JPH06316704A - Production of metallic sintered body - Google Patents

Production of metallic sintered body

Info

Publication number
JPH06316704A
JPH06316704A JP12485293A JP12485293A JPH06316704A JP H06316704 A JPH06316704 A JP H06316704A JP 12485293 A JP12485293 A JP 12485293A JP 12485293 A JP12485293 A JP 12485293A JP H06316704 A JPH06316704 A JP H06316704A
Authority
JP
Japan
Prior art keywords
degreasing
metal powder
metal
molded body
thermoplastic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12485293A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Katou
欽之 加藤
Okie Nakabayashi
興栄 中林
Tatsuhiro Shimura
辰裕 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Metals Co Ltd
Original Assignee
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Metals Co Ltd filed Critical Pacific Metals Co Ltd
Priority to JP12485293A priority Critical patent/JPH06316704A/en
Publication of JPH06316704A publication Critical patent/JPH06316704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered body excellent in corrosion resistance, magnetic properties or the like, at the time of obtaining a sintered body by subjecting the injection molded body of a mixture of metal powder and a thermoplastic binder to degreasing and sintering, by specifying the degreasing ratio of carbon. CONSTITUTION:An injection molded body is produced from a mixture obtd. by mixing metal powder and a thermoplastic binder in a prescribed ratio. In the stage of degreasing the thermoplastic binder from the same molded body, the degreasing is executred so as to regulate the degreasing ratio of carbon to be >=99%. The degreasing stage can be executed by various methods, but, degreasing by a degreasing furnace in an oxidizing atmosphere is preferable, thereby, oxidized films are formed on the surface of the metal powder, the films are mutually bonded to increase the strength of the metallic molded body, and the subsequent treating is made easy. According to the kinds of the metal powder to be applied, degreasing can be executed in air, but, in a gaseous mixture of oxygen and an inert gas, degreasing can be executed in such a manner that the mixing ratio of both is changed in accordance with the affinity of the metal powder and oxygen. Furthermore, the state of the pressure in the atmosphere is regulated to the ordinary one or reduced one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末と熱可塑性結
合剤とを所定の割合で混合した混合物から射出成形体を
作り、該射出成形体から熱可塑性結合剤を脱脂する脱脂
工程を経て、その後焼結して金属焼結体を得る、金属焼
結体の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention provides an injection molded body from a mixture of metal powder and a thermoplastic binder at a predetermined ratio, and a degreasing step of degreasing the thermoplastic binder from the injection molded body. The present invention relates to a method for producing a metal sintered body, which is then sintered to obtain a metal sintered body.

【0002】[0002]

【従来の技術】機械構成部品は、色々な方法で製作ある
いは製造することができるが、金属粉末からは一般に次
のようにして製造されている。すなわち金属元素粉末あ
るいは合金粉末に、流動性、可塑作用、浸潤作用、硬化
作用等を与えるために熱可塑性結合剤を添加して混練
し、得られた混合物を例えば所望の形状に射出成形して
金属射出成形体を成形し、そしてこの射出成形体から熱
可塑性結合剤を除去し、次いで焼結している。ところ
で、前述の説明からも明らかなように、熱可塑性結合剤
は色々な機能を有するが、主な機能は、金属粉末を混練
し射出機により射出成形し、そして得られた金属射出成
形体を炉内で焼結するまで、射出成形体を所定の形状に
保つ機能であり、熱可塑性結合剤が射出成形体中に残存
すれば、焼結時に金属粉末と反応又は混入して金属焼結
体に悪影響を与える。そこで射出成形体から熱可塑性結
合剤を除去する脱脂工程が焼結前に実施されている。
2. Description of the Related Art Mechanical components can be manufactured or manufactured by various methods, but are generally manufactured from metal powder as follows. That is, to the metal element powder or alloy powder, a thermoplastic binder is added in order to impart fluidity, plasticizing action, infiltrating action, hardening action, etc. and kneaded, and the obtained mixture is injection-molded into a desired shape, for example. A metal injection molded body is molded and the thermoplastic binder is removed from the injection molded body and then sintered. By the way, as is clear from the above description, the thermoplastic binder has various functions, but the main function is to knead the metal powder and perform injection molding with an injection machine, and obtain the obtained metal injection molded article. The function is to keep the injection-molded body in a predetermined shape until it is sintered in the furnace. If the thermoplastic binder remains in the injection-molded body, it reacts with or mixes with the metal powder during sintering, and the metal-sintered body Adversely affect. Therefore, a degreasing step of removing the thermoplastic binder from the injection molded body is performed before sintering.

【0003】金属射出成形体から熱可塑性結合剤を除去
する脱脂方法は、文献名を挙げるまでもなく従来周知
で、不活性雰囲気中あるいは真空雰囲気中で加熱して脱
脂する方法、溶媒中で脱脂する方法、赤外線を照射して
熱可塑性結合剤を分解する方法等が知られ、これらの方
法は工業的にも実施されている。不活性雰囲気中で脱脂
する理由は、脱脂中に金属射出成形体が酸化することを
防ぐためであり、酸化を防止するためには、水素ガス等
の還元性雰囲気で脱脂する方法も、さらには金属射出成
形体が酸化しにくい低温域の溶媒中で脱脂する方法も実
施されている。これに対し、特開平4ー285102号
公報により酸素を含有する雰囲気中で脱脂する脱脂方法
も提案されている。
A degreasing method for removing a thermoplastic binder from a metal injection-molded article is well known in the art without mentioning a literature name. A method of degreasing by heating in an inert atmosphere or a vacuum atmosphere, a degreasing in a solvent And a method of decomposing the thermoplastic binder by irradiating infrared rays, and these methods are industrially practiced. The reason for degreasing in an inert atmosphere is to prevent the metal injection-molded body from being oxidized during degreasing, and in order to prevent oxidation, a method of degreasing in a reducing atmosphere such as hydrogen gas may also be used. A method of degreasing in a solvent in a low temperature range in which a metal injection-molded body is hard to oxidize is also practiced. On the other hand, Japanese Patent Application Laid-Open No. 4-285102 proposes a degreasing method of degreasing in an atmosphere containing oxygen.

【0004】一方、金属射出成形体の成形に使用されて
いる熱可塑性結合剤は、例えば特開昭61ー96001
号、同62ー87234号公報等にも記載されているよ
うに、一般にポリオキシエチエレン、ワックス、ブチル
ステアレート等の混合物であり、熱可塑性有機物を主成
分としている。したがって、熱可塑性結合剤の構成元素
は、炭素、水素、窒素、酸素等である。
On the other hand, a thermoplastic binder used for molding a metal injection molded body is, for example, Japanese Patent Laid-Open No. 61-96001.
As described in JP-A No. 62-87234 and the like, it is generally a mixture of polyoxyethylene, wax, butyl stearate and the like, and contains a thermoplastic organic substance as a main component. Therefore, the constituent elements of the thermoplastic binder are carbon, hydrogen, nitrogen, oxygen and the like.

【0005】[0005]

【発明が解決しようとする課題】このように、金属射出
成形体から焼結体を得る前に、熱可塑性結合剤を除去す
る脱脂方法は色々提案されおり、これらの方法を適宜採
用することによって焼結金属製品にとって有害な熱可塑
性結合剤は除去される。ところで、現在使用されている
熱可塑性結合剤の構成元素は、炭素、水素、窒素、酸素
等であり、これらの元素は射出成形体中に残存すると、
前述したように、焼結体の金属特性を著しく阻害する元
素であが、特に炭素の影響が大きい。そこで、脱脂した
後に射出成形体中の[O]と[C]の残存量を化学量論
的にコントロールし、C+2O→CO2 の反応を焼結
時に行い、脱酸、脱炭を同時に行う方法も実施されてい
る。しかしながら、射出成形体中の[O]と[C]を任
意にコントロールすることは、技術的に極めて難しく、
両元素のバランスが崩れ、射出成形体中の[O]や
[C]の一方の量が異常に高くなる恐れがある。特に、
[O]が低レベルで、[C]の量が大きくなると、後処
理で[C]は除去できず、焼結体の成分不良によるロス
は避けられなくなる。
As described above, various degreasing methods for removing the thermoplastic binder before obtaining the sintered body from the metal injection-molded body have been proposed, and by appropriately adopting these methods. Thermoplastic binders harmful to the sintered metal products are removed. By the way, the constituent elements of the thermoplastic binders currently used are carbon, hydrogen, nitrogen, oxygen, etc., and if these elements remain in the injection molded body,
As described above, although it is an element that significantly impairs the metal characteristics of the sintered body, carbon has a particularly large effect. Therefore, there is also a method in which the residual amounts of [O] and [C] in the injection-molded body after degreasing are stoichiometrically controlled, and the reaction of C + 2O → CO2 is performed at the time of sintering to simultaneously perform deoxidation and decarburization. It has been implemented. However, it is technically extremely difficult to arbitrarily control [O] and [C] in the injection molded body,
The balance of both elements may be lost, and the amount of one of [O] and [C] in the injection-molded product may become abnormally high. In particular,
When [O] is at a low level and the amount of [C] is large, [C] cannot be removed by post-treatment, and loss due to defective components of the sintered body cannot be avoided.

【0006】前述したように、金属射出成形体から所定
品位の金属焼結体を得るために、脱脂はされているが、
特開平4ー285102号公報にも開示されているよう
に、5〜10%の熱可塑性結合剤を残しているのが実状
である。このような量の熱可塑性結合剤を残すと、0.
06〜0.08%程度の炭素がグリーン体に残存するこ
とになる。その結果、所定品位の金属焼結体が得られて
いない。特に、不銹鋼中に0.06%以上の炭素が残存
すると、耐食性が著しく低下し、また磁性材料中にこの
ような量の炭素が含まれると、磁気特性が同様に低下す
る。本発明は、上記したような従来の欠点を解決しよう
とするもので、具体的には現在使用されている熱可塑性
結合剤を使用しても所定品位の金属焼結体、すなわち耐
食性、磁気特性等に優れた金属焼結体を得ることのでき
る金属焼結体の製造方法を提供することを目的としてい
る。
As described above, degreasing is performed in order to obtain a predetermined quality metal sintered body from the metal injection molded body.
As disclosed in Japanese Patent Application Laid-Open No. 4-285102, it is the actual situation that 5 to 10% of the thermoplastic binder remains. Leaving such an amount of thermoplastic binder,
About 06 to 0.08% of carbon remains in the green body. As a result, a predetermined quality metal sintered body is not obtained. In particular, when 0.06% or more of carbon remains in the stainless steel, the corrosion resistance is significantly reduced, and when such amount of carbon is contained in the magnetic material, the magnetic properties are similarly deteriorated. The present invention is intended to solve the above-mentioned conventional drawbacks. Specifically, even if the currently used thermoplastic binder is used, a predetermined quality metal sintered body, that is, corrosion resistance and magnetic properties are obtained. It is an object of the present invention to provide a method for producing a metal sintered body, which is capable of obtaining a metal sintered body having excellent properties.

【0007】[0007]

【課題を解決するための手段】本発明は、前記目的を達
成するために、金属粉末と熱可塑性結合剤とを所定の割
合で混合した混合物から射出成形体を作り、該射出成形
体から前記熱可塑性結合剤を脱脂する脱脂工程を経て、
その後焼結して金属焼結体を得るとき、前記脱脂工程に
おいて前記熱可塑性結合剤を、炭素の脱脂率が99%以
上になるように脱脂するように構成される。
In order to achieve the above object, the present invention provides an injection-molded article from a mixture of metal powder and a thermoplastic binder in a predetermined ratio, and the injection-molded article is used to After the degreasing process of degreasing the thermoplastic binder,
Then, when the metal sintered body is obtained by sintering, the thermoplastic binder is degreased in the degreasing step so that the degreasing rate of carbon is 99% or more.

【0008】[0008]

【作用】本発明における金属粉末とは、金属元素又は合
金元素単独あるいは金属元素又は合金元素の1種もしく
は2種以上の混合物を称する。実用的な例としては例え
ばPBー48、PCー78に代表されるニッケル基磁性
材料用合金鋼粉末、50CoーFeに代表されるコバル
ト基基磁性材料用合金鋼粉末、インバー、スーパーイン
バーおよびコバールに代表される合金鋼粉末、あるいは
ステンレス鋼粉末、SKH61、SKH57等の高速度
鋼粉末等が適用できる。これらの金属粉末は、いずれも
金属射出成形体から熱可塑性結合剤を除去する脱脂工程
を酸化性雰囲気中で実施すると、金属粉末の表面に酸化
皮膜が形成され、金属粉末相互の結合が促進される金属
元素あるいは合金粉末である。
The metal powder in the present invention refers to a metal element or alloy element alone or a mixture of one or more metal elements or alloy elements. Practical examples include alloy steel powders for nickel-based magnetic materials represented by PB-48 and PC-78, alloy steel powders for cobalt-based magnetic materials represented by 50Co-Fe, Invar, Super Invar and Kovar. The alloy steel powder represented by the above, the stainless steel powder, the high speed steel powder such as SKH61 and SKH57, and the like can be applied. In all of these metal powders, when a degreasing step of removing the thermoplastic binder from the metal injection molded body is carried out in an oxidizing atmosphere, an oxide film is formed on the surface of the metal powders and the mutual bonding of the metal powders is promoted. It is a metal element or alloy powder.

【0009】これらの金属粉末は、例えば特開昭56ー
108802号に開示されているような還元法、ガス噴
霧法、真空噴霧法、回転消耗電極法等により得ることが
できる。しかしながら、溶湯金属に水を介して機械的エ
ネルギを作用させて粉砕し、粉砕された溶湯金属を冷却
凝固させて金属粉末を得る水アトマイズ法を適用する
と、得られる金属粉末の形状が不規則で、金属粉末間の
結合力が強く、成形される金属射出成形体の強度が高く
なる。したがって、略完全に脱脂することができる。
These metal powders can be obtained, for example, by a reduction method, a gas atomization method, a vacuum atomization method, a rotating consumable electrode method, etc. as disclosed in JP-A-56-108802. However, when applying a water atomizing method in which mechanical energy is applied to molten metal through water to crush it, and the crushed molten metal is cooled and solidified to obtain metal powder, the shape of the obtained metal powder is irregular. Since the bonding force between the metal powders is strong, the strength of the metal injection molded body to be molded becomes high. Therefore, degreasing can be performed almost completely.

【0010】本発明に適用される粉末金属の粒径は、焼
結できる粒径であれば、格別限定されない。しかしなが
ら、脱脂後の射出成形体の強度、金属粉末を得るコスト
等を考慮すれば、1〜70μm好ましくは2〜45μm
の金属粉末を適用するのが好ましい。また金属粉末の種
類も問わない。すなわち金属粉末は単体の金属又は合
金、あるいはこれらの1種または2種以上の混合物でも
良い。
The particle size of the powder metal applied to the present invention is not particularly limited as long as it can be sintered. However, considering the strength of the injection-molded body after degreasing, the cost for obtaining the metal powder, etc., 1 to 70 μm, preferably 2 to 45 μm
It is preferable to apply the metal powder of Further, the type of metal powder does not matter. That is, the metal powder may be a single metal or an alloy, or one or a mixture of two or more thereof.

【0011】熱可塑性結合剤には、成形性や脱脂作用に
優れたものであれば、従来より使用されている熱可塑性
結合剤を適用することができる。例えばワックス、エチ
ルアルコールを溶媒としたポリビニルブチラール、トル
エンを溶媒とした塩化ビニル樹脂、酢酸ブチルを溶媒と
した塩化ビニル樹脂等の混合物が適用される。あるいは
パラフインワックス、エチレンアクリレート、ポリエチ
レン等の混合物が適用できる。いずれにしても、金属粉
末に流動性を与える作用、可塑作用、浸潤作用、硬化作
用等を奏するような熱可塑性結合剤が適用される。
As the thermoplastic binder, conventionally used thermoplastic binders can be applied as long as they are excellent in moldability and degreasing action. For example, a mixture of wax, polyvinyl butyral using ethyl alcohol as a solvent, vinyl chloride resin using toluene as a solvent, and vinyl chloride resin using butyl acetate as a solvent is applied. Alternatively, a mixture of paraffin wax, ethylene acrylate, polyethylene and the like can be applied. In any case, a thermoplastic binder that exerts a fluidizing action, a plasticizing action, a wetting action, a hardening action and the like on the metal powder is applied.

【0012】上記のようにして選定される金属粉末と、
熱可塑性結合剤は、従来周知の例えば混合機に入れ、所
定温度の下で所定時間混練してペレタイザでペレット化
し、そしてコンパウンドとする。混練時の温度は、熱可
塑性結合剤の種類にもよるが80〜160度Cであり、
温度を高めにすると、混練時間を短縮できる。射出成形
に必要な射出機、金型装置等は、従来周知のものが適用
される。そして本発明によると、ジャイロスコープ用モ
ータのロータ、小型モータ用インペラ等の形状が複雑な
製品を製造することができる。
A metal powder selected as described above,
The thermoplastic binder is put into a well-known mixer, kneaded at a predetermined temperature for a predetermined time, pelletized by a pelletizer, and made into a compound. The temperature at the time of kneading is 80 to 160 ° C., depending on the kind of the thermoplastic binder,
Kneading time can be shortened by raising the temperature. As an injection machine and a mold device necessary for injection molding, conventionally known ones are applied. Further, according to the present invention, it is possible to manufacture a product having a complicated shape such as a rotor of a gyroscope motor and an impeller for a small motor.

【0013】上記のようにして得られた金属射出成形体
から脱脂する脱脂工程は、前述した色々な方法で実施で
きるが、酸化性雰囲気中の脱脂炉で脱脂するのが望まし
い。酸化性雰囲気中で脱脂すると、金属粉末の表面に酸
化皮膜が形成され、皮膜が相互に結合して金属射出成形
体の強度が増し、その後の取扱いが楽になるからであ
る。酸化性雰囲気中の酸素の濃度は、金属射出成形体の
要素である金属粉末の酸素に対する親和力の差に応じて
20〜70%に調節される。空気は約21%の酸素を含
んでいるので、適用する金属粉末の種類によっては、空
気中で脱脂することができる。空気中で脱脂することに
より、脱脂工程のコストを大幅に下げることができる。
このように、空気中でも脱脂できるので、本実施例でい
う酸化性雰囲気中とは、通常は空気中のことを意味する
が、また当然ながら酸素と窒素ガス、アルゴン、ヘリウ
ム等の不活性ガスとの混合ガス雰囲気中も意味してい
る。すなわち金属粉末と酸素との親和力に応じて、酸素
と不活性ガスとの混合比率を変えることにより適宜雰囲
気中の酸素濃度を調節することができる。また雰囲気中
の圧力は常圧もしくは減圧された状態である。
The degreasing step of degreasing the metal injection-molded article obtained as described above can be carried out by the various methods described above, but it is desirable to degrease in a degreasing furnace in an oxidizing atmosphere. This is because when degreasing is performed in an oxidizing atmosphere, an oxide film is formed on the surface of the metal powder, the films are bonded to each other, and the strength of the metal injection-molded article is increased, and the subsequent handling becomes easy. The oxygen concentration in the oxidizing atmosphere is adjusted to 20 to 70% according to the difference in the affinity of the metal powder, which is an element of the metal injection-molded article, for oxygen. Since air contains about 21% oxygen, it can be degreased in air, depending on the type of metal powder applied. By degreasing in air, the cost of the degreasing process can be significantly reduced.
In this way, since it can be degreased even in air, the oxidizing atmosphere in the present embodiment usually means in air, but of course oxygen and nitrogen gas, argon, and an inert gas such as helium. This also means in a mixed gas atmosphere. That is, the oxygen concentration in the atmosphere can be appropriately adjusted by changing the mixing ratio of oxygen and the inert gas according to the affinity between the metal powder and oxygen. The pressure in the atmosphere is either normal pressure or reduced pressure.

【0014】脱脂炉で脱脂するときは、脱脂炉内の温度
をコントロールし、所定の温度勾配で昇温する。温度勾
配は、熱可塑性結合剤の種類にもよるが、熱可塑性樹脂
の融点近くまでは勾配を小さくして、金属射出成形体の
変形を防止するのが望ましい。その後、金属粉末の表面
の酸化皮膜の形成をさらに促進するために、比較的高温
の500度Cにして脱脂することもできる。
When degreasing is performed in the degreasing furnace, the temperature inside the degreasing furnace is controlled and the temperature is raised with a predetermined temperature gradient. Although the temperature gradient depends on the kind of the thermoplastic binder, it is desirable to prevent the deformation of the metal injection-molded article by reducing the gradient up to near the melting point of the thermoplastic resin. Then, in order to further promote the formation of an oxide film on the surface of the metal powder, degreasing may be performed at a relatively high temperature of 500 ° C.

【0015】このように、空気雰囲気で脱脂しても、空
気中の炭素の量は炭酸ガスに換算して0.03%程度と
少ないので、炭素が金属焼結体へ及ぼす影響は小さい。
しかしながら、窒素ガス、アルゴンガス等の不活性ガス
に、20〜70%の酸素を加えた混合ガスを使用する
と、雰囲気ガスからくる炭素の影響をなくすことができ
る。
As described above, even if degreasing is performed in an air atmosphere, the amount of carbon in the air is as small as about 0.03% in terms of carbon dioxide gas, so that the effect of carbon on the metal sintered body is small.
However, when a mixed gas obtained by adding 20 to 70% oxygen to an inert gas such as nitrogen gas or argon gas is used, the effect of carbon from the atmospheric gas can be eliminated.

【0016】[0016]

【実施例】【Example】

実施例1:[金属粉末の調整] 磁性材料の代表的な鋼種である3%SiーFeについて
実施した。金属粉末は3%SiーFeを溶解し、水アト
マイズ法により得た。すなわち溶融体に高圧水を噴射し
てこれを粉砕し、冷却凝固させて金属粉末を得た。得ら
れた3%SiーFeの金属粉末の主な成分組成、平均粒
径および最大粒径を測定した。その結果を表1に示す。 表1 成分組成 元素 割合(Wt%) Si 3.05 C 0.028
Mn 0.010 S 0.0005 P 0.0010 Fe Bal 平均粒径 9.46μm 最大粒径 38μm
Example 1: [Preparation of metal powder] This was carried out for 3% Si-Fe, which is a typical steel type of magnetic material. The metal powder was obtained by dissolving 3% Si-Fe and using a water atomizing method. That is, high-pressure water was sprayed on the melt, which was crushed and cooled and solidified to obtain a metal powder. The main component composition, average particle size and maximum particle size of the obtained 3% Si-Fe metal powder were measured. The results are shown in Table 1. Table 1 Component composition Element ratio (Wt%) Si 3.05 C 0.028
Mn 0.010 S 0.0005 P 0.0010 Fe Bal Average particle size 9.46 μm Maximum particle size 38 μm

【0017】[コンパウンドの調整]上記金属粉末8
9.6重量%に、次の表2に示す組成を有する熱可塑性
結合剤10.4重量%を添加し、ニーダー中で100〜
130度Cの条件で45分混練し、次いでペレタイザー
でペレット化した。冷風で冷却してコンパウンドを得
た。 表2 成分 割合(Wt%) ポリオキシエチレンーポリ オキシプロピレン 縮合物系ポリエーテル 60 モンタンワックス 20 ブチルステアレート 10 パラフインワックス 10 [射出成形]ドットプリンター用ヨークを製造するため
に、上記コンパウンドを射出成形機により金型に射出し
グリーン体を得た。 [脱脂」このグリーン体を市販の脱脂炉に入れ、表3に
示す加熱パターンで脱脂した。なお、雰囲気ガスには大
気すなわち空気を使用した。このときの圧力は15〜6
0mmAqであった。 表3 温度 時間 昇温速度 常温〜 80度C 4 9度C/Hr 80〜 160度C 15 7度C/Hr 160〜450度C 22 14度C/Hr
[Preparation of compound] The above metal powder 8
To 9.6% by weight, 10.4% by weight of a thermoplastic binder having the composition shown in Table 2 below is added, and 100 to 100% in a kneader is added.
The mixture was kneaded for 45 minutes under the condition of 130 ° C, and then pelletized with a pelletizer. A compound was obtained by cooling with cold air. Table 2 Component ratio (Wt%) Polyoxyethylene-polyoxypropylene condensate-based polyether 60 Montane wax 20 Butyl stearate 10 Paraffin wax 10 [Injection molding] The above compound is injection molded to manufacture a dot printer yoke. It was injected into a mold by a machine to obtain a green body. [Degreasing] This green body was put in a commercially available degreasing furnace and degreased according to the heating pattern shown in Table 3. Atmosphere gas, that is, air was used. The pressure at this time is 15-6
It was 0 mmAq. Table 3 Temperature time Temperature rising rate Normal temperature to 80 degrees C 49 degrees C / Hr 80 to 160 degrees C 157 degrees C / Hr 160 to 450 degrees C 22 14 degrees C / Hr

【0018】上記の条件で脱脂し、炭素と酸素の量を測
定した。その結果を表4に示す。 表4 グリーン体 本実施例の脱脂した射出成形体 炭素(%) 6.4 0.05 酸素(ppm) 3.900 16.200 表4から明らかなように、実施例1によると、熱可塑性
結合剤中の炭素を99%以上脱脂しているにも拘らず、
脱脂した後の金属射出成形体を脱脂炉から取り出して移
動しても壊れるようなことはなかった。その理由は、金
属粉末の表面に酸化皮膜が形成され、皮膜が相互に結合
したからと考えられ、特にSiO2とFe23の反応が
進むために強度が落ちなかったためと考えられる。 [焼結]脱脂した後の金属射出成形体を、真空焼結炉で
1280度Cの温度で、3時間焼結して製品を得た。得
られた製品の成分組成を表5に示す。 表5 成分組成(Wt%) 元素 割合 Si 3.04 C 0.028
Mn 0.010 S 0.0005 P 0.0010 Fe Bal なお、焼結密度は98.2%であった。
Degreasing was performed under the above conditions, and the amounts of carbon and oxygen were measured. The results are shown in Table 4. Table 4 Green body Degreased injection molded body of this example Carbon (%) 6.4 0.05 Oxygen (ppm) 3.900 16.200 As is apparent from Table 4, according to Example 1, thermoplastic bonding Despite degreasing 99% or more of carbon in the agent,
Even if the metal injection-molded body after degreasing was taken out of the degreasing furnace and moved, it did not break. It is considered that the reason is that an oxide film was formed on the surface of the metal powder and the films were bonded to each other, and the strength did not decrease particularly because the reaction between SiO 2 and Fe 2 O 3 proceeded. [Sintering] The metal injection-molded body after degreasing was sintered in a vacuum sintering furnace at a temperature of 1280 ° C for 3 hours to obtain a product. The component composition of the obtained product is shown in Table 5. Table 5 Component composition (Wt%) Element ratio Si 3.04 C 0.028
Mn 0.010 S 0.0005 P 0.0010 Fe Bal The sintered density was 98.2%.

【0019】本実施例の製品の組成を示す表5と、原料
粉末の組成を示す表1において、組成特に炭素Cについ
て注目すると、本実施例では脱脂を略完全に行っている
ので、すなわち熱可塑性結合剤中の炭素を99%以上脱
脂しているので、製品の磁気特性に有害な炭素の増加は
全く見られない。図1は磁気特性値として重要なμmと
炭素含有量との関係を示す図であるが、この図から、従
来のように熱可塑性結合剤を10%も残すと炭素は0.
06%以上含み、μmは著しく低下することが判る。こ
れに対し、本実施例では製品中の炭素の増加量は見られ
ず、0.028%と低いためμmは高い値を維持してい
ることが判る。
In Table 5 showing the composition of the product of this example and Table 1 showing the composition of the raw material powder, paying attention to the composition, particularly carbon C, since degreasing is almost completely performed in this example, that is, heat Since 99% or more of the carbon in the plastic binder has been degreased, no increase in carbon harmful to the magnetic properties of the product is observed. FIG. 1 is a diagram showing the relationship between μm, which is an important magnetic property value, and carbon content. From this diagram, when 10% of the thermoplastic binder is left as in the conventional case, the carbon content is 0.
It can be seen that the content of 06% or more significantly reduces the μm. On the other hand, in this example, no increase in carbon in the product was observed, and it was found that μm maintains a high value because it is as low as 0.028%.

【0020】実施例2:[金属粉末の調整] ステンレス鋼の代表的な鋼種であるSUS304Lにつ
いて実施した。すなわちSUS304Lを溶解し、実施
例1と同様に水アトマイズ法により金属粉末を得た。得
られたSUS304L粉末の主な成分組成、粒度を測定
した。その結果を表6に示す。 表6 成分組成 元素 割合(Wt%) C 0.012 Ni 11.25 Cr 18.31 Si 1.00 Mn 0.18 S 0.004 P 0.028 Fe Bal 平均粒径 9.24μm 最大粒径 41.0 μm [射出成形]、[脱脂]、[焼結] コンパウンドの調整を実施例1と同様に行い、得られた
コンパウンドを射出成形機により金型に射出し、小型モ
ータ用インペラーのグリーン体を得た。脱脂および焼結
を実施例1と略同一の条件で実施した。焼結後の得られ
た製品の成分組成を表7に示す。 表7 組成成分 元素 割合(Wt%) C 0.011 Ni 11.23 Cr 18.30 Si 1.01 Mn 0.17 S 0.004 P 0.028 Fe Bal なお、焼結密度は98.3%であった。
Example 2: [Preparation of metal powder] This was carried out for SUS304L, which is a typical stainless steel type. That is, SUS304L was dissolved and a metal powder was obtained by the water atomizing method in the same manner as in Example 1. The main component composition and particle size of the obtained SUS304L powder were measured. The results are shown in Table 6. Table 6 Component composition Element ratio (Wt%) C 0.012 Ni 11.25 Cr 18.31 Si 1.00 Mn 0.18 S 0.004 P 0.028 Fe Bal Average particle size 9.24 μm Maximum particle size 41 0.0 μm [Injection molding], [Degreasing], [Sintering] The compounds were adjusted in the same manner as in Example 1, and the obtained compound was injected into a mold by an injection molding machine to produce a green body of an impeller for a small motor. Got Degreasing and sintering were performed under substantially the same conditions as in Example 1. Table 7 shows the component composition of the obtained product after sintering. Table 7 Composition components Element ratio (Wt%) C 0.011 Ni 11.23 Cr 18.30 Si 1.01 Mn 0.17 S 0.004 P 0.028 Fe Bal The sintered density is 98.3%. Met.

【0021】製品の成分組成と、原料金属粉末の成分組
成とを、特に炭素について比較すると、実施例1と同様
に、本実施例では脱脂を略完全に行っているので、すな
わち熱可塑性結合剤中の炭素を99%以上脱脂している
ので、製品の耐食性に有害な炭素の増加は全く見られな
い。図2は、SUS304Lステンレス鋼の孔食に及ぼ
す影響を示す図であるが、本実施例では製品中の炭素の
増加量は見られず、0.011%と低いため耐食性は極
めて優れていることが判る。
Comparing the component composition of the product with the component composition of the raw metal powder, particularly for carbon, as in Example 1, degreasing was performed almost completely in this example, that is, the thermoplastic binder. Since the carbon contained therein is degreased by 99% or more, no increase in carbon harmful to the corrosion resistance of the product is observed. FIG. 2 is a diagram showing the effect of SUS304L stainless steel on pitting corrosion. In this example, no increase in carbon in the product was observed, and the corrosion resistance was extremely excellent because it was as low as 0.011%. I understand.

【0022】[0022]

【発明の効果】以上のように発明によると、金属粉末と
熱可塑性結合剤とを所定の割合で混合した混合物から射
出成形体を作り、該射出成形体から熱可塑性結合剤を脱
脂する脱脂工程を経て、その後焼結して金属焼結体を得
るとき、脱脂工程において熱可塑性結合剤を、炭素の脱
脂率が99%以上になるように脱脂するので、その後の
焼結において炭素の含有量は増加しない。したがって、
磁気特性、耐食性等に優れた金属焼結体を得ることがで
きる。
As described above, according to the invention, a degreasing step of making an injection molded body from a mixture of metal powder and a thermoplastic binder in a predetermined ratio and degreasing the thermoplastic binder from the injection molded body. And then sintering to obtain a metal sintered body, the thermoplastic binder is degreased in the degreasing step so that the degreasing rate of carbon is 99% or more. Does not increase. Therefore,
It is possible to obtain a metal sintered body having excellent magnetic properties and corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 3%SiーFeにおける、炭素の含有量と磁
気特性との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between carbon content and magnetic characteristics in 3% Si—Fe.

【図2】 SUS304Lステンレス鋼における、炭素
の含有量と耐食性との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the carbon content and corrosion resistance in SUS304L stainless steel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末と熱可塑性結合剤とを所定の割
合で混合した混合物から射出成形体を作り、該射出成形
体から前記熱可塑性結合剤を脱脂する脱脂工程を経て、
その後焼結して金属焼結体を得るとき、 前記脱脂工程において前記熱可塑性結合剤を、炭素の脱
脂率が99%以上になるように脱脂することを特徴とす
る金属焼結体の製造方法。
1. An injection molded body is made from a mixture of metal powder and a thermoplastic binder in a predetermined ratio, and a degreasing step of degreasing the thermoplastic binder from the injection molded body is performed,
Then, when sintering to obtain a metal sintered body, in the degreasing step, the thermoplastic binder is degreased so that the degreasing rate of carbon is 99% or more. .
JP12485293A 1993-04-30 1993-04-30 Production of metallic sintered body Pending JPH06316704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12485293A JPH06316704A (en) 1993-04-30 1993-04-30 Production of metallic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12485293A JPH06316704A (en) 1993-04-30 1993-04-30 Production of metallic sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002356358A Division JP2003193108A (en) 2002-12-09 2002-12-09 Method for manufacturing metallic sintered compact

Publications (1)

Publication Number Publication Date
JPH06316704A true JPH06316704A (en) 1994-11-15

Family

ID=14895694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12485293A Pending JPH06316704A (en) 1993-04-30 1993-04-30 Production of metallic sintered body

Country Status (1)

Country Link
JP (1) JPH06316704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027105A (en) * 2001-04-25 2003-01-29 Extrude Hone Corp Binder composition
JP2012054569A (en) * 2011-09-30 2012-03-15 Seiko Epson Corp Soft magnetic powder, method for producing soft magnetic powder, dust core, and magnetic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027105A (en) * 2001-04-25 2003-01-29 Extrude Hone Corp Binder composition
JP2012054569A (en) * 2011-09-30 2012-03-15 Seiko Epson Corp Soft magnetic powder, method for producing soft magnetic powder, dust core, and magnetic element

Similar Documents

Publication Publication Date Title
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
US5059387A (en) Method of forming shaped components from mixtures of thermosetting binders and powders having a desired chemistry
JPH06212205A (en) Production of amorphous metallic product and molded material for production of amorphous metallic product
JPH0353506A (en) Manufacture of softly magnetic sintered body of fe-p alloy
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
KR102288887B1 (en) Method of manufacturing iron powder and iron powder manufactured thereby
JPH06316704A (en) Production of metallic sintered body
JP2003193108A (en) Method for manufacturing metallic sintered compact
JPH06172809A (en) Metallic injection-molded body and its production
JPH05271852A (en) Production of rare earth magnet alloy
KR100493950B1 (en) Method for making High Density Stainless Steel Sintering Material
US5840785A (en) Molding process feedstock using a copper triflate catalyst
JP2612419B2 (en) Method for producing powder for MPP core and method for producing MPP core using the powder
KR20160017359A (en) Method for manufacturing iron-based powders
JPS58722B2 (en) Reduction sintering method for high speed steel powder
JPH0610088A (en) Method for sintering stainless steel powder
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH08183661A (en) Production of silicon carbide sintered compact
JPH0345566A (en) Production of sintered granular material
JPH0692604B2 (en) Method for producing iron-based metal sintered body by metal powder injection molding
JP2000355704A (en) METHOD FOR CONTROLLING CARBON CONTENT AND OXYGEN CONTENT IN DEGREASED MOLDING IN INJECTION MOLDING METHOD OF Ti-Al ALLOY
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance
JPH07331379A (en) Production of high density stainless steel sintered product
KR930006442B1 (en) Sintered fe-co type magnetic materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

A521 Written amendment

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050325