution is supplied to this type of one-flow anaerobic bioreactor, acid fermentation occurs near the inlet to the anaerobic bioreactor, consuming alkalinity in this vicinity and lowering the pH. This phenomenon may also occur in the acid production phase of a two-phase anaerobic bioreactor. When the pH decreases, the organic acid production reaction stops, and the activity of microorganisms that produce methane from this organic acid also decreases. This, in turn, leads to a reduction in the amount of methane produced or to the cessation of methane production. To deal with this phenomenon, the pH is adjusted using chemicals, and the methane fermentation solution is circulated to supply all the alkalinity. However, controlling the pH using chemicals is not a simple matter as the cost of chemicals is added to the processing cost, and pH control itself is difficult, especially in the case of an upflow type bioreactor.

また、メタン発酵処理液を循環する方法は、嫌気性バイ
オリアクタに流入する液量に対し、無視し得ないほどの
液量を循環する必要がろり、負荷蓋に比してバイオリア
クタ内の滞留時間が短かくなるという欠点があった。
In addition, the method of circulating the methane fermentation treatment liquid requires circulating a non-negligible amount of liquid compared to the amount of liquid flowing into the anaerobic bioreactor, and the amount of liquid stagnation in the bioreactor is higher than that in the load lid. The drawback was that it took less time.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

本発明は上記のような欠点を解消するものでろ、つて、
薬品によるpH調整を行なったシ、メタン発酵処理液を
循環したジすることなく、嫌気性バイオリアクタ流入口
近傍でのpH低下を防ぎ、−湿式バイオリアクタを効率
よく運転する方法を提供するものである。
The present invention solves the above-mentioned drawbacks, and therefore,
The present invention provides a method for efficiently operating a wet bioreactor by preventing a pH drop near the inlet of an anaerobic bioreactor without having to circulate the methane fermentation solution after pH adjustment using chemicals. be.

〔発明の構成〕[Structure of the invention]

一過流式の嫌気性バイオリアクタあるいは酸生成相、メ
タン生成相の二相より成る二相式嫌気性バイオリアクタ
に有機性水溶液を供給してメタン発酵する方法において
、嫌気性バイオリアクタニジ発生するメタン、二酸化炭
素全生成分とする混合ガスを脱硫装置によって脱硫した
後、分離膜に、Cジメタンガスと二酸化炭素の両気体を
分離し、メタンガスを回収するとともに、分離され次二
酸化炭素を嫌気性バイオリアクタに流入する有機性水溶
液に溶解せしめること全特徴とする有機性水溶液のメタ
ン発酵法である。
In the method of methane fermentation by supplying an organic aqueous solution to a single-flow anaerobic bioreactor or a two-phase anaerobic bioreactor consisting of two phases: an acid-producing phase and a methane-producing phase, anaerobic bioreactor nitrogen is generated. After desulfurizing the mixed gas consisting of all methane and carbon dioxide products using a desulfurization device, the separation membrane separates both C dimethane gas and carbon dioxide gas, recovers the methane gas, and converts the separated carbon dioxide into an anaerobic process. This is a methane fermentation method for an organic aqueous solution, which is characterized by dissolving it in the organic aqueous solution flowing into a bioreactor.

以下、図面に基いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は一過流式の嫌気性バイオリアクタに本発明を適
用した場合を説明するための図面、第2図は二相式嫌気
性バイオリアクタに本発明を適用した場合を説明するた
めの図面である。
Fig. 1 is a drawing for explaining the case where the present invention is applied to a single flow type anaerobic bioreactor, and Fig. 2 is a drawing for explaining the case where the present invention is applied to a two-phase type anaerobic bioreactor. It is a drawing.

第1図において、1は上向流式嫌気性バイオリアクタ、
2は有機性水溶液導入管、3は処理液排出管、4は生成
ガス排出管、5は気体分離膜への供給プロア、6は気体
分離膜装置、7は分離され念メタンガス排出管、8は炭
酸ガス循環管を示す。
In Fig. 1, 1 is an upflow anaerobic bioreactor;
2 is an organic aqueous solution introduction pipe, 3 is a treated liquid discharge pipe, 4 is a produced gas discharge pipe, 5 is a supply proa to the gas separation membrane, 6 is a gas separation membrane device, 7 is a methane gas discharge pipe to be separated, and 8 is a The carbon dioxide circulation pipe is shown.

従来のメタン発酵法においては、有機性水溶液は有機性
水溶液導入管2からバイオリアクタ1に導入され、バイ
オリアクタ1中を上向に流れる間に、有機物は分解され
てメタンガスと炭酸ガスを生成する。
In the conventional methane fermentation method, an organic aqueous solution is introduced into a bioreactor 1 from an organic aqueous solution inlet pipe 2, and while flowing upward in the bioreactor 1, organic matter is decomposed to produce methane gas and carbon dioxide gas. .

有機物の分解を受けた処理水は処理水排出管Sから、ま
た、生成したメタンガスと炭酸ガスはガス排出管4から
排出される。
The treated water that has undergone the decomposition of organic matter is discharged from the treated water discharge pipe S, and the generated methane gas and carbon dioxide gas are discharged from the gas discharge pipe 4.

この工うな一過流式バイオリアクタにおいては、バイオ
リアクタへの有機性水溶液の流入口近傍で酸発酵が起き
、この部分におけるアルカリ度が消費され、pHが低下
する。そして、このことがメタン生成菌の活性を低下せ
しめる九め、メタン生成量の低下或いはメタン生成の停
止につながっている。
In this single flow bioreactor, acid fermentation occurs near the inlet of the organic aqueous solution into the bioreactor, consuming alkalinity in this area and lowering the pH. This leads to a decrease in the activity of methane-producing bacteria, a decrease in the amount of methane produced, or a cessation of methane production.

そこで、本発明においてはガス排出管4から排出される
メタンガスと炭酸ガスとの混合ガスを気体分離膜供給ブ
ロア5に工って気体分離膜6に供給し、メタンと炭酸ガ
スとに分離し、メタンガスはエネルギ諒として回収し、
有効に利用すると共に、炭酸ガスはバイオリアクタに導
入する有機性水溶液に溶解せしめてアルカリ度の供給源
として/l′ll川するものである。なお、有機性水浴
散への溶解度を越える過剰の炭酸ガスは放散してもよい
Therefore, in the present invention, the mixed gas of methane gas and carbon dioxide discharged from the gas exhaust pipe 4 is supplied to the gas separation membrane supply blower 5 to the gas separation membrane 6, and is separated into methane and carbon dioxide. Methane gas is recovered as energy,
In addition to being used effectively, carbon dioxide gas is dissolved in the organic aqueous solution introduced into the bioreactor and used as a source of alkalinity. Incidentally, excess carbon dioxide exceeding the solubility in the organic aqueous powder may be diffused.

本発明においては、このように発生ガス中の炭酸ガスを
回収して嫌気性バイオリアクタに流入する有機性水溶液
に溶解せしめてアルカリ度の供給源とし、一過流式の嫌
気性バイオリアクタの流入口近傍におけるアルカリ度の
消費勿補い、pHの低下を防ぐものである。
In the present invention, the carbon dioxide gas in the generated gas is recovered and dissolved in the organic aqueous solution flowing into the anaerobic bioreactor, and used as a source of alkalinity. This is to compensate for alkalinity consumption near the inlet and prevent a drop in pH.

従って、従来採られていたアルカリ性の薬品注入による
pHの制御のように薬品を特に使用することなく、また
メタン発酵処理液を循環する場合のように循環ポンプの
動力を要したり、循環流のためにバイオリアクタの滞留
時間を短縮させることなく、容易にアルカリ度を供給し
、有機性水溶液の流入端部におけるpHの低下を防ぐこ
とができる。
Therefore, unlike the conventional method of controlling pH by injecting alkaline chemicals, there is no need to use chemicals, and there is no need for the power of a circulation pump or the need for circulation flow, as in the case of circulating a methane fermentation solution. Therefore, alkalinity can be easily supplied without shortening the residence time of the bioreactor, and a decrease in pH at the inlet end of the organic aqueous solution can be prevented.

第2図はメタン生成相が二相:り成る二槽式嫌気性バイ
オリアクタに本発明全適用した場合を示すもので、第1
図に示した符号と同じ符号は同じ意味を有し、符号9は
酸性酸槽、10は固液分離槽、11は沈降した菌体返送
管、12は酸生成槽で処理された液をメタン生成槽に尋
人するための管會示す。
Figure 2 shows the case where the present invention is fully applied to a two-tank anaerobic bioreactor consisting of two methane production phases.
The same symbols as those shown in the figure have the same meanings; 9 is an acidic acid tank, 10 is a solid-liquid separation tank, 11 is a sedimented bacterial cell return pipe, and 12 is a methane The pipe system for supplying the gas to the generation tank is shown.

第2図に示す例においては、有機性水溶液は有機性水溶
液導入管から先づ酸生成、漕9に導入され、該槽中で有
機物は可溶化処理を受けると共に酸を生成し、処理され
た液は固液分離槽10で固液分離され、沈降した菌体は
管11に工9酸生成槽9に循環され、一方分離された液
は管12によりメタン発酵槽1に供給され、メタン発酵
処理を受ける。
In the example shown in FIG. 2, the organic aqueous solution is first introduced into acid generation tank 9 from the organic aqueous solution inlet pipe, and the organic matter is solubilized in the tank, and acid is generated and treated. The liquid is subjected to solid-liquid separation in the solid-liquid separation tank 10, and the settled bacterial cells are circulated through a pipe 11 to the acid production tank 9, while the separated liquid is supplied to the methane fermentation tank 1 through a pipe 12, where methane fermentation takes place. undergo processing.

メタン発酵処理全党けた液は処理液排出管3工り排出さ
れ、生成したガスはガス排出管4工り排出され、第1図
に関し説明したのと同様に分離膜装置6でメタンガスと
炭酸ガスに分離され、分離された炭酸ガスは管8にLり
、酸生成槽?の有機性水溶液導入端部のアルカリ度を補
う几めに有機性水溶液の導入部へ導かれる。
The entire slag liquid from the methane fermentation process is discharged through 3 treated liquid discharge pipes, and the generated gas is discharged through 4 gas discharge pipes, and is separated into methane gas and carbon dioxide by the separation membrane device 6 in the same manner as explained in connection with FIG. The separated carbon dioxide gas is transferred to pipe 8, which then goes to the acid generation tank. The organic aqueous solution is introduced into the organic aqueous solution introduction section in a manner that compensates for the alkalinity at the organic aqueous solution introduction end.

酸生成槽9は必らずしも一過流式のバイオリアクタであ
る必要はなく、完全混合型のものも工い。なお、酸生成
槽として一過流式のものを用いる場合には必らずしも固
液分離槽10を設ける必要はない。
The acid generation tank 9 does not necessarily have to be a one-time flow type bioreactor, and a complete mixing type can also be used. Note that when a one-time flow type acid generation tank is used, it is not necessarily necessary to provide the solid-liquid separation tank 10.

次に実施例にエリ本発明EJ具体的に説明する。なお、
実施例におけるCODは重クロム酸カリウムにニジ測定
した値である。
Next, the EJ of the present invention will be specifically explained in Examples. In addition,
The COD in the examples is a value measured using potassium dichromate.

実施例1 COD : 575 mW/ 2%浮遊物質: 125
 mW/ApH:6.8の有機性水溶液を有効容積12
0tの固定床式嫌気性発酵槽に46011日の流量で供
給し、メタンガスを回収した。嫌気性発酵槽や流入する
有機性水溶液は加温せず、20℃の大気温度下で発酵を
行った。嫌気性発酵槽に、上向流で有機性水溶液tl−
流入し、メタン発酵を行なったところ、嫌気性バイオリ
アクタへの流入口近傍のpHが徐々に低下し、pH5,
Di示すに至り、ガスの発生は見られなくなった。そこ
で、このpHの低い部位のpH金高くするため、pH7
,0になる工うに、アルカリ剤を注入し、有機性水溶液
を供給しつつ、ガス発生を待った。ガスが発生する工う
になってから、この発生ガスを脱硫装置によって脱硫し
た後、気体分離膜に供給し、発生ガスをメタンガスと二
酸化炭素に分離した。メタンガスを回収するとともに分
離された二酸化炭素を有機性水溶液に溶解せしめ、嫌気
性バイオリアクタに供給した。そしてこの時点で、嫌気
性バイオリアクタへの流入口近傍へのアルカリ剤の注入
は停止した。このようにして、発生するガス中の二酸化
炭素を溶解せしめた有機性水溶液を、前記と同じ量で連
続的に嫌気性バイオリアクタに供給したところpHは6
.0に低下するにとど−jv46.1t/日のガスが順
調に発生した。
Example 1 COD: 575 mW/2% suspended solids: 125
mW/ApH: 6.8 organic aqueous solution in effective volume 12
The methane gas was supplied to a 0 ton fixed bed anaerobic fermenter at a flow rate of 46,011 days. The anaerobic fermentor and the inflowing organic aqueous solution were not heated, and fermentation was carried out at an atmospheric temperature of 20°C. Organic aqueous solution tl-
When methane fermentation occurred, the pH near the inlet to the anaerobic bioreactor gradually decreased to pH 5,
Di was reached, and gas generation was no longer observed. Therefore, in order to increase the pH of this low pH site, the pH was 7.
When the temperature reached 0, an alkali agent was injected, and while an organic aqueous solution was being supplied, gas generation was waited. After gas was generated, the generated gas was desulfurized using a desulfurization device and then supplied to a gas separation membrane to separate the generated gas into methane gas and carbon dioxide. Methane gas was recovered and the separated carbon dioxide was dissolved in an organic aqueous solution and supplied to an anaerobic bioreactor. At this point, the injection of the alkaline agent near the inlet to the anaerobic bioreactor was stopped. When the organic aqueous solution in which carbon dioxide in the generated gas was dissolved was continuously supplied to the anaerobic bioreactor in the same amount as above, the pH was 6.
.. When the temperature dropped to 0, 46.1 t/day of gas was steadily generated.

実施例2 COD : 36,700 mW/l、浮遊物質:3,
300mW/l、 pH7,2の有機性水溶液を、有効
容積500tの上向流式スラリブランケット型嫌気性バ
イオリアクタを酸生成槽、有効容積75tの固定床式嫌
気性バイオリアクタをメタン生成槽とする二相式嫌気性
バイオリアクタに120t/日で供給し、メタンガスを
回収した。嫌気性バイオリアクタ内の温度は酸生成相、
メタン生成相、いずれも65℃に加温した。このような
嫌気性バイオリアクタに、上向流で有機性水溶液を流入
し、メタン発酵を行ったところ、酸生成相離流水のpH
は5.2を示す工うになり、有機酸譲度も8.900 
mW/ tとな9、この酸生成相離流水をメタン生成槽
である固定床式嫌気性バイオリアクタに導入してもガス
発生はほとんど見られなくなってしまつ念。そこで、こ
の酸生成相離流水のpHk高くするため、pH1Oとな
る工うにアルカリ剤を注入しつつ、固定床式嫌気性バイ
オリアクタ(メタン生成槽)に供給し続けたところガス
発生が見られるようになった。
Example 2 COD: 36,700 mW/l, suspended solids: 3,
A 300 mW/l, pH 7.2 organic aqueous solution is used in an upflow slurry blanket type anaerobic bioreactor with an effective volume of 500 t as an acid generation tank, and a fixed bed type anaerobic bioreactor with an effective volume of 75 t as a methane generation tank. The methane gas was supplied to a two-phase anaerobic bioreactor at a rate of 120 t/day and recovered. The temperature inside the anaerobic bioreactor is the acid production phase,
Both methanogenic phases were heated to 65°C. When an organic aqueous solution was flowed upward into such an anaerobic bioreactor and methane fermentation was performed, the pH of the acid-producing phase water
It now shows 5.2, and the organic acid yield is 8.900.
mW/t9, even if this acid generation phase synaptic water is introduced into a fixed bed anaerobic bioreactor, which is a methane generation tank, almost no gas generation will be observed. Therefore, in order to increase the pH of this acid-generating phase water, an alkaline agent was injected into the tank to reach a pH of 1O, and the water was continuously supplied to a fixed-bed anaerobic bioreactor (methane-generating tank). As a result, gas generation was observed. Became.

そこでこの発生ガスを脱硫装置によって脱硫した後、気
体分離膜に供給し、発生ガスをメタンガスと二酸化炭素
に分離した。メタンガスを回収するとともに、分離され
た二酸化炭素を有機性水溶液に溶解せしめ、酸生成槽に
供給した。
Therefore, this generated gas was desulfurized by a desulfurization device and then supplied to a gas separation membrane to separate the generated gas into methane gas and carbon dioxide. While recovering the methane gas, the separated carbon dioxide was dissolved in an organic aqueous solution and supplied to the acid generation tank.

そして、この時点で嫌気性バイオリアクタ(メタン生成
槽)へのアルカリ剤の注入は停止した。
At this point, the injection of alkaline agent into the anaerobic bioreactor (methane generation tank) was stopped.

このようにして、発生するガス中の二酸化炭素を溶解せ
しめた有機性水溶液全上記と同じ流量で連続的に嫌気性
バイオリアクタに供給し続けたところ、先述のpH低下
、ガス発生の極端な減少を観察する1での期間を越えて
も、酸生成相離流水のpHは&4に低下するにとどまり
、1,760〜1.870t/日の安定したガス発生が
見られ′fI−0
In this way, when the organic aqueous solution in which carbon dioxide in the generated gas was dissolved was continuously supplied to the anaerobic bioreactor at the same flow rate as above, the aforementioned pH drop and extreme decrease in gas generation were observed. Even after the observation period 1, the pH of the acid production phase synapse water only decreased to &4, and stable gas generation of 1,760 to 1.870 t/day was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明するためのフロ
ー概略図である。 1・・・嫌気性バイオリアクタ(メタン発酵槽)、2・
・・有機性水浴液導入管、3・・・処理水排出管、4・
・・発生ガス排出管、5・・・気体分離膜供給ブロア、
6・・・気体分離膜、7・・・メタンガス排出管、8・
・・炭酸ガス循環管、9・・・酸生成槽、10・・・固
液分離槽 第1図 ち 第2図
1 and 2 are flow diagrams for explaining the present invention in detail. 1... Anaerobic bioreactor (methane fermentation tank), 2.
... Organic water bath liquid introduction pipe, 3 ... Treated water discharge pipe, 4.
... Generated gas discharge pipe, 5... Gas separation membrane supply blower,
6... Gas separation membrane, 7... Methane gas discharge pipe, 8.
... Carbon dioxide gas circulation pipe, 9 ... Acid generation tank, 10 ... Solid-liquid separation tank Figure 1 and Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、一過流式の嫌気性バイオリアクタあるいは酸生成相
、メタン生成相の二相より成る二相式嫌気性バイオリア
クタに有機性水溶液を供給してメタン発酵する方法にお
いて、嫌気性バイオリアクタより発生するメタン、二酸
化炭素を生成分とする混合ガスを脱硫装置によつて脱硫
した後、分離膜によりメタンガスと二酸化炭素の両気体
を分離し、メタンガスを回収するとともに、分離された
二酸化炭素を嫌気性バイオリアクタに流入する有機性水
溶液に溶解せしめることを特徴とする有機性水溶液のメ
タン発酵法。
1. In a method for methane fermentation by supplying an organic aqueous solution to a one-flow anaerobic bioreactor or a two-phase anaerobic bioreactor consisting of two phases: an acid production phase and a methane production phase, After the generated mixed gas containing methane and carbon dioxide is desulfurized by a desulfurization device, both methane gas and carbon dioxide are separated by a separation membrane, and the methane gas is recovered, and the separated carbon dioxide is anaerobically processed. A method for methane fermentation of an organic aqueous solution, characterized by dissolving it in an organic aqueous solution flowing into a bioreactor.
JP1590386A 1986-01-29 1986-01-29 Methane fermentation method of organic aqueous solution Expired - Fee Related JPH0667517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1590386A JPH0667517B2 (en) 1986-01-29 1986-01-29 Methane fermentation method of organic aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1590386A JPH0667517B2 (en) 1986-01-29 1986-01-29 Methane fermentation method of organic aqueous solution

Publications (2)

Publication Number Publication Date
JPS62176599A true JPS62176599A (en) 1987-08-03
JPH0667517B2 JPH0667517B2 (en) 1994-08-31

Family

ID=11901733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1590386A Expired - Fee Related JPH0667517B2 (en) 1986-01-29 1986-01-29 Methane fermentation method of organic aqueous solution

Country Status (1)

Country Link
JP (1) JPH0667517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206736A (en) * 2010-03-30 2011-10-20 Osaka Gas Co Ltd Method for treating solid biomass
US8235647B2 (en) 2007-12-07 2012-08-07 Rolls-Royce Deutschland Ltd & Co Kg Bearing-chamber pressure system
US8281563B2 (en) 2008-02-19 2012-10-09 Rolls-Royce Deutschland Ltd & Co Kg Gas-turbine bearing oil system with improved oil return arrangement
US8887869B2 (en) 2007-12-07 2014-11-18 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine oil supply system and method for the operation of a bearing oil supply system for a gas turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178016A (en) * 1985-02-01 1986-08-09 Takuma Sogo Kenkyusho:Kk Recovery of methane gas in digestion tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178016A (en) * 1985-02-01 1986-08-09 Takuma Sogo Kenkyusho:Kk Recovery of methane gas in digestion tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8235647B2 (en) 2007-12-07 2012-08-07 Rolls-Royce Deutschland Ltd & Co Kg Bearing-chamber pressure system
US8887869B2 (en) 2007-12-07 2014-11-18 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine oil supply system and method for the operation of a bearing oil supply system for a gas turbine
US8281563B2 (en) 2008-02-19 2012-10-09 Rolls-Royce Deutschland Ltd & Co Kg Gas-turbine bearing oil system with improved oil return arrangement
JP2011206736A (en) * 2010-03-30 2011-10-20 Osaka Gas Co Ltd Method for treating solid biomass

Also Published As

Publication number Publication date
JPH0667517B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
JP4729718B2 (en) Organic waste treatment methods
CN103757062B (en) A kind of method utilizing Surfactin to promote excess sludge anaerobic fermentation and acid production
Rodrigues et al. Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program
JP2006280362A (en) System for treating biomass
JP3698419B2 (en) Organic sludge reduction method and apparatus
JP2005066381A (en) Method and apparatus for treating organic waste water
JP2511336B2 (en) Method and equipment for hydrogen production from organic wastewater and sludge
KR100783785B1 (en) Carbon source preparing method for advanced biological treatment of sewage and wastewater
JP2006255538A (en) Method and apparatus for treatment of food waste
JPS62176599A (en) Method for methane fermentation of organic aqueous solution
JP2001347296A (en) Method and apparatus for treating sludge, and method and apparatus for treating sewage by utilizing the same
JP3959843B2 (en) Biological treatment method for organic drainage
JP2005103375A (en) Methane fermentation treatment method and apparatus
CN113060899B (en) Recycling method for generating carbon source by utilizing sludge resource of sewage plant
JP2659895B2 (en) Organic sludge treatment method
JPS6291293A (en) Treatment of waste water based on anaerobic treatment
JP2006305536A (en) Waste water treatment apparatus
JP2006043649A (en) Treatment method of organic waste and its treatment apparatus
KR100962215B1 (en) Method for treating waste water and waste materials
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JPH09253684A (en) Treatment method for organic waste water
JPS59386A (en) Anaerobic digestion of organic waste liquor
CN108046554A (en) The method that one Yeasts strengthen the micro- oxygen digestion production volatile fatty acid of residual active sludge room temperature

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees