JPS58722B2 - Reduction sintering method for high speed steel powder - Google Patents

Reduction sintering method for high speed steel powder

Info

Publication number
JPS58722B2
JPS58722B2 JP53075454A JP7545478A JPS58722B2 JP S58722 B2 JPS58722 B2 JP S58722B2 JP 53075454 A JP53075454 A JP 53075454A JP 7545478 A JP7545478 A JP 7545478A JP S58722 B2 JPS58722 B2 JP S58722B2
Authority
JP
Japan
Prior art keywords
speed steel
powder
steel powder
resin
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075454A
Other languages
Japanese (ja)
Other versions
JPS552762A (en
Inventor
花井圭介
大野英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP53075454A priority Critical patent/JPS58722B2/en
Publication of JPS552762A publication Critical patent/JPS552762A/en
Publication of JPS58722B2 publication Critical patent/JPS58722B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、高速度鋼粉末の還元焼結方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing and sintering high speed steel powder.

最近、高速度鋼の噴霧粉を熱間静水圧圧縮、熱間粉末鍛
造などで高密化して工具を製造する方法が行なわれてい
る。
Recently, methods have been used to manufacture tools by densifying sprayed powder of high-speed steel by hot isostatic pressing, hot powder forging, or the like.

これは急冷された噴霧法を使用することによって従来の
インゴット・プロセスでは得られない著しく微細でかつ
均一な組織の工具を製造することができるためである。
This is because by using the quenched spray method, it is possible to produce tools with extremely fine and uniform textures that cannot be obtained with conventional ingot processes.

原料粉末を噴霧法で製造する場合には、表層の酸化を極
力防止する手段をこうじなくてはならない。
When producing raw material powder by a spraying method, it is necessary to take measures to prevent oxidation of the surface layer as much as possible.

酸化物が残留する場合には衝撃値等の機械的強度が低下
し、粉末製品の品質が低下する。
If oxides remain, mechanical strength such as impact value will decrease, and the quality of the powder product will deteriorate.

そこで原料粉末にも酸素量が少ないものを用いることが
必要で、水噴霧法においては不活性ガスの窒素、アルゴ
ン等の雰囲気を用いるが、ガス噴霧法においては窒素ガ
ス、更に酸素量を低下させるにはアルゴン噴霧の水中冷
却、更にはアルゴン中冷却の方法がとられる。
Therefore, it is necessary to use raw material powder with a low oxygen content.In the water spray method, an atmosphere of inert gas such as nitrogen or argon is used, but in the gas spray method, nitrogen gas is used, and the oxygen content is further reduced. For this purpose, argon spray is used for cooling in water, and further cooling in argon is used.

しかしアルゴンガス噴霧法では原料粉末のコストアップ
の原因となって好ましくなく、ガス噴霧法よりも水噴霧
法で製造されたものが最も価格的に安く製造し得るもの
である。
However, the argon gas atomization method is undesirable because it increases the cost of the raw material powder, and the water atomization method is the cheapest to produce than the gas atomization method.

高速度鋼粉末の成分には比較的還元しゃすいW、Ni、
Moと、難還元元素のMn、Cr、Vが含まれている。
The components of high-speed steel powder include W, Ni, which is relatively easy to reduce.
It contains Mo, and Mn, Cr, and V, which are difficult to reduce elements.

後者の元素は酸素との親和性が強く、溶解時に少量の酸
素含有量の増加と、噴霧過程における高温と、比表面積
の増大による表層酸化物の増加は、この製造法では不可
避である。
The latter element has a strong affinity for oxygen, and a small increase in oxygen content during dissolution, high temperature during the spraying process, and an increase in surface layer oxide due to an increase in specific surface area are unavoidable in this production method.

次にこの種の粉末を粉床冶金に使用する場合には、焼結
を行なうため熱間加熱の工程を経なくてはならないが、
還元雰囲気での焼結体は表面が非常に活性化されていて
酸化されやすい。
Next, when this type of powder is used in powder bed metallurgy, it must undergo a hot heating process to achieve sintering.
The surface of a sintered body in a reducing atmosphere is highly activated and easily oxidized.

一般にはアンモニヤ分解ガスの還元雰囲気が使用され、
露点も低く管理されなければならない。
Generally, a reducing atmosphere of ammonia decomposition gas is used.
The dew point must also be controlled low.

本発明は上記事情に鑑みなされたもので、その目的とす
るところは、安価な水噴霧法で得られた高速度鋼粉末を
使用し、表層酸化物を焼結と同時に効果的に還元する方
法を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to use high-speed steel powder obtained by an inexpensive water spray method to effectively reduce surface layer oxides at the same time as sintering. Our goal is to provide the following.

以下本発明を説明する。The present invention will be explained below.

水噴霧法で得られた表層に多量の酸化物を有する高速度
鋼粒子の表層部分にこの粒子の重量に対して1〜7%(
重量比)のフェノール樹脂を密着した状態で均一にコー
ティングしてレジンコーテッドパウダ(R,C,P)と
する。
The surface layer of high-speed steel particles obtained by the water spraying method has a large amount of oxides on the surface layer.
A resin-coated powder (R, C, P) is obtained by uniformly coating the powder with a phenolic resin (weight ratio) in close contact with the powder.

これを必要形状に圧粉成形後、窒素雰囲気のヒータ加熱
による還元炉内に挿入する。
After compacting this into the required shape, it is inserted into a reduction furnace heated by a heater in a nitrogen atmosphere.

これによって樹脂は熱分解し、低温域ではCH4、H2
等の可燃ガスを発生し、このカスは排出塔から出て炉外
で燃焼させる。
As a result, the resin thermally decomposes, and in the low temperature range CH4, H2
This waste comes out of the discharge tower and is burned outside the furnace.

このように高速度鋼粉末圧粉体を炉内に搬入する場合、
いきなり1000〜1300℃の本焼結域の高温域に入
れた場合、急激な樹脂分解によって多量の煤を発生して
炉材、発熱体の劣化を早めるため、炉入口には400〜
600℃の低温域を設けてこれに5〜10分間通過させ
、この間に可燃ガスとして分解排出させるのがよい。
When carrying high-speed steel powder compacts into the furnace in this way,
If you suddenly enter the high temperature range of 1000 to 1300°C, the main sintering range, the rapid decomposition of the resin will generate a large amount of soot, which will accelerate the deterioration of the furnace material and heating element.
It is preferable to provide a low temperature region of 600° C. and allow the material to pass through this range for 5 to 10 minutes, during which time it is decomposed and discharged as a combustible gas.

その後1000〜1300℃の還元、本焼結域に30〜
120分保持させる。
After that, reduction at 1000-1300℃, 30-30℃ in the main sintering area.
Hold for 120 minutes.

上記製法により得られる焼結体鋼粉の還元は温度と時間
によりきまるが、還元速度は温度の影響を支配的に受け
る。
The reduction of the sintered steel powder obtained by the above production method is determined by temperature and time, and the reduction rate is predominantly influenced by temperature.

焼結体鋼粉の酸素含有量は焼結体の機械的強度確保のた
め11000pp以下にする必要がある。
The oxygen content of the sintered steel powder needs to be 11,000 pp or less in order to ensure the mechanical strength of the sintered body.

一方還元温度が1000℃以下では銅粉酸化物の分解還
元速度が遅く、また1300℃以上では加熱炉の耐久性
に問題があり、これ以上の高温は工業上望ましくない。
On the other hand, if the reduction temperature is below 1000°C, the rate of decomposition and reduction of the copper powder oxide is slow, and if it is above 1300°C, there is a problem in the durability of the heating furnace, and higher temperatures are not desirable industrially.

そして上記範囲の還元温度で酸素量が1.000ppm
以下になるような還元を行なう場合、30分より短い時
間では充分な還元がなされず、また2時間を越える必要
がなく、2時間で十分還元でき、それ以上還元時間をと
るのは不経済である。
And the amount of oxygen is 1.000 ppm at the reduction temperature in the above range.
When performing the following reduction, sufficient reduction will not be achieved in a time shorter than 30 minutes, and there is no need to exceed 2 hours, sufficient reduction can be achieved in 2 hours, and it is uneconomical to take longer than 30 minutes. be.

ここでは金属粉の表面に残留した樹脂分解後の炭素は金
属粉末表面の酸化物と強力に反応して還元する。
Here, the carbon remaining on the surface of the metal powder after resin decomposition reacts strongly with the oxide on the surface of the metal powder and is reduced.

炉内雰囲気は脱炭しやすい水素を含む雰囲気ではなく窒
素を使用する。
The atmosphere inside the furnace is nitrogen instead of an atmosphere containing hydrogen, which tends to cause decarburization.

このときの反応は、となる。The reaction at this time is:

この還元反応で発生した反応カスは窒素気流と共に排出
され、還元反応は進行する。
The reaction residue generated in this reduction reaction is discharged together with the nitrogen stream, and the reduction reaction proceeds.

コーティングされたフェノール樹脂は還元作用があると
同時に還元後期に進行する加炭の効果もあり、還元焼結
完了後の残留炭素計はフェノール樹脂コーディング量と
還元時間、温度によって目標の炭素量に自由に調整する
ことができる。
The coated phenolic resin has a reducing effect and at the same time has the effect of carburization that progresses in the late stages of reduction, and the residual carbon meter after completion of reduction sintering can freely adjust the target carbon amount depending on the amount of phenolic resin coating, reduction time, and temperature. can be adjusted to

このフェノール樹脂はまた圧粉成形時の金属粒子間およ
び金型との間の潤滑の効果、および金属粒子間の結合剤
としての効果もある。
This phenolic resin also has the effect of lubricating between metal particles and the mold during powder compaction, and has the effect of acting as a binder between metal particles.

フェノール樹脂を金属粒子にコーティングすることによ
って前述の還元効果が向上する。
By coating metal particles with phenolic resin, the above-mentioned reduction effect is improved.

また従来の黒鉛粉等との混合体では比重差による分離(
ラミネーション)とか、飛散があって作業性が悪く成形
体の均一性が阻害されるという欠点があったが、樹脂を
コーティングした場合には上記の欠点がなく作業性が良
くなり、さらに還元反応にムラがなく、酸化物に密着し
た状態で還元反応が進みより効果的である。
In addition, in conventional mixtures with graphite powder, etc., separation due to the difference in specific gravity (
Lamination) had the disadvantage of poor workability due to scattering and inhibiting the uniformity of the molded product, but coating with resin eliminates the above disadvantages, improves workability, and further reduces the reduction reaction. The reduction reaction proceeds evenly and in close contact with the oxide, making it more effective.

すなわち、水噴霧法では高圧高速水流によって溶湯が粉
砕され、同時に急速冷却されるため、噴霧形状は凹凸の
多い複雑な形状をなしている。
That is, in the water spray method, the molten metal is pulverized by a high-pressure, high-speed water stream, and at the same time is rapidly cooled, so that the spray shape has a complicated shape with many irregularities.

このため表層の酸化被膜の表面積が大きく、かつ奥まっ
た部分の酸化物も還元するためには、内部にまで十分樹
脂を浸透させて密着させる必要がある。
For this reason, the surface area of the oxide film on the surface layer is large, and in order to reduce the oxides in the deep parts, it is necessary to sufficiently penetrate the resin into the inside and make it adhere.

このため樹脂を溶解させ密着させるにはコーティングす
る方法が最も効果的である。
For this reason, coating is the most effective method for dissolving the resin and making it adhere.

レジンコーテッドパウダ(R,C,P)の製造方法とし
ては、低温で行なうコールド法があるが、これはフェノ
ール樹脂をメタノールで溶解し混合被覆後、メタノール
を気化させる方法である。
As a method for producing resin-coated powders (R, C, P), there is a cold method which is carried out at a low temperature, and this is a method in which a phenol resin is dissolved in methanol, mixed and coated, and then the methanol is vaporized.

しかしこの方法では刺激性のガスが発生して公害上おも
わしくなく、またメタノール気化に時間を要し、さらに
ブロック状になりやすい欠点がある。
However, this method has disadvantages in that it generates irritating gas, which is not a pollution hazard, and that it takes time to vaporize methanol, and that it tends to form blocks.

これをドライホット法で行なう場合には、銅粉を約15
0℃に加熱し、これを混線機内にて必要量のフレーク状
または針状のフェノール樹脂と共に混合し、約1分径1
00℃程度で排粉し、複合化しないよう強制分散させろ
ためにコンベア上にて送風冷却しながら分散する。
If this is done using the dry hot method, approximately 15% of the copper powder is
Heat it to 0℃, mix it with the necessary amount of flaky or needle-shaped phenol resin in a mixer, and make a diameter of about 1 min.
The powder is discharged at about 00°C and dispersed while being cooled by blowing air on a conveyor in order to forcefully disperse the powder so as not to form a compound.

この方法はコールド法より費用は安く、公害上の問題も
なく、さらに保存安定性が良い。
This method is cheaper than the cold method, has no pollution problems, and has better storage stability.

フェノール樹脂の種類としてはノボラック型(熱可塑性
樹脂)を使用する。
As for the type of phenolic resin, novolac type (thermoplastic resin) is used.

これはレゾール型(熱硬化性樹脂)では燃焼後の残留炭
素量を低減することが困難なことと、成形体粒子間の結
合力が弱い銅粉にコーテングする際の硬化速度が速いた
め処理がしに(い欠点をもっているからである。
This is because it is difficult to reduce the amount of residual carbon after combustion with resol type (thermosetting resin), and the curing speed is fast when coating copper powder with weak bonding strength between molded particles. This is because it has some flaws.

ノボラック型では残留炭素量を重合度を変えることによ
って20%にまで変えることができ、硬化速度もおそ(
コーテングしやすい。
In the novolak type, the amount of residual carbon can be changed up to 20% by changing the degree of polymerization, and the curing speed is slow (
Easy to coat.

この場合硬化剤としてのへキサメチレンテトラミンはア
ンモニアガスを発生し、また残留炭素量を増加し、さら
に硬化速度をはやめることから使用しない。
In this case, hexamethylenetetramine as a curing agent is not used because it generates ammonia gas, increases the amount of residual carbon, and slows down the curing speed.

またノボラック型を使用する大きい特徴としては、圧粉
成形体の強度(焼結前)をきめるラトラー値が高い場合
には、成形体を200〜300℃で10分程度の低温ベ
ーキングを行なえる理由もある。
Another major feature of using the novolak mold is that if the Rattler value, which determines the strength of the powder compact (before sintering), is high, the compact can be baked at a low temperature of 200 to 300°C for about 10 minutes. There is also.

上記の分子式での重合度nは10以下で、重合度を変え
ることによって残留炭素量を20.3040%に変えて
添加量を調整することができる。
The degree of polymerization n in the above molecular formula is 10 or less, and by changing the degree of polymerization, the amount of residual carbon can be changed to 20.3040% and the amount added can be adjusted.

銅粉にコーティングするフェノール樹脂量は、1%より
少ないと圧粉成形体の強度が弱く、ベーキングするとき
のとりあつがいで欠肉等のカケを起こしてしまい、また
7%より多いとベーキング時にフェノール樹脂の分解ガ
スで成形体の崩壊が生じてしまい、その結果上記フェノ
ール樹脂量は1〜7%、好ましくは2.5〜3.5%が
適当である。
If the amount of phenolic resin to be coated on the copper powder is less than 1%, the strength of the compacted product will be weak, causing cracks such as missing parts during baking, and if it is more than 7%, it will be difficult to form during baking. The decomposition gas of the phenol resin causes the molded article to collapse, and as a result, the appropriate amount of the phenol resin is 1 to 7%, preferably 2.5 to 3.5%.

次に銅粉の成分としては、原料の溶解中に脱酸材、炉材
等から混入する恐れのある難還元性の酸化アルミニュー
ム、酸化マグネシウム、酸化カルシウム、シリカ等はで
きるだけ少なくなければならないことはいうまでもない
Next, the components of copper powder must be as low as possible, including difficult-to-reducible aluminum oxide, magnesium oxide, calcium oxide, silica, etc., which may be mixed in from deoxidizers, furnace materials, etc. during the melting of raw materials. Needless to say.

実施例 水噴霧法で得られた第1表で示される成分の高速度鋼粉
末(SKH9,5KH57)に残留炭素量20%のフェ
ノール樹脂を重量比で2.5%ホット法にてコーテング
してR,C,Pとした。
Example High-speed steel powder (SKH9, 5KH57) with the components shown in Table 1 obtained by the water spray method was coated with 2.5% by weight phenolic resin with a residual carbon content of 20% by the hot method. It was set as R, C, and P.

試料寸法12.25φX2.7mmの大きさに、成形圧
力5t/cm2で圧粉成形後、51/minの窒素気流
中で、1200℃で60分、120分還丸焼結した。
After compacting to a sample size of 12.25 φ x 2.7 mm at a compacting pressure of 5 t/cm 2 , the sample was circularly sintered at 1200° C. for 60 minutes and 120 minutes in a nitrogen flow of 51/min.

第2表には還元焼結前後の酸素量を示し、2時間後には
初期酸素量は約1/8に低減されている。
Table 2 shows the amount of oxygen before and after reduction sintering, and the initial amount of oxygen was reduced to about 1/8 after 2 hours.

銅粉の成分には1200℃では還元の困難なSi、Vが
かなり含まれる状態での還元結果である。
The reduction results are obtained when the copper powder contains a considerable amount of Si and V, which are difficult to reduce at 1200°C.

第3表には同じく上記条件での還元焼結前後の窒素含有
量を示し、120分後には0.6〜0.8%の高窒素含
有結果が得られた。
Table 3 also shows the nitrogen content before and after reduction sintering under the above conditions, and a high nitrogen content of 0.6 to 0.8% was obtained after 120 minutes.

1200℃、1時間還元焼結炉内で常温に冷却後、10
40℃10分、N2気流中で再加熱後据込み鍛造を行な
った。
After cooling to room temperature in a reduction sintering furnace at 1200℃ for 1 hour,
After reheating at 40°C for 10 minutes in a N2 stream, upsetting forging was performed.

鍛造品は1230℃:5分アルミナ中に保持後、油中冷
却で焼入し、550℃95分保持後空冷焼もどしを行な
った。
The forged product was held in alumina for 5 minutes at 1230°C, quenched by cooling in oil, held at 550°C for 95 minutes, and then air-cooled and tempered.

第4表には鍛造熱処理後の01N量およびHv硬度を示
す。
Table 4 shows the amount of 01N and Hv hardness after forging heat treatment.

本発明は以上のようになるから、安価な水噴霧法で得ら
れた高速度鋼粉末を使用1〜でその表層酸化物を焼結と
同時に効果的に還元することができる。
Since the present invention is as described above, the surface layer oxides can be effectively reduced at the same time as sintering by using high-speed steel powder obtained by an inexpensive water spray method.

また上記焼結還元を窒素カス気流中にて行なうことによ
り、焼結体の窒素含有量を増加せしめ熱間鍛造後の性能
が向上し、結晶粒の倣細化、焼もどしかたさの増大な図
ることができる。
In addition, by performing the above sintering reduction in a nitrogen gas stream, the nitrogen content of the sintered body is increased, the performance after hot forging is improved, and the grain size is reduced and the tempering hardness is increased. be able to.

さらにらトラ−値が向上して圧粉成彩体の強度な得ろこ
とができる。
Furthermore, the toler value is improved, and the strength of the compacted colored body can be obtained.

Claims (1)

【特許請求の範囲】 1水噴霧法で得られた高速度鋼粉末に、フェノール樹脂
を1〜7%(重量比)の範囲で上記鋼粉の表面に均一に
被覆配合してレジンコーテッドパウダとした後、これを
圧粉成形し、ついで窒素カス気流中で1000〜130
0℃の還元温度に0.5〜2時間加熱することによって
、フェノール樹脂の熱分解後に残留する表層に密着した
炭素によって表層酸化物を還元すると共に、残留炭素量
をも自由に調整し、なおかつ窒素含有量を増加せしめる
ことを特徴とする高速度鋼粉末の還元焼結方法。 2水噴霧法で得られた高速度鋼粉末を約150℃に加熱
してこれを混練機内にて必要量のフェノール樹脂と共に
混練し、ついでこれをコンベア上にて送風冷却しながら
分散させてレジンコーテッドパウダとしたことを特徴と
する特許請求の範囲第1項の高速度鋼粉末の還元焼結方
法。 3高速度鋼粉末の表面に被覆配合するフェノール樹脂に
低温ベーキングによってラトラー値を向上し得るノボラ
ック型を用いてなる特許請求の範囲第1項の高速度鋼粉
末の還元焼結方法。 4圧粉成形体の強度をきめるラトラー値を向上させるた
め圧粉成形体を空気中で200〜300℃の加熱温度で
約10分程度ベーキングを行なう特許請求の範囲第1項
の高速度鋼粉末の還元焼結方法。
[Claims] 1. High speed steel powder obtained by a water spray method is blended with a phenol resin to uniformly coat the surface of the steel powder in a range of 1 to 7% (weight ratio) to form a resin-coated powder. After that, this was compacted and then heated to 1000 to 130
By heating to a reduction temperature of 0°C for 0.5 to 2 hours, the surface layer oxides are reduced by the carbon that remains in close contact with the surface layer after the thermal decomposition of the phenolic resin, and the amount of residual carbon can also be freely adjusted. A method for reducing and sintering high-speed steel powder, characterized by increasing the nitrogen content. The high-speed steel powder obtained by the two-water spray method is heated to about 150°C and kneaded with the required amount of phenol resin in a kneader, and then dispersed on a conveyor while being cooled with air to form a resin. A method for reducing and sintering high-speed steel powder according to claim 1, characterized in that the powder is a coated powder. 3. The method for reducing and sintering high speed steel powder according to claim 1, wherein the phenolic resin coated on the surface of the high speed steel powder is a novolac type which can improve the Rattler value by low temperature baking. 4. The high-speed steel powder according to claim 1, wherein the powder compact is baked in air at a heating temperature of 200 to 300°C for about 10 minutes in order to improve the Rattler value that determines the strength of the compact. reduction sintering method.
JP53075454A 1978-06-23 1978-06-23 Reduction sintering method for high speed steel powder Expired JPS58722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53075454A JPS58722B2 (en) 1978-06-23 1978-06-23 Reduction sintering method for high speed steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53075454A JPS58722B2 (en) 1978-06-23 1978-06-23 Reduction sintering method for high speed steel powder

Publications (2)

Publication Number Publication Date
JPS552762A JPS552762A (en) 1980-01-10
JPS58722B2 true JPS58722B2 (en) 1983-01-07

Family

ID=13576737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53075454A Expired JPS58722B2 (en) 1978-06-23 1978-06-23 Reduction sintering method for high speed steel powder

Country Status (1)

Country Link
JP (1) JPS58722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446703Y2 (en) * 1987-10-21 1992-11-04

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8204027A (en) * 1982-10-19 1984-05-16 Hollandse Signaalapparaten Bv DEVICE FOR STABILIZING A ROAD SEARCH INSTALLED ON A VEHICLE OR VESSEL.
JPS59148588A (en) * 1983-02-10 1984-08-25 Fuji Photo Film Co Ltd Controlling method for speed of motor
JPH028411Y2 (en) * 1984-12-29 1990-02-28
US4722826A (en) * 1986-09-15 1988-02-02 Inco Alloys International, Inc. Production of water atomized powder metallurgy products
JP2649945B2 (en) * 1988-05-20 1997-09-03 株式会社トーキン Manufacturing method of metal powder composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446703Y2 (en) * 1987-10-21 1992-11-04

Also Published As

Publication number Publication date
JPS552762A (en) 1980-01-10

Similar Documents

Publication Publication Date Title
CN110662847A (en) Method for producing mold casting product of nodular cast iron having ultrafine spheroidal graphite and spheroidizing agent
JPS6376803A (en) Production of water spraying powder metallurgical product
JPS58722B2 (en) Reduction sintering method for high speed steel powder
US4202689A (en) Method for the production of sintered powder ferrous metal preform
KR100637656B1 (en) Manufacturing method of ferro molybdenum using reduction reaction and ferro molybdenum using the same method
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JPH1096001A (en) Production of partially diffused alloyed steel powder
WO2000039353A1 (en) Iron-based powder blend for use in powder metallurgy
JP2674715B2 (en) Method for manufacturing porous mold
JPH0364402A (en) Method for controlling carbon content of metallic injection molding
JPS6229481B2 (en)
JPH0222121B2 (en)
JP4158015B2 (en) Method for producing sintered body and sintered body
JPS63195254A (en) Production of composite material
JPH059501A (en) Iron powder for sintering and production thereof
JPS5935601A (en) Production of atomized steel powder having high compressibility
RU2017583C1 (en) Method of manufacture of briquettes for modification of steel and alloys
JPH06228603A (en) Raw iron powder for sintered metal and its production
JPS5813602B2 (en) Reduction sintering method using induction heating of steel powder
JPS5923840A (en) Production of high strength sintered material
JP2003171741A (en) Iron based powder for warm compacting, and warm compacting method
JP3938944B2 (en) Method for producing water atomized iron powder for powder metallurgy
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
SU1119776A1 (en) Method of obtaining sintered articles from materials based on iron
JPH04157105A (en) Manufacture of iron base metal powder-made large sintered body