JP2003171741A - Iron based powder for warm compacting, and warm compacting method - Google Patents

Iron based powder for warm compacting, and warm compacting method

Info

Publication number
JP2003171741A
JP2003171741A JP2001375742A JP2001375742A JP2003171741A JP 2003171741 A JP2003171741 A JP 2003171741A JP 2001375742 A JP2001375742 A JP 2001375742A JP 2001375742 A JP2001375742 A JP 2001375742A JP 2003171741 A JP2003171741 A JP 2003171741A
Authority
JP
Japan
Prior art keywords
powder
iron
based powder
warm
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001375742A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mitani
宏幸 三谷
Masaaki Sato
正昭 佐藤
Tetsuya Sawayama
哲也 澤山
Takafumi Hojo
啓文 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001375742A priority Critical patent/JP2003171741A/en
Publication of JP2003171741A publication Critical patent/JP2003171741A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide iron based powder for powder metallurgy by which the defect of the conventional raw material powder for powder metallurgy that the increase of the density of a green compact in warm compacting is insufficient is improved, the strength of a final sintered compact obtained by sintering for the green compact is increased, and a product having more excellent mechanical strengths can be produced, and to provide a compacting method therefor. <P>SOLUTION: The iron based powder consists of iron powder, alloy steel powder or the like, and is used as the main raw material for powder metallurgy. The iron based powder contains the components of, by mass, ≤0.02% C, ≤0.10% Si, ≤0.30% Mn, ≤0.02% P, and ≤0.20% O, and the concentration of solid solution nitrogen is controlled in ≤10 ppm by mass. Further, the iron based powder is subjected to warm compacting at any temperature in the range of 80 to 250°C. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金用原料粉
末を温間で圧縮成形して高密度の圧粉体を得る、いわゆ
る「温間成形」の技術分野に属するものであり、特に、
圧粉体をさらに高密度化して、より機械的性質に優れた
最終成形体を得ることができる、温間成形の主原料であ
る鉄基粉末の性状改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of so-called "warm molding", in which a raw material powder for powder metallurgy is compression-molded in a warm state to obtain a high-density green compact, and in particular,
The present invention relates to improving the properties of an iron-based powder, which is a main raw material for warm compaction, by which a green compact can be further densified to obtain a final compact having more excellent mechanical properties.

【0002】[0002]

【従来の技術】以下の説明において、単に「%」で示す
表示は、特に断らない場合、質量割合を意味するものと
する。
2. Description of the Related Art In the following description, the indication simply by "%" means the mass ratio unless otherwise specified.

【0003】鉄粉や合金鋼粉等の鉄基粉末を主原料とし
た粉末冶金法においては、所定の粒度構成に調整した鉄
基粉末を原料として金型で圧縮成形して圧粉体とした
後、さらにこの圧粉体を加熱炉で焼結して製品焼結体を
得るものであり、生産性に優れた製造方法として広く適
用されている。
In the powder metallurgy method using an iron-based powder such as iron powder or alloy steel powder as a main raw material, the iron-based powder adjusted to a predetermined grain size is used as a raw material and compression-molded by a die to obtain a green compact. Thereafter, the green compact is further sintered in a heating furnace to obtain a product sintered body, which is widely applied as a manufacturing method excellent in productivity.

【0004】このようにして製造される製品焼結体が、
機械構造部品など特に強度が重視される部品に適用され
る場合には、製品の密度をできるだけ高くすることが有
効であり、そのためには、焼結前の圧粉体の段階ででき
るだけ高い密度とすることが重要である。
The product sintered body produced in this way is
When applied to parts where strength is particularly important, such as mechanical structural parts, it is effective to make the product density as high as possible. It is important to.

【0005】そこで、圧粉体の密度を高める方法とし
て、常温を超え且つ熱間の温度領域ほど極めて高い温度
領域ではない中間の温度領域で圧縮成形することによ
り、鉄基粉末の降伏応力を低下させて低い成形圧力でも
圧粉体の密度を向上させるとともに、潤滑剤の潤滑機能
を維持して金型の摩耗を防止する、いわゆる「温間成
形」による方法が開発され、これに対して多くの改良技
術の提案がなされている。例えば、温間成形に適した潤
滑剤の提案(例えば特開平2−15002号、特公平7
−103404号)や、いわゆる型潤滑成形、振動成形
などプロセスの改良に関する提案(例えば特開平9−2
7901号、特開2000−144208号)がなされ
ている。
Therefore, as a method of increasing the density of the green compact, the yield stress of the iron-based powder is reduced by compression molding in an intermediate temperature region that exceeds room temperature and is not extremely higher than the hot temperature region. A method by so-called "warm molding" has been developed to improve the density of the green compact even at low molding pressure and to maintain the lubrication function of the lubricant to prevent mold wear. Has been proposed. For example, a proposal of a lubricant suitable for warm forming (for example, Japanese Patent Laid-Open No. 2-15002, JP-B-7)
-103404), and so-called die lubrication molding, vibration molding, and other proposals regarding process improvement (for example, Japanese Patent Laid-Open No. 9-2.
7901 and JP-A 2000-144208).

【0006】これらの改良技術により相当高密度の圧粉
体が得られるようになったが、更なる高密度化を達成す
るためには、鉄基粉末そのものの圧縮性を改善する必要
がある。すなわち、温間成形においても冷間成形用の鉄
基粉末をそのまま転用して用いているのが現状である。
そのため、常温での成形を前提とした従来の鉄基粉末を
用いた場合に、常温を超える温間での成形において鉄基
粉末自身の圧縮性が十分でないという問題点が残ってい
るが、この点に関して十分な検討がなされておらず、原
料粉末そのものとして温間成形に適した性状の鉄基粉末
については未だ提案がなされていない。
Although these improved techniques have made it possible to obtain a green compact having a considerably high density, it is necessary to improve the compressibility of the iron-based powder itself in order to achieve higher density. That is, even in the warm forming, the iron-based powder for cold forming is diverted and used as it is.
Therefore, when using a conventional iron-based powder premised on molding at room temperature, the problem remains that the compressibility of the iron-based powder itself is not sufficient in molding at temperatures above room temperature. The point has not been sufficiently examined, and no proposal has been made yet for an iron-based powder having properties suitable for warm compaction as the raw material powder itself.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明の目的
は、温間成形における圧粉体の高密度化が未だ十分でな
いという従来の粉末冶金用原料粉末の持つ欠点を改善
し、その高密度圧粉体の焼結による高強度化を達成し、
優れた機械的強度を有する製品を製造するために、従来
よりさらに高密度の圧粉成形体を得ることのできる温間
成形用鉄基粉末およびその温間成形方法を提供すること
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to improve the drawback of the conventional powder metallurgy raw material powder that the densification of the green compact in warm compacting is not sufficient, and to improve the high density compaction. Achieved high strength by sintering powder,
It is an object of the present invention to provide an iron-based powder for warm compaction and a warm compaction method for producing a powder compact having a higher density than ever before in order to produce a product having excellent mechanical strength.

【0008】[0008]

【課題を解決するための手段】本発明者らは、温間成形
において圧粉体の密度をさらに向上させるためには、温
間成形を行う温度領域における鉄基粉末の圧縮性の向上
を図ることが必要であるとの観点から鋭意研究開発を進
めた。
[Means for Solving the Problems] In order to further improve the density of the green compact in the warm compacting, the present inventors intend to improve the compressibility of the iron-based powder in the temperature range in which the warm compacting is performed. From the standpoint that this is necessary, we have eagerly pursued research and development.

【0009】すなわち本発明者らは、従来から鋼材の冷
間鍛造などの分野では、150〜500℃の温度範囲に
おいて鋼材中の固溶窒素濃度が高いと変形中に時効硬化
が起こって変形抵抗が大きくなり、変形がしにくくなる
という知見(例えば、百崎ら:材料とプロセス、vo
l.11(1998)、p.1219、川上ら:R&D
神戸製鋼技報、vol.34(1984)、p.73)
に着目し、粉末冶金用の鉄基粉末について、固溶窒素濃
度の影響を詳細に調査・検討し、その結果に基づいて本
発明を完成させたものである。なお、鋼材の冷間鍛造な
どにおいては、ビレットなど角柱状のビレットをロール
等で圧下して成形するのに対し、粉末冶金における圧粉
体の成形は、微細な粉末状の金属粒子にさらに潤滑剤を
添加して金型を用いて加圧成形するものである。このよ
うに、両者の成形方法が大きく異なっていることから、
本発明の鉄基粉末は、単に上記の鋼材中の固溶窒素濃度
と時効硬化との関係から容易に発明できたものでなく、
後述の実施例の実験結果等に基づく詳細な考察・検討を
加えて初めて完成に至ったものである。
That is, in the field of cold forging of steel materials, the inventors of the present invention have been subject to age hardening during deformation when the concentration of solute nitrogen in the steel material is high in the temperature range of 150 to 500 ° C. to cause deformation resistance. That becomes larger and less likely to be deformed (eg, Hyakusaki et al .: Materials and Processes, vo
l. 11 (1998), p. 1219, Kawakami et al .: R & D
Kobe Steel Technical Report, vol. 34 (1984), p. 73)
Focusing on, the effect of solid solution nitrogen concentration was investigated and examined in detail for the iron-based powder for powder metallurgy, and the present invention was completed based on the result. In cold forging of steel, etc., a prismatic billet such as a billet is formed by rolling it down with a roll or the like, whereas in the case of powder compacting in powder metallurgy, fine powdery metal particles are further lubricated. The agent is added and pressure molding is performed using a mold. In this way, since the molding methods of both are very different,
The iron-based powder of the present invention is not one that could be easily invented simply from the relationship between the solid solution nitrogen concentration in the steel material and the age hardening,
It was completed for the first time after adding detailed consideration / examination based on the experimental results and the like of the examples described later.

【0010】本発明の要旨は以下の通りである。The gist of the present invention is as follows.

【0011】請求項1の発明は、温間成形の主原料とし
て用いられる鉄基粉末であって、質量割合にてC:0.
02%以下、Si:0.10%以下、Mn:0.30%
以下、P:0.02%以下、O:0.20%以下の成分
を含み、かつ、固溶窒素濃度が質量割合にて10ppm
以下であることを特徴とする温間成形用鉄基粉末であ
る。
The invention of claim 1 is an iron-based powder used as a main raw material for warm compacting, wherein C: 0.
02% or less, Si: 0.10% or less, Mn: 0.30%
Hereinafter, P: 0.02% or less, O: 0.20% or less of the component is included, and the concentration of solute nitrogen is 10 ppm in mass ratio.
The iron-based powder for warm compacting is characterized by the following.

【0012】請求項2の発明は、請求項1に記載の温間
成形用鉄基粉末を、80〜250℃の間のいずれかの温
度で成形することを特徴とする温間成形方法である。
The invention of claim 2 is a warm compacting method, characterized in that the iron-base powder for warm compacting according to claim 1 is compacted at any temperature between 80 and 250 ° C. .

【0013】〔作用〕ここに、「鉄基粉末」とは粉末冶
金に通常使用されている鉄を主体とするあらゆる粒子を
意味するものであり、例えば実質上純鉄の粒子(高純度
鉄粉)、遷移金属及び/又はその他の強化金属のような
合金元素を含む鉄粒子(合金鋼粉)等があるが、特にこ
れらに限定されるものではない。
[Operation] Here, the “iron-based powder” means all particles mainly composed of iron, which are usually used in powder metallurgy, and for example, particles of substantially pure iron (high-purity iron powder). ), Iron particles (alloy steel powder) containing alloying elements such as transition metals and / or other strengthening metals, and the like, but are not particularly limited thereto.

【0014】鉄基粉末中の固溶窒素濃度を質量割合で1
0ppm以下、好ましくは7ppm以下とすることによ
り、温間成形を行う温度領域において、鉄基粉末の動的
歪み時効を防止して、鉄基粉末自身の変形抵抗を低減
し、変形を容易にすることによって圧粉体の密度をさら
に高めることができる。
The solid solution nitrogen concentration in the iron-based powder is 1 by mass ratio.
By setting the content to 0 ppm or less, preferably 7 ppm or less, dynamic strain aging of the iron-based powder is prevented in the temperature range where warm forming is performed, the deformation resistance of the iron-based powder itself is reduced, and deformation is facilitated. Thereby, the density of the green compact can be further increased.

【0015】また、鉄基粉末の成分を質量割合にてC:
0.02%以下、Si:0.10%以下、Mn:0.3
0%以下、P:0.02%以下、O:0.20%以下と
することにより、温間成形時の鉄基粉末の変形抵抗を低
下し変形を容易にするとともに、圧粉体を焼結した後の
成形体の機械的性質を優れたものとすることができる。
In addition, the components of the iron-based powder are C: in mass ratio.
0.02% or less, Si: 0.10% or less, Mn: 0.3
By setting the content to 0% or less, P: 0.02% or less, and O: 0.20% or less, the deformation resistance of the iron-based powder at the time of warm forming is reduced to facilitate deformation, and the green compact is baked. The mechanical properties of the molded product after binding can be made excellent.

【0016】すなわち、鉄中のC濃度が高すぎると大部
分がパーライトを形成し、変形抵抗を過大にする。その
ため、C濃度は0.02%以下とする。
That is, if the C concentration in iron is too high, most of the pearlite is formed and the deformation resistance becomes excessive. Therefore, the C concentration is 0.02% or less.

【0017】またSiは、溶製・アトマイズ段階で酸化
物を生成しやすく、含有量が多いとアトマイズ時にノズ
ル閉塞を発生させる。そのため、Si濃度は0.10%
以下とする。
Further, Si easily forms an oxide in the melting / atomizing stage, and if the content is large, Si causes nozzle clogging during atomization. Therefore, the Si concentration is 0.10%
Below.

【0018】またMnは、上記Siと同じく酸化物生成
によるノズル閉塞を発生させるとともに、鉄粉中に固溶
し基地を硬くするため圧縮性が悪くなる。そのため、M
n濃度は0.30%以下とする。
Further, Mn, like Si, causes nozzle clogging due to oxide formation, and also forms a solid solution in iron powder to harden the matrix, resulting in poor compressibility. Therefore, M
The n concentration is 0.30% or less.

【0019】またPは、鉄粉中に固溶し基地を硬くする
ため圧縮性を低下させる。そのため、P濃度は0.02
%以下とする。
P also forms a solid solution in the iron powder and hardens the matrix, so that it reduces the compressibility. Therefore, P concentration is 0.02
% Or less.

【0020】またOは、鉄粉の圧縮性を阻害するととも
に、焼結時に添加グラファイトと反応して焼結体のCを
下げ、強度を低下させる。そのため、O濃度は0.20
%以下とする。
Further, O inhibits the compressibility of the iron powder, and reacts with the added graphite during sintering to lower the C of the sintered body and lower the strength. Therefore, the O concentration is 0.20
% Or less.

【0021】温間成形の温度は、低すぎると鉄基粉末の
圧縮性が低いため効果が小さく、一方、高すぎると鉄基
粉末の圧縮性の向上効果が飽和し加熱エネルギーが無駄
となるので、好ましくは80〜250℃の間のいずれか
の温度、より好ましくは100〜200℃の間のいずれ
かの温度、さらに好ましくは150〜200℃の間のい
ずれかの温度とするのがよい。
If the temperature of the warm compaction is too low, the effect of reducing the compressibility of the iron-based powder is low, while if it is too high, the effect of improving the compressibility of the iron-based powder is saturated and the heating energy is wasted. The temperature is preferably between 80 and 250 ° C, more preferably between 100 and 200 ° C, and even more preferably between 150 and 200 ° C.

【0022】すなわち、後述の実施例で示すように、鉄
基粉末の圧縮性は、成形温度を常温から高くしていく
と、約80℃以上で急激に上昇し始めるが150℃以上
では上昇度合いが鈍化して約200℃でピークに達し、
それ以上の温度では徐々に低下する傾向を示すが250
℃においても依然として高い圧縮性を維持しているから
である。このように鉄基粉末の圧縮性が成形温度により
変化するのは、温度が高くなるほど、金属組織が軟化す
る効果と、金属が酸化されて硬化する効果との複合効果
によるものである。
That is, as will be shown in Examples described later, the compressibility of the iron-based powder begins to rise sharply at about 80 ° C. or higher when the molding temperature is raised from room temperature, but rises at 150 ° C. or higher. Slows down and peaks at about 200 ° C,
Although it tends to gradually decrease at higher temperatures, it is 250
This is because the high compressibility is still maintained even at ° C. The reason why the compressibility of the iron-based powder changes depending on the molding temperature is due to the combined effect of the effect of softening the metal structure and the effect of oxidizing and hardening the metal as the temperature increases.

【0023】[0023]

【発明の実施の形態】本発明の鉄基粉末は、鉄粉、鋼
粉、合金鋼粉など鉄を主体にするものであればいずれで
もよく、C:0.02%以下、Si:0.10%以下、
Mn:0.30%以下、P:0.02%以下、O:0.
20%以下の成分を含み、かつ、固溶窒素濃度が質量割
合にて10ppm以下、好ましくは70ppm以下のも
のとする。
BEST MODE FOR CARRYING OUT THE INVENTION The iron-based powder of the present invention may be any of iron powder, steel powder, alloy steel powder, etc., as long as it is mainly composed of iron, C: 0.02% or less, Si: 0. 10% or less,
Mn: 0.30% or less, P: 0.02% or less, O: 0.
The content of the component is 20% or less, and the solid solution nitrogen concentration is 10 ppm or less, preferably 70 ppm or less in mass ratio.

【0024】ここで、固溶窒素濃度を除き以上の成分範
囲を満足する鉄基粉末として、例えば従来品の高純度鉄
粉(例えば、商品名:アトメル300NH、神戸製鋼所
製)がある。この従来品の高純度鉄粉の成分のうち例え
ばC濃度は10ppm前後と非常に低く上記本発明の成
分範囲内(0.02%以下)にあるが、固溶窒素濃度は
約15ppmと、本発明の鉄基粉末に要求される固溶窒
素濃度の範囲(10ppm以下)を超えている。この従
来品の高純度鉄粉は、不純物を減らした原料を使用し、
溶製後8〜11MPaの圧力にて水アトマイズし粉末化
した後、この粉末を還元炉で純水素雰囲気下、約800
℃×約6hの条件で還元する工程を2回繰り返すことに
より、脱酸、脱炭、脱窒等を行い高純度の製品としたも
のである。
Here, as an iron-based powder satisfying the above component range excluding the concentration of solute nitrogen, there is, for example, a conventional high-purity iron powder (for example, trade name: Atmel 300NH, manufactured by Kobe Steel). Of the components of this conventional high-purity iron powder, for example, the C concentration is very low at around 10 ppm and is within the above-mentioned component range of the present invention (0.02% or less), but the solute nitrogen concentration is about 15 ppm. It exceeds the range (10 ppm or less) of the concentration of solid solution nitrogen required for the iron-based powder of the invention. This conventional high-purity iron powder uses raw materials with reduced impurities,
After smelting and pulverizing by atomizing with water at a pressure of 8 to 11 MPa, the powder is put into a reducing furnace in a pure hydrogen atmosphere for about 800
By repeating the step of reducing under the condition of ° C x about 6 hours twice, deoxidation, decarburization, denitrification, etc. are carried out to obtain a high-purity product.

【0025】そこで、本発明の固溶窒素濃度が10pp
m以下の鉄基粉末は、例えば、上記従来品と同様の粉末
化工程で粉末を得た後、この粉末を還元炉で上記従来品
と同様の純水素雰囲気下、約800℃×約6hの条件の
還元工程を従来品より多い3〜5回繰り返すことにより
さらに脱窒を進行させて製造することができる。あるい
は、還元工程を繰り返す回数を従来品より増加させるこ
とに替えて乃至は加えて、還元時間を従来品より延長さ
せてもよい。
Therefore, the solid solution nitrogen concentration of the present invention is 10 pp.
The iron-based powder having a particle size of m or less is obtained, for example, in the same pulverization process as that of the conventional product, and then the powder is placed in a reducing furnace in the same pure hydrogen atmosphere as that of the conventional product at about 800 ° C. for about 6 h. By repeating the reducing step under the conditions 3 to 5 times, which is larger than that of the conventional product, denitrification can be further advanced to manufacture. Alternatively, instead of or in addition to increasing the number of times of repeating the reduction step as compared with the conventional product, the reduction time may be extended as compared with the conventional product.

【0026】本発明の鉄基粉末の粒度分布は特に規定さ
れるものではないが、粉末冶金において一般的に使用さ
れる、篩い分け法で250μm以下の粒子の割合が99
%以上とすることが望ましい。
The particle size distribution of the iron-based powder of the present invention is not particularly limited, but the proportion of particles having a size of 250 μm or less, which is generally used in powder metallurgy, is 99 by the sieving method.
It is desirable to set it to be at least%.

【0027】このようにして得られた本発明の鉄基粉末
は、従来品と同様の成形方法により圧粉体に成形され
る。例えば、本発明の鉄基粉末に必要により潤滑剤を添
加・混合し所定の温度に予熱した後、外部からヒーター
加熱、通電によるジュール加熱、高周波加熱、赤外線加
熱など任意の方法により加熱された成形型内に充填し、
所定の温度下で圧縮成形することにより、従来品よりさ
らに高密度の圧粉体が得られる。また、鉄基粉末自身が
優れた圧縮性を有するので、潤滑剤の種類に関係なく、
また型潤滑成形、振動成形などのプロセスの形式に関わ
らず効果を有する。
The iron-based powder of the present invention thus obtained is molded into a green compact by the same molding method as the conventional product. For example, if necessary, a lubricant is added to and mixed with the iron-based powder of the present invention to preheat it to a predetermined temperature, and then heating is performed by an arbitrary method such as heating with a heater, Joule heating by energization, high-frequency heating, or infrared heating. Fill in the mold,
By performing compression molding at a predetermined temperature, a green compact having a higher density than that of the conventional product can be obtained. Also, since the iron-based powder itself has excellent compressibility, regardless of the type of lubricant,
Further, it is effective regardless of the type of process such as die lubrication molding and vibration molding.

【0028】[0028]

【実施例】本発明の作用効果を確認するため、以下の比
較実験を実施した。
EXAMPLES The following comparative experiments were conducted to confirm the effects of the present invention.

【0029】比較試験に供する従来品の鉄基粉末とし
て、市販の高純度鉄粉A(製品名:アトメル300N
H、神戸製鋼所製)および合金鋼粉B(製品名:46F
4H、神戸製鋼所製)の2種類の鉄基粉末を選択した。
これらの成分を表1に、粒度分布を表2に示す。なお、
高純度鉄粉Aおよび合金鋼粉Bの固溶窒素濃度はそれぞ
れ15ppmおよび12ppmであった。
A commercially available high-purity iron powder A (product name: Atmel 300N) is used as a conventional iron-based powder for comparison tests.
H, Kobe Steel Co., Ltd. and alloy steel powder B (Product name: 46F)
4H, manufactured by Kobe Steel Ltd.) were selected.
These components are shown in Table 1 and the particle size distribution is shown in Table 2. In addition,
The dissolved nitrogen concentrations of the high-purity iron powder A and the alloy steel powder B were 15 ppm and 12 ppm, respectively.

【0030】ここに、固溶窒素濃度の測定は以下の方法
で行った。まず、窒素濃度測定装置(製品名:TC−1
36、LECO社製)を用いて不活性ガス溶融熱伝導度
法により鉄基粉末中の全窒素濃度W1(%)を測定す
る。次に、JIS G1228(鉄及び鋼―窒素定量方
法 アンモニア蒸留分離インドフェノール青吸光光度
法)により鉄基粉末中に存在する窒素化合物の窒素分W
2(%)を測定する。そして、求める固溶窒素濃度W
N(%)は、WN=W1−W2により得られる。
Here, the solid solution nitrogen concentration was measured by the following method. First, a nitrogen concentration measuring device (product name: TC-1
36, manufactured by LECO), and the total nitrogen concentration W 1 (%) in the iron-based powder is measured by the inert gas fusion thermal conductivity method. Next, according to JIS G1228 (iron and steel-nitrogen determination method, ammonia distillation separation indophenol blue absorptiometry), the nitrogen content W of the nitrogen compound present in the iron-based powder is determined.
2 (%) is measured. Then, the required solid solution nitrogen concentration W
N (%) is obtained by W N = W 1 −W 2 .

【0031】そして、本発明例の鉄基粉末として固溶窒
素濃度が10ppm以下の鉄基粉末を得るため、上記従
来品の鉄基粉末A、Bをそれぞれ母粉として小型加熱炉
内にて純水素雰囲気下で800℃×6h×1〜2回の脱
窒処理を行って作製した。一方、比較例の鉄基粉末とし
て固溶窒素濃度を意図的に高くした鉄基粉末を得るた
め、上記従来品の鉄基粉末A、Bをそれぞれ母粉として
小型加熱炉内にて水素窒素混合ガス(体積割合でH2
2=1:4)または純窒素ガス雰囲気下で940℃×
6h×1回の加窒処理を行って作製した。このようにし
て作製した比較試験用鉄基粉末の脱窒または加窒処理条
件と処理後の固溶窒素濃度の一覧を表3に示す。
Then, in order to obtain an iron-based powder having a solid solution nitrogen concentration of 10 ppm or less as the iron-based powder of the present invention, the above-mentioned conventional iron-based powders A and B were used as mother powders, respectively, and pure in a small heating furnace. It was produced by performing denitrification treatment at 800 ° C. × 6 h × 1-2 times in a hydrogen atmosphere. On the other hand, in order to obtain an iron-based powder in which the concentration of solid solution nitrogen was intentionally increased as the iron-based powder of the comparative example, hydrogen-nitrogen mixture was performed in a small heating furnace using the above-described conventional iron-based powders A and B as mother powders. Gas (H 2 by volume ratio:
N 2 = 1: 4) or 940 ° C. under a pure nitrogen gas atmosphere
It was produced by performing a nitrification treatment once for 6 hours. Table 3 shows a list of denitrification or nitrification treatment conditions and the concentration of solute nitrogen after the treatment of the iron-based powder for comparative tests produced in this manner.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】次に、表3に示した各比較試験用鉄基粉末
を原料粉末として、室温〜250℃の間で順次温度を変
化させ各一定温度下で圧粉体の成形を行った。詳細な成
形条件は以下の通りである。すなわち、室温〜50℃の
間の温度で成形を行う場合には、原料粉末にステアリン
酸亜鉛を0.8質量%添加してV型混合器で30min
混合したのち所定の温度に予熱し、この混合粉を所定の
温度に加熱した成形金型に充填し成形面圧7t/cm2
で加圧圧縮して、長さ31.8mm×幅12.7mm×
厚さ約5mm、質量18gの圧粉体を成形した。また、
50℃を超える温度で成形を行う場合には、原料粉末に
ステアリン酸亜鉛を0.1質量%添加してV型混合器で
30min混合したのち所定の温度に予熱し、この混合
粉を、ステアリン酸リチウムをアルコールに分散させて
金型内壁に塗布したのち所定の温度に加熱した型潤滑金
型を介して、同じく所定の温度に加熱した成形金型に供
給し、成形面圧7t/cm2で加圧して、長さ31.8
mm×幅12.7mm×厚さ約5mmの直方体形状で質
量18gの圧粉体を成形した。なお混合粉の予熱は、ア
ルミブロックにφ20mm×50mmの穴を10〜20
個設け、この穴に秤量した鉄粉を充填し、アルミブロッ
クの外周をパネルヒータで覆って加熱する方法で行っ
た。また成形金型および型潤滑金型の加熱は、それぞれ
の金型にバンドヒータを巻き付け、熱電対で測定した金
型温度を±2℃の範囲に制御する方法で行った。
Next, using each of the iron-based powders for comparison tests shown in Table 3 as a raw material powder, the temperature was sequentially changed between room temperature and 250 ° C., and the green compact was molded at each constant temperature. Detailed molding conditions are as follows. That is, when molding is performed at a temperature between room temperature and 50 ° C., 0.8 mass% of zinc stearate is added to the raw material powder and the mixture is mixed in a V-type mixer for 30 minutes.
After mixing, preheat to a prescribed temperature, fill this mixed powder in a molding die heated to a prescribed temperature, and mold surface pressure 7 t / cm 2
31.8 mm in length × 12.7 mm in width ×
A green compact having a thickness of about 5 mm and a mass of 18 g was molded. Also,
When molding is performed at a temperature higher than 50 ° C., zinc stearate is added to the raw material powder in an amount of 0.1% by mass and mixed in a V-type mixer for 30 minutes and then preheated to a predetermined temperature. Lithium oxide is dispersed in alcohol and applied to the inner wall of the mold, and then supplied through a mold lubricating mold heated to a predetermined temperature to a molding mold also heated to a predetermined temperature, and a molding surface pressure of 7 t / cm 2 Pressurized with, length 31.8
A green compact having a mass of 18 g and a rectangular parallelepiped shape having a size of mm × width 12.7 mm × thickness 5 mm was formed. In addition, the preheating of the mixed powder is performed by forming a hole of φ20 mm × 50 mm in the aluminum block for 10 to 20 mm.
This was carried out by a method in which individual pieces were provided, the holes were filled with weighed iron powder, the outer circumference of the aluminum block was covered with a panel heater, and heating was performed. The heating of the molding die and the die lubrication die was carried out by winding a band heater around each die and controlling the die temperature measured by a thermocouple within a range of ± 2 ° C.

【0036】このようにして成形した圧粉体の密度およ
び抗折強度を測定した。具体的には、圧粉体の密度は圧
粉体の質量と寸法を測定し、寸法より体積を算出し、質
量を体積で除して求めた。また、抗折強度はISO33
25(焼結金属材料抗折力)にしたがい、強度試験機
(製品名:AUTOGRAPH、島津製作所製)にて圧
粉体の長手方向の支点間距離を25mmとして測定を行
った。なお、密度、抗折強度とも3個の圧粉体サンプル
の測定値の算術平均値を採用した。
The density and bending strength of the green compact thus formed were measured. Specifically, the density of the green compact was obtained by measuring the mass and dimensions of the green compact, calculating the volume from the dimensions, and dividing the mass by the volume. The bending strength is ISO33.
The strength was measured with a strength tester (product name: AUTOGRAPH, manufactured by Shimadzu Corp.) at a fulcrum distance in the longitudinal direction of the powder compact of 25 mm according to 25 (sintered metal material bending strength). In addition, the arithmetic mean value of the measured values of three green compact samples was adopted for both the density and the bending strength.

【0037】測定結果を図1〜5に示す。The measurement results are shown in FIGS.

【0038】図1および図2は、それぞれ高純度鉄粉
(表3のNo.1〜5)と合金鋼粉(表3のNo.6〜
10)を室温で成形(冷間成形)した場合における、固
溶窒素濃度と圧粉体密度および抗折強度との関係を示す
グラフ図である。また、図3および図4はそれぞれ高純
度鉄粉(表3のNo.1〜5)と合金鋼粉(表3のN
o.6〜10)を150℃で成形(温間成形)した場合
における、固溶窒素濃度と圧粉体密度および抗折強度と
の関係を示すグラフ図である。また、図5は本発明例の
低固溶窒素濃度(10ppm以下)の高純度鉄粉(表3
のNo.2)あるいは合金鋼粉(表3のNo.7)を原
料粉とする圧粉体の、成形温度と圧粉体密度との関係を
示す図である。
1 and 2 show high-purity iron powder (No. 1 to 5 in Table 3) and alloy steel powder (No. 6 to No. 6 in Table 3), respectively.
It is a graph figure which shows the relationship of a solid-solution nitrogen concentration, a green compact density, and bending strength when 10) is shape | molded at room temperature (cold forming). 3 and 4 show high-purity iron powder (Nos. 1 to 5 in Table 3) and alloy steel powder (N in Table 3).
o. 6 to 10) is a graph showing the relationship between the solid solution nitrogen concentration, the green compact density, and the bending strength in the case of molding (warm molding) at 150 ° C. Further, FIG. 5 shows high purity iron powder with low solid solution nitrogen concentration (10 ppm or less) according to the present invention (Table 3).
No. It is a figure which shows the relationship between shaping | molding temperature and green compact density of the green compact which uses 2) or alloy steel powder (No. 7 of Table 3) as a raw material powder.

【0039】図1に示すように高純度鉄粉を冷間成形す
る場合には、固溶窒素濃度が従来品(15ppm)より
低い場合だけでなく、高い場合にも圧粉体の密度が高く
なる場合があり、従来品の5倍程度の固溶窒素濃度とな
っても従来品と同等の圧粉体密度が得られ、固溶窒素濃
度と圧粉体密度とは明確な相関関係がない。また、固溶
窒素濃度が低くなると抗折強度が急激に低下するため、
必ずしも固溶窒素濃度が低い方が良いとはいえない。ま
た、図2に示すように合金鋼粉を冷間成形する場合に
も、図1と同様の傾向を示すため、固溶窒素濃度が低い
方が必ずしも良いとはいえない。
As shown in FIG. 1, when cold-forming high-purity iron powder, the density of the green compact is high not only when the concentration of solute nitrogen is lower than that of the conventional product (15 ppm) but also when it is high. In some cases, even if the solid solution nitrogen concentration is about 5 times that of the conventional product, the green compact density equivalent to that of the conventional product is obtained, and there is no clear correlation between the solid solution nitrogen concentration and the green compact density. . In addition, since the bending strength drops sharply when the concentration of solute nitrogen decreases,
It cannot always be said that the concentration of solute nitrogen is low. Further, as shown in FIG. 2, even when cold forming the alloy steel powder, the same tendency as in FIG. 1 is exhibited, and therefore it is not always preferable that the concentration of solute nitrogen is low.

【0040】一方、図3に示すように、高純度鉄粉を1
50℃で温間成形する場合には、固溶窒素濃度が従来品
(15ppm)より低くなると圧粉体密度は上昇する。
なお、固溶窒素濃度が従来品より低くなると圧粉体の抗
折強度は従来品よりやや低下するが、その低下度合いは
冷間成形ほど大きくなく、圧粉体の密度と抗折強度との
バランスを考慮すると、固溶窒素濃度が従来品より低い
ものの方が従来品より優れていることが確認された。ま
た、図4に示すように、合金鋼粉を150℃で温間成形
する場合にも、図3と同様の傾向を示すことから、固溶
窒素濃度が従来品より低いものの方が従来品より優れて
いることが確認された。
On the other hand, as shown in FIG.
In the case of warm forming at 50 ° C., when the concentration of solute nitrogen becomes lower than that of the conventional product (15 ppm), the green compact density increases.
When the concentration of solute nitrogen is lower than that of the conventional product, the bending strength of the green compact is slightly lower than that of the conventional product, but the degree of decrease is not as great as in cold forming, and the density and bending strength of the green compact are Considering the balance, it was confirmed that the solid solution nitrogen concentration lower than the conventional product was superior to the conventional product. Further, as shown in FIG. 4, even when the alloy steel powder is warm-formed at 150 ° C., the tendency similar to that of FIG. 3 is exhibited. It was confirmed to be excellent.

【0041】また、図5に示すとおり、固溶窒素濃度が
10ppm以下の高純度鉄粉あるいは合金鋼粉を原料粉
とした場合、圧粉体の密度は、成形温度を室温から高く
していくと、80℃以上になると急激に上昇し始めるが
150℃以上では上昇度合いが鈍化し約200℃でピー
クを示し、それ以上の温度では徐々に低下する傾向を示
すが250℃においても依然として高い密度を維持して
いるのがわかる。
Further, as shown in FIG. 5, when a high-purity iron powder or alloy steel powder having a solid solution nitrogen concentration of 10 ppm or less is used as the raw material powder, the density of the green compact increases from the room temperature to the molding temperature. At 80 ° C or higher, the temperature rises sharply, but at 150 ° C or higher, the degree of increase slows down and shows a peak at about 200 ° C. At higher temperatures, it tends to gradually decrease, but at 250 ° C, the density is still high. You can see that you are maintaining.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明によ
れば、温間成形において従来品より格段に圧縮性に優れ
た鉄基粉末を提供できる。また、この鉄基粉末を原料粉
末として所定の温度で温間成形することにより圧粉成形
体の密度を従来品よりさらに高めることができる。その
結果、この圧粉成形体を焼結して得られる最終成形体の
機械的強度をより向上することができる。
As described in detail above, according to the present invention, it is possible to provide an iron-based powder having a much higher compressibility than conventional products in warm compaction. Further, the density of the green compact can be further increased as compared with the conventional product by warm forming the iron-based powder as a raw material powder at a predetermined temperature. As a result, it is possible to further improve the mechanical strength of the final molded body obtained by sintering this green compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】高純度鉄粉を冷間成形した場合における、固溶
窒素濃度と圧粉体密度および抗折強度との関係を示すグ
ラフ図である。
FIG. 1 is a graph showing the relationship between the concentration of solute nitrogen, the green compact density, and the bending strength when high-purity iron powder is cold-formed.

【図2】合金鋼粉を冷間成形した場合における、固溶窒
素濃度と圧粉体密度および抗折強度との関係を示すグラ
フ図である。
FIG. 2 is a graph showing the relationship between the concentration of solute nitrogen, the green compact density and the bending strength when alloy steel powder is cold-formed.

【図3】高純度鉄粉を150℃で温間成形した場合にお
ける、固溶窒素濃度と圧粉体密度および抗折強度との関
係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between the concentration of solute nitrogen, the green compact density and the bending strength when high-purity iron powder is warm-formed at 150 ° C.

【図4】合金鋼粉を150℃で温間成形した場合におけ
る、固溶窒素濃度と圧粉体密度および抗折強度との関係
を示すグラフ図である。
FIG. 4 is a graph showing the relationship between the concentration of solute nitrogen, the density of green compacts, and the bending strength when alloy steel powder was warm-formed at 150 ° C.

【図5】本発明例の低固溶窒素濃度の高純度鉄粉あるい
は合金鋼粉を原料粉とする圧粉体の、成形温度と圧粉体
密度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a molding temperature and a green compact density of a green compact of a low solid solution nitrogen concentration high-purity iron powder or alloy steel powder as a raw material powder according to the present invention.

フロントページの続き (72)発明者 澤山 哲也 東京都品川区北品川5丁目9番12号 株式 会社神戸製鋼所東京本社内 (72)発明者 北条 啓文 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 4K018 AA25 BA15 CA01 CA02 Continued front page    (72) Inventor Tetsuya Sawayama             5-9-12 Kitashinagawa, Shinagawa-ku, Tokyo Stocks             Kobe Steel, Ltd. Tokyo head office (72) Inventor Keibun Hojo             2-3-3 Niihama, Arai-cho, Takasago, Hyogo Prefecture             Takasago Works, Kobe Steel, Ltd. F-term (reference) 4K018 AA25 BA15 CA01 CA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温間成形の主原料として用いられる鉄基
粉末であって、質量割合にてC:0.02%以下、S
i:0.10%以下、Mn:0.30%以下、P:0.
02%以下、O:0.20%以下の成分を含み、かつ、
固溶窒素濃度が質量割合にて10ppm以下であること
を特徴とする温間成形用鉄基粉末。
1. An iron-based powder used as a main raw material for warm compacting, wherein C: 0.02% or less by mass and S.
i: 0.10% or less, Mn: 0.30% or less, P: 0.
02% or less, O: 0.20% or less of the components, and
An iron-based powder for warm forming, wherein the concentration of solute nitrogen is 10 ppm or less in mass ratio.
【請求項2】 請求項1に記載の温間成形用鉄基粉末
を、80〜250℃の間のいずれかの温度で成形するこ
とを特徴とする温間成形方法。
2. A warm compacting method, characterized in that the iron-base powder for warm compaction according to claim 1 is compacted at any temperature between 80 and 250 ° C.
JP2001375742A 2001-12-10 2001-12-10 Iron based powder for warm compacting, and warm compacting method Pending JP2003171741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375742A JP2003171741A (en) 2001-12-10 2001-12-10 Iron based powder for warm compacting, and warm compacting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375742A JP2003171741A (en) 2001-12-10 2001-12-10 Iron based powder for warm compacting, and warm compacting method

Publications (1)

Publication Number Publication Date
JP2003171741A true JP2003171741A (en) 2003-06-20

Family

ID=19184056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375742A Pending JP2003171741A (en) 2001-12-10 2001-12-10 Iron based powder for warm compacting, and warm compacting method

Country Status (1)

Country Link
JP (1) JP2003171741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450672C (en) * 2005-10-28 2009-01-14 合肥波林新材料有限公司 Warm processing powdered iron, and preparation method
JP2013165251A (en) * 2012-01-12 2013-08-22 Kobe Steel Ltd Soft magnetic iron-based powder and method of manufacturing the same
WO2014136587A1 (en) 2013-03-08 2014-09-12 Ntn株式会社 Magnetic core powder, powder magnetic core, and method for producing magnetic core powder and powder magnetic core
JP2016008313A (en) * 2014-06-23 2016-01-18 山陽特殊製鋼株式会社 High hardness high toughness powder excellent in producibility by atomization method and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450672C (en) * 2005-10-28 2009-01-14 合肥波林新材料有限公司 Warm processing powdered iron, and preparation method
JP2013165251A (en) * 2012-01-12 2013-08-22 Kobe Steel Ltd Soft magnetic iron-based powder and method of manufacturing the same
US9589712B2 (en) 2012-01-12 2017-03-07 Kobe Steel, Ltd. Iron-based soft magnetic powder and production method thereof
WO2014136587A1 (en) 2013-03-08 2014-09-12 Ntn株式会社 Magnetic core powder, powder magnetic core, and method for producing magnetic core powder and powder magnetic core
JP2016008313A (en) * 2014-06-23 2016-01-18 山陽特殊製鋼株式会社 High hardness high toughness powder excellent in producibility by atomization method and method for producing the same

Similar Documents

Publication Publication Date Title
US7384446B2 (en) Mixed powder for powder metallurgy
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
JPH07505679A (en) Bearing manufacturing method
JP2002146403A (en) Alloy steel powder for powder metallurgy
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP2010100932A (en) Process for production of sintered compact by powder metallurgy
US5997805A (en) High carbon, high density forming
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
US20090129964A1 (en) Method of forming powder metal components having surface densification
US2342799A (en) Process of manufacturing shaped bodies from iron powders
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JP2001523763A (en) High density molding method by powder blending
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
CN101829783A (en) Produce the method for steel moulding
JP2003171741A (en) Iron based powder for warm compacting, and warm compacting method
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP2006299364A (en) Fe-BASED SINTERED ALLOY
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JP4615191B2 (en) Method for producing iron-based sintered body
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
KR102533137B1 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
CA2074193C (en) Metal-powder blend
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPH0633101A (en) Production of high-strength alloy steel powder for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Effective date: 20050523

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050531

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327