JPH04276041A - Production of sintered martensitic stainless steel - Google Patents

Production of sintered martensitic stainless steel

Info

Publication number
JPH04276041A
JPH04276041A JP3841791A JP3841791A JPH04276041A JP H04276041 A JPH04276041 A JP H04276041A JP 3841791 A JP3841791 A JP 3841791A JP 3841791 A JP3841791 A JP 3841791A JP H04276041 A JPH04276041 A JP H04276041A
Authority
JP
Japan
Prior art keywords
sintered
stage
sintering
stainless steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3841791A
Other languages
Japanese (ja)
Inventor
Sadakimi Kiyota
清 田 禎 公
Hiroshi Otsubo
大 坪  宏
Takashige Goto
後 藤 隆 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3841791A priority Critical patent/JPH04276041A/en
Publication of JPH04276041A publication Critical patent/JPH04276041A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for producing a sintered martensitic stainless steel by means of injection molding, capable of precisely controlling the C content in a sintered body while maintaining the high density, low O content, and uniformity of contained Cr level in the internal and the external surface of the sintered body. CONSTITUTION:The method is constituted of a stage where powders whose components except C have a composition of stainless steel are used as raw materials and an organic binder is added to the above powdered raw materials and the resulting mixture is kneaded so as to be formed into a molding material, a stage where injection molding is applied to this molding material to form a molded body, a stage where the above organic binder is removed from this molded body to form a degreased body, and a sintering stage where a sintered body is obtained by passing this degreased body successively through a first step where it is held under a reduced pressure of <=30Torr at 900-1300 deg.C, a second step where it is held in an hydrocarbon-containing gaseous atmosphere at 900-1200 deg.C, and a third step where it is held in a nonoxidizing gaseous atmosphere at 1250-1400 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、射出成形法を利用した
焼結合金鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing sintered alloy steel using injection molding.

【0002】0002

【従来の技術】焼結材料の製造方法として射出成形を利
用する方法は、複雑形状部品の製造に好適である。また
、射出成形によると微粉末(平均粒径10μm程度)を
利用できるため、高密度で高特性の焼結材料が得られる
利点がある。なかでも、射出成形によって得られるステ
ンレス焼結材料は、従来の平均粒径100μm程度の粉
末を利用する粉末冶金法で得られる焼結材料に比較して
、優れた耐食性を示すため応用が広がりつつある。
2. Description of the Related Art A method using injection molding as a method for producing sintered materials is suitable for producing parts with complex shapes. Furthermore, injection molding allows the use of fine powder (average particle size of about 10 μm), which has the advantage of providing a sintered material with high density and high properties. Among these, stainless steel sintered materials obtained by injection molding are being used more and more because they exhibit superior corrosion resistance compared to sintered materials obtained by conventional powder metallurgy using powder with an average particle size of about 100 μm. be.

【0003】本発明者らは、すでに優れた耐食性をもつ
ステンレス鋼焼結材料およびその製造法について開示し
た(特開平2−138435号公報参照)。しかし、従
来のステンレス焼結鋼は、その耐食性を特に重視した0
.06%以下の低C材料に限定されており、その製法に
おいては、焼結過程において極力C量を低減することに
主眼がおかれていた。そのため、従来の製法によっては
、マルテンサイト系ステンレス鋼のような0.1%程度
から1%程度のCを含有する材料を製造するのは困難で
あった。特に、焼結過程において、含有C量が変化する
ため、精度よく焼結体C量を狭い範囲で制御するのは困
難であった。
[0003] The present inventors have already disclosed a stainless steel sintered material having excellent corrosion resistance and a method for manufacturing the same (see Japanese Patent Laid-Open No. 2-138435). However, conventional stainless steel sintered steel is made with special emphasis on its corrosion resistance.
.. It is limited to low carbon materials with a carbon content of 0.6% or less, and the manufacturing method focuses on reducing the amount of carbon as much as possible in the sintering process. Therefore, depending on the conventional manufacturing method, it is difficult to manufacture materials containing about 0.1% to 1% of C, such as martensitic stainless steel. In particular, in the sintering process, since the amount of C contained changes, it has been difficult to accurately control the amount of C in the sintered body within a narrow range.

【0004】0004

【発明が解決しようとする課題】以上の実状に鑑みて、
本発明は、射出成形を利用したマルテンサイト系ステン
レス鋼焼結材の製造法において、焼結体の密度を高く保
持し、O量を低く保持し、表面Cr量と内部Cr量とを
同レベルに保持しながら、焼結部品として使用する場合
非常に重要視される焼結体C量を制度よく制御できる焼
結マルテンサイト系ステンレス鋼の製造方法の提供を目
的とする。
[Problem to be solved by the invention] In view of the above actual situation,
The present invention is a method for manufacturing a martensitic stainless steel sintered material using injection molding, in which the density of the sintered body is kept high, the O content is kept low, and the surface Cr content and internal Cr content are kept at the same level. The purpose of the present invention is to provide a method for manufacturing sintered martensitic stainless steel that can precisely control the amount of sintered C, which is very important when used as a sintered part, while maintaining the sintered stainless steel.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は、Cを除外した成分がステンレス
鋼組成を持つ粉末を原料とし、この原料粉末に有機バイ
ンダを添加、混練して成形原料を得る工程、この成形原
料を射出成形して成形体を得る工程、この成形体より前
記有機バインダを除去して脱脂体を得る工程、およびこ
の脱脂体を焼結して焼結体を得る焼結工程より構成され
、前記焼結工程が、順次、30Torr以下の減圧下、
900〜1300℃で保持する第1の段階、炭化水素含
有ガス雰囲気中、900〜1200℃で保持する第2の
段階、非酸化性ガス雰囲気中、1250〜1400℃で
保持する第3の段階より構成されることを特徴とする焼
結マルテンサイト系ステンレス鋼の製造方法を提供する
ものである。
[Means for Solving the Problems] In order to achieve the above object of the present invention, the present invention uses powder having a stainless steel composition excluding C as a raw material, adds an organic binder to this raw powder, and kneads the powder. a step of obtaining a molding raw material by injection molding this molding material, a step of obtaining a molded body by removing the organic binder from this molded body, and a step of sintering this degreased body. The sintering process is performed under a reduced pressure of 30 Torr or less,
The first stage is held at 900-1300°C, the second stage is held at 900-1200°C in a hydrocarbon-containing gas atmosphere, and the third stage is held at 1250-1400°C in a non-oxidizing gas atmosphere. The present invention provides a method for manufacturing sintered martensitic stainless steel characterized by the following.

【0006】[0006]

【発明の作用】以下、本発明について詳細に説明する。 本発明に係る焼結マルテンサイト系ステンレス鋼の製造
方法は、Cを除外した成分がステンレス鋼の組成を持つ
粉末を原料として、この原料粉末に有機バインダを添加
し、これらを混練して成形原料、すなわち射出成形用コ
ンパウンドを得る混練工程と、この成形原料を射出成形
して射出成形体を得る射出成形工程と、この成形体から
有機バインダを除去して脱脂体を得る脱脂工程と、本発
明の最も特徴とする部分であって、3つの段階からなり
、前記脱脂体を焼結して低O、内外で均一なCr量、か
つC量が極めて良く調整された焼結体、すなわち焼結マ
ルテンサイト系ステンレス鋼を得る焼結工程からなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below. The method for producing sintered martensitic stainless steel according to the present invention uses a powder whose components excluding C have the composition of stainless steel as a raw material, adds an organic binder to this raw material powder, and kneads them to form a forming material. That is, a kneading step to obtain an injection molding compound, an injection molding step to obtain an injection molded object by injection molding this molding raw material, a degreasing step to remove an organic binder from this molded object to obtain a degreased object, and the present invention. This is the most characteristic part of the process, and consists of three steps.The degreased body is sintered to produce a sintered body with low O, a uniform Cr content inside and outside, and an extremely well-controlled Cr content, that is, sintered body. It consists of a sintering process to obtain martensitic stainless steel.

【0007】まず、本発明の最も特徴とする焼結工程か
ら説明する。本発明では、焼結工程を3段階で構成し、
第1段階目は、原料粉末に含まれる酸化物の還元を促進
し、かつ、Crの蒸発を抑制することに主眼をおき、第
2段階目は、含有C量を目標とするC量に制御すること
に主眼をおき、第3段階目は、第1段階目で不可避的に
起こった表面Cr濃度低下の修復および焼結緻密化に主
眼をおくものである。
First, the sintering process, which is the most characteristic feature of the present invention, will be explained. In the present invention, the sintering process consists of three stages,
The first stage focuses on promoting the reduction of oxides contained in the raw material powder and suppressing the evaporation of Cr, and the second stage focuses on controlling the amount of C contained to the target amount. The third stage focuses on repairing the decrease in surface Cr concentration that inevitably occurred in the first stage and sintering and densification.

【0008】第1段階目の焼結は、温度900〜130
0℃、圧力30Torr以下の条件で行う。還元は、水
素雰囲気中によっても行うことができるが、本発明の焼
結鋼のように難還元性元素であるCrを多く含有する組
成では、高純度の水素ガスを著しく多量に必要とするた
め経済的に好ましくない。一方、本発明のように30T
orr以下の減圧雰囲気を利用する場合、焼結体の含有
Cと含有Oとの直接反応による、還元反応を経済的、か
つ効率的に行うことができる。
[0008] The first stage of sintering is performed at a temperature of 900 to 130°C.
It is carried out under the conditions of 0° C. and a pressure of 30 Torr or less. Reduction can also be carried out in a hydrogen atmosphere, but in a composition containing a large amount of Cr, which is a difficult to reduce element, like the sintered steel of the present invention, a significantly large amount of high-purity hydrogen gas is required. Economically unfavorable. On the other hand, as in the present invention, 30T
When using a reduced pressure atmosphere of orr or less, the reduction reaction can be carried out economically and efficiently by direct reaction between the C content and the O content of the sintered body.

【0009】化学平衡論的には、高温ほど、低圧ほど、
還元反応は進行し、同時に、Cr蒸発に起因する焼結体
表面部のCr濃度低下も促進される。一方、反応速度論
的には、還元反応は反応生成物であるCOガスの拡散に
支配され、焼結体表面部のCr濃度低下はCrの原子拡
散に支配される。さらに、焼結が進行すると、焼結体内
部のガス流路が遮断されるためCOガスの拡散速度が著
しく低下するが、Crの拡散速度への影響は小さいこと
を実験的に確認した。
According to chemical equilibrium theory, the higher the temperature and the lower the pressure,
The reduction reaction progresses, and at the same time, the reduction in Cr concentration on the surface of the sintered body due to Cr evaporation is promoted. On the other hand, in terms of reaction kinetics, the reduction reaction is dominated by the diffusion of CO gas, which is a reaction product, and the decrease in the Cr concentration at the surface of the sintered body is dominated by the atomic diffusion of Cr. Furthermore, as sintering progresses, the gas flow path inside the sintered body is blocked, so the diffusion rate of CO gas decreases significantly, but it was experimentally confirmed that the effect on the diffusion rate of Cr is small.

【0010】第1段階目の焼結の温度範囲は900〜1
300℃とした。900℃未満では、平衡論的には還元
反応を起こすことができるが、反応速度が遅いため、低
Oの焼結体を得るのに、長時間を必要とするので好まし
くない。従って、第1段階目の焼結は、900℃以上で
あることが好ましい。
[0010] The temperature range of the first stage sintering is 900 to 1
The temperature was 300°C. If the temperature is less than 900°C, the reduction reaction can occur in equilibrium, but the reaction rate is slow and it takes a long time to obtain a low O sintered body, which is not preferable. Therefore, the first stage of sintering is preferably performed at 900°C or higher.

【0011】一方、1300℃を超えると焼結緻密化が
速く進行し、COガスの拡散速度が著しく低下するため
、還元、脱炭同時反応が効率よく進行せず、低Oの焼結
体が得られない。さらに、Cr蒸気圧およびCr拡散速
度は共に十分に高いため、焼結体表面から深い範囲にわ
たりCr濃度が著しく低下してしまう。従って、第1段
階目の焼結の上限温度を1300℃とした。
On the other hand, when the temperature exceeds 1300°C, sintering progresses rapidly and the diffusion rate of CO gas decreases significantly, so that the simultaneous reduction and decarburization reactions do not proceed efficiently, resulting in a low O sintered body. I can't get it. Furthermore, since both the Cr vapor pressure and the Cr diffusion rate are sufficiently high, the Cr concentration significantly decreases over a deep range from the surface of the sintered body. Therefore, the upper limit temperature of the first stage sintering was set to 1300°C.

【0012】但し、原料粉末径によって、焼結緻密化の
速くなる温度は異なり、平均粒径が小さい場合はより低
温側に、平均粒径が大きい場合はより高温側に、上記の
範囲内から選択することができる。
[0012] However, the temperature at which sintering and densification becomes faster differs depending on the diameter of the raw material powder, and if the average particle size is small, the temperature is lower, and if the average particle size is larger, the temperature is higher. You can choose.

【0013】さらに、第1段階目の焼結は、真空加熱炉
において、炉内に、外部よりガスを導入することなく、
真空ポンプで排気のみを行う場合、0.1Torr以下
で行い、また、真空加熱炉において、炉内に、外部より
非酸化性ガスの導入と真空ポンプでの排気を併用する場
合は、30Torr以下で行う。前者の場合、0.1T
orrを超えると、後者の場合30Torrを超えると
、Cr酸化物の還元反応が効率的に進行しないので好ま
しくない。
Furthermore, the first stage of sintering is carried out in a vacuum heating furnace without introducing gas into the furnace from the outside.
When only evacuation is performed using a vacuum pump, the temperature is 0.1 Torr or less, and when a non-oxidizing gas is introduced into the furnace from the outside and evacuation is performed using a vacuum pump, the temperature is 30 Torr or less. conduct. In the former case, 0.1T
In the latter case, if it exceeds 30 Torr, the reduction reaction of Cr oxide will not proceed efficiently, which is not preferable.

【0014】さらに、詳しく説明すると、Cr酸化物の
還元反応を支配するのは、反応生成物であるCOもしく
はCO2 ガスの分圧の合計(以下、生成物ガス圧と略
記する)であるため、生成物ガス圧を、常に酸化・還元
平衡圧未満に維持できるように、反応系外(焼結炉外)
へ排出することが必須条件となる。この条件を満たす方
法としては、第1に真空雰囲気を使用する方法、第2に
Ar、N2 、H2 等の高純度の非酸化性ガスを使用
する方法および第3として両者を併用する方法がある。
[0014] To explain in more detail, what governs the reduction reaction of Cr oxide is the total partial pressure of the reaction product CO or CO2 gas (hereinafter abbreviated as product gas pressure). outside the reaction system (outside the sintering furnace) so that the product gas pressure can always be maintained below the oxidation/reduction equilibrium pressure.
It is an essential condition that it be discharged to Methods to satisfy this condition include: firstly, using a vacuum atmosphere; secondly, using high-purity non-oxidizing gas such as Ar, N2, H2, etc.; and thirdly, using both in combination. .

【0015】第1の場合は、生成物ガス圧が焼結炉内の
全圧に、実質上、等しくなるような緻密性の高い加熱炉
に、炉内全圧を0.1Torr以下に保持できるように
十分な排気速度を持つ真空ポンプを装着した、真空焼結
炉で行うことができる。第2の場合は、炉内圧を大気圧
領域で行うもので、生成物ガス圧を0.1Torr以下
にするためには、生成物ガスを含まない新鮮な高純度の
ガスを、単純な計算上では、759.9Torr以上必
要である。このように、反応時に、生成ガスの約1万倍
もの非酸化性ガスを供給することは、工業的には、きわ
めて不利であるため第2の場合は好ましくない。
In the first case, the total pressure in the furnace can be maintained at 0.1 Torr or less in a highly dense heating furnace in which the product gas pressure is substantially equal to the total pressure in the sintering furnace. This can be done in a vacuum sintering furnace equipped with a vacuum pump with sufficient pumping speed. In the second case, the pressure inside the furnace is set to atmospheric pressure, and in order to reduce the product gas pressure to 0.1 Torr or less, fresh high-purity gas that does not contain product gas is Then, 759.9 Torr or more is required. As described above, it is industrially extremely disadvantageous to supply about 10,000 times as much non-oxidizing gas as the produced gas during the reaction, so the second case is not preferred.

【0016】第3の場合は、第1の場合として示した真
空焼結炉に圧力調整弁を介して生成物ガスを含まない新
鮮な高純度の非酸化性ガスを導入する方法で、加熱時の
Cr蒸発の抑制に幾分かの効果があるとされるもので、
炉内の全圧は30Torr以下であることが好ましい。 この方法においては、炉内の全圧は、生成物ガス圧と導
入した非酸化性ガス圧の和で表されるが、真空ポンプの
排気速度が一定の場合、導入ガスの有無にかかわらず、
生成物ガスの加熱炉外への排気速度は一定である。しか
し、炉内の全圧が30Torrを超えると、真空ポンプ
(特に、メカニカルブースターと油回転ポンプを組み合
せた場合)の排気速度は急激に低下すること、および、
生成物ガスの焼結体表面からの離脱速度が低下すること
に起因して、生成物ガスの排気速度が低下し、その結果
、還元反応速度を低下させる。そのため、炉内の全圧の
上限を30Torrとする。
In the third case, fresh high-purity non-oxidizing gas containing no product gas is introduced into the vacuum sintering furnace shown in the first case through the pressure regulating valve. It is said to have some effect on suppressing Cr evaporation in
The total pressure inside the furnace is preferably 30 Torr or less. In this method, the total pressure in the furnace is expressed as the sum of the product gas pressure and the introduced non-oxidizing gas pressure, but if the pumping speed of the vacuum pump is constant, regardless of the presence or absence of the introduced gas,
The rate at which the product gas is pumped out of the furnace is constant. However, when the total pressure inside the furnace exceeds 30 Torr, the pumping speed of the vacuum pump (especially when a mechanical booster and an oil rotary pump are combined) decreases rapidly, and
Due to the decrease in the rate of separation of the product gas from the surface of the sintered body, the exhaust rate of the product gas decreases, resulting in a decrease in the reduction reaction rate. Therefore, the upper limit of the total pressure in the furnace is set to 30 Torr.

【0017】第2段階目の焼結は、炭化水素含有ガス雰
囲気中で行うことが必要である。ここで、炭化水素含有
ガスを使用するのは、炭化水素分解の平衡反応(例えば
、CH4 →2H2 +C)を利用して、焼結体のC量
を制御するためである。他に、炭素を供給しうるガスと
しては、COをあげることができるが、減圧しない限り
において酸化(第1段階目の焼結時の逆反応)が抑制で
きないので好ましくない。
The second stage of sintering must be carried out in a hydrocarbon-containing gas atmosphere. The reason why the hydrocarbon-containing gas is used here is to control the amount of C in the sintered body by utilizing the equilibrium reaction of hydrocarbon decomposition (for example, CH4 → 2H2 +C). Other gases that can supply carbon include CO, but this is not preferred because oxidation (reverse reaction during the first stage of sintering) cannot be suppressed unless the pressure is reduced.

【0018】この炭化水素含有ガスは、焼結保持温度に
おいて、目標とするカーボンポテンシャルとなるように
平衡論的に決定される水素と炭化水素の混合ガスとして
供給する。ただし、このような混合ガスは第2段階目の
焼結の最終段階のみに供給されればよく、その初期にお
いて、焼結体C量が低いと予測される場合は炭化水素を
余計にし、逆に、C量が高いと予測される場合は、水素
を余計にすることで、処理時間を短縮できる。また、平
衡論から予測できるように、炭化水素と水素と以外に、
不活性ガスで希釈したり、真空排気で全圧を低下させて
も同様の処理が行える。ここで、使用できる炭化水素と
しては、その価格や入手の容易性から、メタン、プロパ
ン、ブタンが好ましいが、特にこれらに限定されるわけ
ではない。
[0018] This hydrocarbon-containing gas is supplied as a mixed gas of hydrogen and hydrocarbon which is equilibratedly determined to have a target carbon potential at the sintering holding temperature. However, such a mixed gas only needs to be supplied to the final stage of the second stage of sintering, and if the amount of C in the sintered body is expected to be low in the initial stage, the amount of hydrocarbons may be added to the reverse. In addition, if the amount of C is predicted to be high, the processing time can be shortened by adding extra hydrogen. In addition, as predicted from equilibrium theory, in addition to hydrocarbons and hydrogen,
Similar processing can be performed by diluting with an inert gas or lowering the total pressure by vacuum evacuation. Here, the hydrocarbons that can be used are preferably methane, propane, and butane in view of their price and availability, but are not particularly limited to these.

【0019】第2段階目の焼結温度は、900〜120
0℃の範囲で行うことが好ましい。この第2段階目にお
いては、焼結温度はCの拡散速度を決定する。従って、
焼結温度が900℃より低いと、Cの拡散の時間がかか
り過ぎるため、ここでの焼結温度は900℃以上である
ことが好ましい。また、この焼結温度が高いと、雰囲気
のカーボンポテンシャルがガス組成および温度に鋭敏に
左右される。従って、焼結温度が1200℃を超えると
、カーボンポテンシャルを精度よく制御することが困難
になるため、この焼結温度は、1200℃以下であるこ
とが好ましい。
[0019] The sintering temperature in the second stage is 900 to 120
Preferably, the temperature is 0°C. In this second stage, the sintering temperature determines the diffusion rate of C. Therefore,
If the sintering temperature is lower than 900°C, it will take too much time for C to diffuse, so the sintering temperature here is preferably 900°C or higher. Moreover, when this sintering temperature is high, the carbon potential of the atmosphere is sensitively influenced by the gas composition and temperature. Therefore, if the sintering temperature exceeds 1200°C, it becomes difficult to accurately control the carbon potential, so the sintering temperature is preferably 1200°C or lower.

【0020】続いて、第3段階目の焼結を高密度化およ
び拡散による合金元素の均一化を達成するために非酸化
性雰囲気中、1250〜1400℃で行う。雰囲気を非
酸化性としたのは、Crの蒸発を抑制するためである。 なお、ここで非酸化性雰囲気に用いるガスはAr、He
、窒素等の不活性ガス、水素、一酸化炭素、メタン、プ
ロパン等の還元性ガス、または、燃焼排ガス等である。 これらのガスの圧力は、Crの蒸気圧よりも十分に高く
し、さらに、加熱炉内の流通量を極力押えるか無くすこ
とで、より効果的に、焼結体表面のCr蒸発を抑制でき
る。その結果、焼結の第1段階に不可避的に生成した焼
結体内部から焼結体表面へのCr濃度低下の傾きを原動
力として、焼結のままで焼結体内部から焼結体表面の低
Cr濃度部へCr原子が拡散し、これによって、焼結体
表面のCr濃度は、焼結のままで焼結体内部のCr濃度
の80%以上まで修復することができる。
[0020] Subsequently, the third stage of sintering is carried out at 1250 to 1400°C in a non-oxidizing atmosphere in order to achieve high density and uniformity of alloying elements by diffusion. The reason why the atmosphere was non-oxidizing was to suppress evaporation of Cr. Note that the gas used for the non-oxidizing atmosphere here is Ar, He, etc.
, inert gas such as nitrogen, reducing gas such as hydrogen, carbon monoxide, methane, propane, or combustion exhaust gas. By making the pressure of these gases sufficiently higher than the vapor pressure of Cr, and further reducing or eliminating the flow rate in the heating furnace, evaporation of Cr on the surface of the sintered body can be more effectively suppressed. As a result, the slope of the decrease in Cr concentration from the inside of the sintered body to the surface of the sintered body, which is inevitably generated in the first stage of sintering, is the driving force, and the Cr concentration decreases from the inside of the sintered body to the surface of the sintered body while sintered. Cr atoms diffuse into the low Cr concentration area, and as a result, the Cr concentration on the surface of the sintered body can be restored to 80% or more of the Cr concentration inside the sintered body while the sintered body remains sintered.

【0021】また、本発明者らは、焼結の第1段階およ
び第3段階において、焼結温度が一定である(Cr拡散
速度が一定に相当)と、前記表面の低Cr部の修復には
、これを生成するのに要した時間よりも長い時間が必要
であることを実験的に確認している。従って、短時間で
、効果的に前記表面の低Cr部の修復を行うために、第
3段階の焼結温度は第1段階の焼結温度よりも高くする
のが好ましい。さらに、焼結緻密化し、焼結残留気孔の
微細化、球状化を促進するためにも、第1段階よりも高
温であることが好ましい。
[0021] The present inventors also found that if the sintering temperature is constant (corresponding to a constant Cr diffusion rate) in the first and third stages of sintering, the low Cr portions on the surface can be repaired. has experimentally confirmed that it requires a longer time than it took to generate it. Therefore, in order to effectively repair the low Cr portion on the surface in a short time, it is preferable that the sintering temperature in the third stage is higher than the sintering temperature in the first stage. Furthermore, the temperature is preferably higher than that in the first stage in order to achieve sintering densification and to promote the refinement and spheroidization of residual sintered pores.

【0022】従って、本発明においては焼結の第3段階
の焼結温度を第1段階よりも高い1250〜1400℃
に限定している。すなわち、1250℃未満では、前記
焼結体表面の低Cr部の修復を効果的に行うことができ
ないだけでなく、焼結緻密化の不十分(低密度)な焼結
体しか得られないので、第3段階の焼結温度は1250
℃以上が好ましい。
Therefore, in the present invention, the sintering temperature in the third stage of sintering is set at 1250 to 1400°C, which is higher than that in the first stage.
It is limited to. In other words, if the temperature is lower than 1250°C, not only will it not be possible to effectively repair the low Cr portion on the surface of the sintered body, but also a sintered body with insufficient sintering densification (low density) will be obtained. , the sintering temperature in the third stage is 1250
℃ or higher is preferable.

【0023】一方、1400℃を超えると、液相の発生
が過剰となるため焼結体形状が崩れたり、脆化相が残り
焼結体の強度低下を引き起す等の弊害がでる。従って、
第3段階の焼結温度は1400℃以下が好ましい。
On the other hand, if the temperature exceeds 1400° C., excessive liquid phase is generated, causing problems such as the shape of the sintered body being destroyed, and a brittle phase remaining, causing a decrease in the strength of the sintered body. Therefore,
The sintering temperature in the third stage is preferably 1400°C or lower.

【0024】以上のように本発明の最も特徴とする3段
階からなる焼結工程によって、脱脂射出成形体から精度
よくC量を制御した総合的に優れたマルテンサイト系ス
テンレス鋼焼結体を得ることができる。以下に、前記脱
脂射出成形体を製造する方法について順次述べる。
As described above, by the three-step sintering process that is the most characteristic feature of the present invention, a comprehensively superior martensitic stainless steel sintered body with precisely controlled C content can be obtained from a degreased injection molded body. be able to. The method for producing the degreased injection molded article will be described below.

【0025】本発明で使用する原料粉末は、CおよびO
を除外した成分がマルテンサイト系ステンレス鋼と同じ
組成の合金または/および混合によって得られた粉末で
あり、主成分としてCr:11〜18%、Ni:2.5
%以下、Mo:0.6%未満を含むものであり、C:3
%未満、O:2%未満程度を含有していてもよく、残部
FeとSi、Mn、P、Sなどの不可避成分よりなるも
のである。入手の観点からは、水アトマイズ粉、ガスア
トマイズ粉、油アトマイズ粉、カルボニル粉、粉砕粉な
どの単独または混合粉が好ましい粉末である。原料粉末
の粒度は、射出成形の容易さなどより、平均20μm程
度以下が好ましい。
The raw material powder used in the present invention contains C and O
It is an alloy with the same composition as martensitic stainless steel and/or powder obtained by mixing, with the main components being Cr: 11-18%, Ni: 2.5
% or less, Mo: less than 0.6%, C: 3
%, O: less than 2%, and the remainder consists of Fe and unavoidable components such as Si, Mn, P, and S. From the viewpoint of availability, preferred powders include water atomized powder, gas atomized powder, oil atomized powder, carbonyl powder, pulverized powder, and the like alone or in combination. The particle size of the raw material powder is preferably about 20 μm or less on average from the viewpoint of ease of injection molding.

【0026】本発明においては、まず、これらの原料粉
末に有機バインダを添加混合し、混練して射出成形原料
(射出成形用コンパウンド)を得ている。ここで適用可
能な有機バインダとして、熱可塑性樹脂類、ワックス類
、可塑剤あるいはその混合物を主体とする公知のバイン
ダはいずれも適用可能であり、また必要に応じて潤滑剤
、脱脂促進剤等を添加してもよい。
In the present invention, first, an organic binder is added and mixed to these raw material powders, and the mixture is kneaded to obtain an injection molding raw material (injection molding compound). As the organic binder that can be used here, any known binder mainly consisting of thermoplastic resins, waxes, plasticizers, or mixtures thereof can be used, and if necessary, lubricants, degreasing accelerators, etc. can be used. May be added.

【0027】熱可塑性樹脂としては、アクリル系、ポリ
エチレン系、ポリプロピレン系およびポリスチンレン系
等の一種、あるいは二種以上を混合および/または共重
合して用いることができる。ワックス類としては、密ろ
う、木ろう、モンタンワックス等の天然ろう、低分子ポ
リエチレン、マイクロクリスタリンワックス、パラフィ
ンワックス等の合成ろう等の一種あるいは二種以上を混
合して用いることができる。
[0027] As the thermoplastic resin, one or more of acrylic, polyethylene, polypropylene, polystyrene, etc. can be used as a mixture and/or copolymerized. As waxes, one or a mixture of two or more of natural waxes such as beeswax, wood wax, and montan wax, and synthetic waxes such as low-molecular polyethylene, microcrystalline wax, and paraffin wax can be used.

【0028】可塑剤は、バインダの主成分により適宜選
択すればよく、フタル酸ジ−2−エチルヘキシル(DO
P)、フタル酸ジエチル(DEP)、フタル酸ジ−n−
ブチル(DBP)等が例示できる。また、ワックス類を
可塑剤として兼用できる。
The plasticizer may be appropriately selected depending on the main components of the binder, and may be selected from di-2-ethylhexyl phthalate (DO
P), diethyl phthalate (DEP), di-n-phthalate
An example is butyl (DBP). Further, waxes can also be used as plasticizers.

【0029】潤滑剤としては、高級脂肪酸、脂肪酸アミ
ド、脂肪酸エステル等が適用可能であり、場合によって
はワックス類を潤滑剤として兼用してもよい。また、必
要に応じ、脱脂促進剤として樟脳等の昇華性物質を添加
してもよい。
As the lubricant, higher fatty acids, fatty acid amides, fatty acid esters, etc. can be used, and in some cases, waxes may also be used as the lubricant. Further, if necessary, a sublimable substance such as camphor may be added as a degreasing accelerator.

【0030】なお、このようなバインダと原料粉末との
混合比は、通常30:70〜70:30vol%程度で
ある。原料粉末とバインダとの混練方法は、特に制限は
なく、加圧ニーダ、バンバリーミキサ、2軸押出し機等
の各種のニーダ等によればよい。このようにして調整し
た射出成形用コンパウンド(成形原料)は、必要に応じ
ペレタイザ、粉砕機等を用いて造粒を行い、ペレットと
してもよい。
[0030] The mixing ratio of such binder and raw material powder is usually about 30:70 to 70:30 vol%. The method of kneading the raw material powder and the binder is not particularly limited, and various kneaders such as a pressure kneader, Banbury mixer, twin-screw extruder, etc. may be used. The injection molding compound (molding raw material) prepared in this manner may be granulated using a pelletizer, a pulverizer, etc., as necessary, to form pellets.

【0031】ついで、得られた射出成形用コンパウンド
(成形原料)を射出成形して成形体を作成する。この射
出成形工程には、通常のプラスチック用射出成形機が使
用できる。この際、射出成形圧力は500〜2500k
gf/cm2 程度、射出成形機のシリンダ温度は10
0〜250℃程度である。金型温度は、5〜50℃程度
である。
Next, the obtained injection molding compound (molding raw material) is injection molded to produce a molded article. A normal injection molding machine for plastics can be used for this injection molding process. At this time, the injection molding pressure is 500-2500k
gf/cm2, the cylinder temperature of the injection molding machine is 10
The temperature is about 0 to 250°C. The mold temperature is about 5 to 50°C.

【0032】得られた射出成形体は、加熱炉中、公知の
方法で脱脂する。加熱炉内の雰囲気は、大気、窒素やア
ルゴンなどの不活性ガス、水素などの還元性ガスや真空
が利用できる。脱脂体の形状を左右する200℃程度未
満の低温では、バインダ除去を促進するために、真空雰
囲気を利用するのが好ましい。さらに好ましくは、真空
排気しながら不活性ガス等を導入する方法が好ましい。 バインダを除去しながら、最高温度400〜800℃ま
で昇温し、必要に応じて保持を行い脱脂を完了する。こ
の際の昇温速度は、通常、10℃/時間〜10℃/分程
度である。
The obtained injection molded article is degreased in a heating furnace by a known method. The atmosphere in the heating furnace can be air, an inert gas such as nitrogen or argon, a reducing gas such as hydrogen, or a vacuum. At low temperatures of less than about 200° C., which affect the shape of the degreased body, it is preferable to use a vacuum atmosphere in order to promote binder removal. More preferably, a method of introducing an inert gas or the like while evacuation is performed is more preferable. While removing the binder, the temperature is raised to a maximum temperature of 400 to 800°C, and maintained as necessary to complete degreasing. The temperature increase rate at this time is usually about 10°C/hour to 10°C/minute.

【0033】このようにして得られた脱脂体に、前述の
通り本発明の3段階からなる焼結を行って、高密度、低
O含有、内外で均一なCr含有かつ、C量がよく調整さ
れた焼結マルテンサイト系ステンレス鋼を得ることがで
きる。
The degreased body thus obtained is subjected to the three-step sintering process of the present invention as described above, resulting in high density, low O content, uniform Cr content inside and outside, and well-controlled C content. sintered martensitic stainless steel can be obtained.

【0034】[0034]

【実施例】以下、実施例に基づいて本発明を具体的に説
明する。 (実施例1)原料粉末として平均粒径9.7μm、SU
S416組成の水アトマイズ粉を用意した。この原料粉
末のCおよびO量は、各々、0.15%および0.55
%であった。この原料粉末100gに対して、有機バイ
ンダを10.2g添加、混練して成形原料を得た。有機
バインダは、熱可塑性樹脂としてアクリル樹脂30%、
EVA(エチレン−酢酸ビニル共重合体)樹脂25%、
可塑剤としてDOP(フタル酸ジオクチル)15%およ
びワックス類としてパラフィンワックス30%より成る
ものである。この成形原料を150℃で射出成形機を用
いて射出成形して、幅20、長さ20、厚さ2.5mm
の板状試験片を射出成形体として作製した。この成形体
(板状試験片)を加熱炉中、窒素ガス流通下、48時間
かけて最高600℃まで昇温して、脱脂を行った。得ら
れた脱脂体は、外観上欠陥は無く、健全なものであった
EXAMPLES The present invention will be specifically explained below based on examples. (Example 1) Average particle size 9.7 μm as raw material powder, SU
Water atomized powder having a composition of S416 was prepared. The amounts of C and O in this raw material powder are 0.15% and 0.55%, respectively.
%Met. To 100 g of this raw material powder, 10.2 g of an organic binder was added and kneaded to obtain a molding raw material. The organic binder is 30% acrylic resin as thermoplastic resin,
25% EVA (ethylene-vinyl acetate copolymer) resin,
It consists of 15% DOP (dioctyl phthalate) as a plasticizer and 30% paraffin wax as a wax. This molding raw material was injection molded using an injection molding machine at 150°C, and the width was 20 mm, the length was 20 mm, and the thickness was 2.5 mm.
A plate-shaped test piece was prepared as an injection molded article. This molded body (plate-shaped test piece) was heated to a maximum temperature of 600° C. over 48 hours in a heating furnace under nitrogen gas flow to perform degreasing. The obtained degreased body had no defects in appearance and was sound.

【0035】次いで、この脱脂体を0.0001Tor
rの真空中、1100℃で1時間保持し、続いて、メタ
ン含有ガス中、1050℃で3時間保持し、さらに、ア
ルゴン中、1340℃で2時間保持して本発明の最も特
徴とする焼結を行った。ここで、メタン含有ガスは、0
.27%のメタンと残水素よりなるものを使用した。 途中の昇降温は、いずれも、10℃/分で変化させた。 比較のため、本発明の焼結工程の第2段階であるメタン
含有ガス中の3時間の処理を省いた以外同様にして比較
用の焼結を行った。こうして得られた焼結体の特性を表
1にまとめた。
[0035] Next, this degreased body was heated to 0.0001 Torr.
The most characteristic feature of the present invention is to carry out the calcination process by holding at 1100°C for 1 hour in a vacuum of I made a conclusion. Here, the methane-containing gas is 0
.. A mixture consisting of 27% methane and residual hydrogen was used. The temperature was raised and lowered at a rate of 10° C./min during the test. For comparison, sintering was performed in the same manner except that the second step of the sintering process of the present invention, which was the 3-hour treatment in a methane-containing gas, was omitted. The properties of the sintered body thus obtained are summarized in Table 1.

【0036】[0036]

【表1】[Table 1]

【0037】表1からも明らかなように、いずれの焼結
によっても、安定して低いO含有量(%)と、安定した
焼結密度が得られ、Cr濃度の表面と内部との差の無い
焼結体が得られる。しかし、得られるC量は、本発明に
よってはじめて精度良く制御できることが、本発明例の
焼結体のC量の標準偏差より明らかである。また、比較
例1においては、一部の焼結体のC量が0.15%を超
え、規格を外れてしまった。なお、平均および標準偏差
を求める際の標本の数はnで表中に示した。
As is clear from Table 1, a stable low O content (%) and a stable sintered density can be obtained by any sintering method, and the difference in Cr concentration between the surface and the inside can be reduced. A sintered body with no However, it is clear from the standard deviation of the C content of the sintered bodies of the examples of the present invention that the obtained C content can be precisely controlled only by the present invention. Furthermore, in Comparative Example 1, the C content of some of the sintered bodies exceeded 0.15%, which was out of specification. The number of samples used to calculate the average and standard deviation is indicated in the table as n.

【0038】(実施例2)実施例1と全く同様にして脱
脂体を用意した。表2に示すように本発明の焼結工程の
3つの段階の焼結条件を種々変化させて、前記脱脂体か
ら種々の焼結体を得、得られた焼結体の特性を調べ、本
発明の効果を調べた。表2中に特に記載のない条件は、
実施例1と同様のものである。
(Example 2) A degreased body was prepared in exactly the same manner as in Example 1. As shown in Table 2, various sintered bodies were obtained from the degreased body by varying the sintering conditions in the three stages of the sintering process of the present invention, and the characteristics of the obtained sintered bodies were investigated. The effects of the invention were investigated. Conditions not specified in Table 2 are as follows:
This is similar to Example 1.

【0039】[0039]

【表2】[Table 2]

【0040】表2より明らかなように、本発明の焼結方
法で得られた材料(本発明例)はいずれも、比較例に比
べて安定的に高密度と低O含有量が得られ、焼結体の表
面Cr濃度も内部Cr濃度と有意差がないばかりでなく
、そのC含有量(%)の標準偏差が小さいものであった
。これに対し、第1段階の焼結を低真空度でおこなった
場合(比較例2)には、脱脂体中のCとOとの反応が不
十分であるため、C含有量(%)、O含有量(%)とも
に高く、これら不純物の焼結阻害の効果のため、低密度
となってしまった。また、第1段階の温度が高すぎる場
合(比較例3)も、脱脂体中のCとOとの反応が不十分
で、比較例2と同様の問題を生じた。一方、温度が高す
ぎる場合(比較例4)は、表面Cr濃度が内部に比較し
て著しく低いものとなってしまう。
As is clear from Table 2, all of the materials obtained by the sintering method of the present invention (examples of the present invention) stably have higher density and lower O content than the comparative examples. Not only was the surface Cr concentration of the sintered body not significantly different from the internal Cr concentration, but the standard deviation of the C content (%) was small. On the other hand, when the first stage of sintering was performed in a low vacuum (Comparative Example 2), the reaction between C and O in the degreased body was insufficient, so the C content (%) Both the O content (%) was high, and the density was low due to the sintering inhibiting effect of these impurities. Furthermore, when the temperature in the first stage was too high (Comparative Example 3), the reaction between C and O in the degreased body was insufficient, resulting in the same problem as Comparative Example 2. On the other hand, if the temperature is too high (Comparative Example 4), the surface Cr concentration will be significantly lower than that inside.

【0041】さらに、第2段階の温度が低い場合(比較
例5)は、C拡散の速度が十分高くないので、C量が低
いものとなった。一方、第2段階の温度が高すぎる場合
(比較例6)は、雰囲気のカーボンポテンシャルの変動
が激しいため、得られた焼結体のC含有量(%)の標準
偏差は、大きいものとなった。さらに、第3段階の焼結
温度が低い場合(比較例7)の場合は、表面Crの濃度
が低くなり、第3段階の焼結温度が高い場合(比較例8
)の場合は、焼結中に液相が生成したため、形状に歪み
がでた。
Furthermore, when the temperature in the second stage was low (Comparative Example 5), the rate of C diffusion was not sufficiently high, so the amount of C was low. On the other hand, when the temperature in the second stage is too high (Comparative Example 6), the standard deviation of the C content (%) of the obtained sintered body becomes large because the carbon potential of the atmosphere fluctuates rapidly. Ta. Furthermore, when the sintering temperature in the third stage is low (Comparative Example 7), the surface Cr concentration is low, and when the sintering temperature in the third stage is high (Comparative Example 8), the surface Cr concentration is low.
), the shape was distorted because a liquid phase was generated during sintering.

【0042】以上の結果から明らかなように、本発明法
によって、はじめて健全なマルテンサイト系ステンレス
鋼焼結材料を精度よく製造することができることがわか
る。
As is clear from the above results, it can be seen that by the method of the present invention, a sound martensitic stainless steel sintered material can be manufactured with high precision for the first time.

【0043】[0043]

【発明の効果】以上詳述したように、本発明によれば、
射出成形を利用してマルテンサイト系ステンレス鋼焼結
体を製造する際に、射出成形体を脱脂後焼結する焼結工
程を3段階で構成し、第1段階で原料粉末中の酸化物の
還元の促進とCrの蒸発の抑制を図り、第2段階で炭化
水素含有ガス雰囲気中でC含有量の制御を行い、第3段
階で第1段階で生じるCr濃度低下の修復および焼結緻
密化を図りつつ焼結を行うことにより、高密度、低O含
有量で、表面Crが内部と同レベルであるばかりでなく
、焼結体C含有量が目標通り精度よく制御された焼結マ
ルテンサイト系ステンレス鋼を製造できる。
[Effects of the Invention] As detailed above, according to the present invention,
When producing a martensitic stainless steel sintered body using injection molding, the sintering process consists of three steps in which the injection molded body is degreased and then sintered. In order to promote reduction and suppress Cr evaporation, in the second stage, the C content is controlled in a hydrocarbon-containing gas atmosphere, and in the third stage, the decrease in Cr concentration that occurs in the first stage is repaired and sintering is densified. By performing sintering while aiming for the following, we can produce sintered martensite that not only has high density and low O content, and has surface Cr at the same level as the inside, but also has a sintered body C content precisely controlled as desired. Can produce stainless steel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Cを除外した成分がステンレス鋼組成
をもつ粉末を原料とし、この原料粉末に有機バインダを
添加、混練して成形原料を得る工程、この成形原料を射
出成形して成形体を得る工程、この成形体より前記有機
バインダを除去して脱脂体を得る工程、およびこの脱脂
体を焼結して焼結体を得る焼結工程より構成され、前記
焼結工程が、順次、30Torr以下の減圧下、900
〜1300℃で保持する第1の段階、炭化水素含有ガス
雰囲気中、900〜1200℃で保持する第2の段階、
非酸化性ガス雰囲気中、1250〜1400℃で保持す
る第3の段階より構成されることを特徴とする焼結マル
テンサイト系ステンレス鋼の製造方法。
Claim 1: A process in which a powder having a stainless steel composition excluding C is used as a raw material, an organic binder is added to this raw powder and kneaded to obtain a molding raw material, and a molded body is obtained by injection molding this molding raw material. a step of removing the organic binder from this molded body to obtain a degreased body, and a sintering process of sintering this degreased body to obtain a sintered body, and the sintering process is performed sequentially at a temperature of 30 Torr. Under reduced pressure of less than 900
a first stage held at ~1300°C; a second stage held at 900-1200°C in a hydrocarbon-containing gas atmosphere;
A method for producing sintered martensitic stainless steel, comprising a third step of maintaining the temperature at 1250 to 1400°C in a non-oxidizing gas atmosphere.
JP3841791A 1991-03-05 1991-03-05 Production of sintered martensitic stainless steel Withdrawn JPH04276041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3841791A JPH04276041A (en) 1991-03-05 1991-03-05 Production of sintered martensitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3841791A JPH04276041A (en) 1991-03-05 1991-03-05 Production of sintered martensitic stainless steel

Publications (1)

Publication Number Publication Date
JPH04276041A true JPH04276041A (en) 1992-10-01

Family

ID=12524738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3841791A Withdrawn JPH04276041A (en) 1991-03-05 1991-03-05 Production of sintered martensitic stainless steel

Country Status (1)

Country Link
JP (1) JPH04276041A (en)

Similar Documents

Publication Publication Date Title
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
JPH02194105A (en) Method for degreasing injection-molded body
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
GOSTOTO et al. Effect of sintering parameters on the density, microstructure and mechanical properties of the niobium-modified heat-resistant stainless steel GX40CrNiSi25-20 produced by MIM technology
JPH0254733A (en) Manufacture of ti sintered material
JP2007277603A (en) Method for producing sintered compact, and sintered compact
JPH04276041A (en) Production of sintered martensitic stainless steel
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH0257664A (en) Fe-si soft magnetic sintered material and its manufacture
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH0257661A (en) Manufacture of high-nitrogen stainless steel sintered body
JP2743974B2 (en) Control method of carbon content and oxygen content of degreased molded body in metal powder injection molding method
KR930006442B1 (en) Sintered fe-co type magnetic materials
JPH03173702A (en) Production of sintered body
JP2797166B2 (en) Method for controlling carbon content of metal powder compact
JP2000355704A (en) METHOD FOR CONTROLLING CARBON CONTENT AND OXYGEN CONTENT IN DEGREASED MOLDING IN INJECTION MOLDING METHOD OF Ti-Al ALLOY
JPH03271302A (en) Manufacture of powder sintered product
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JPH03257101A (en) Method for degreasing powder green compact
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision
JPH0257660A (en) Manufacture of sintered alloy steel having excellent corrosion resistance
JPH0257614A (en) Degreasing method
JPH06316704A (en) Production of metallic sintered body

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514