JPS5935601A - Production of atomized steel powder having high compressibility - Google Patents

Production of atomized steel powder having high compressibility

Info

Publication number
JPS5935601A
JPS5935601A JP57143657A JP14365782A JPS5935601A JP S5935601 A JPS5935601 A JP S5935601A JP 57143657 A JP57143657 A JP 57143657A JP 14365782 A JP14365782 A JP 14365782A JP S5935601 A JPS5935601 A JP S5935601A
Authority
JP
Japan
Prior art keywords
powder
steel powder
atomized
atmosphere
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57143657A
Other languages
Japanese (ja)
Other versions
JPS6253561B2 (en
Inventor
Yukio Makiishi
槙石 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57143657A priority Critical patent/JPS5935601A/en
Publication of JPS5935601A publication Critical patent/JPS5935601A/en
Publication of JPS6253561B2 publication Critical patent/JPS6253561B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the compressibility of atomized steel powder by heat- treating the atomized steel powder in a non-oxidative atmosphere then denitriding in the atmosphere of a specific compsn. CONSTITUTION:Atomized steel powder is held for 5-45min at 900-1,050 deg.C in a reducing or neutral atmosphere to reduce the oxide on the surface formed during the manufacture of the steel powder and to soften uniformly the texture generated in the stage of solidifying by spraying. The steel powder is slowly cooled at 5-20 deg.C/min cooling rate within a 900-550 deg.C range in an atmosphere of <=40 deg.C dew point of the compsn. consisting of 50-80vol% H2, <=400ppm NH3 and the balance N2. The N2 in the steel powder is denitrided by such heat treatment, whereby the compressibility of the steel powder is improved. If the steel powder is used as a raw material for the sintered product, the strength of the sintered product is improved and the production of a large-sized sintered product is made easy.

Description

【発明の詳細な説明】 本発明は高圧縮性粉末冶金用アトマイズ鋼粉の製造方法
に係り、とくにアトマイズ後の熱部(条件の改善により
アトマイズ鋼粉の圧縮性を向上さぜる製造方法の提案に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing highly compressible atomized steel powder for powder metallurgy, and particularly to a production method for improving the compressibility of atomized steel powder by improving the hot section (conditions) after atomization. Regarding proposals.

粉末冶金用アトマイズ鋼粉は通常溶融金属流に高速の液
体あるいは気体を噴射衝突さ亡て、溶融金属を霧化飛散
させることにより製造される。この噴霧されたままのア
トマイズ鋼粉は、乾燥後所定の粉末冶金特性を付与する
ため還元3囲気中で仕上熱処理された後解砕され、製品
とされる。
Atomized steel powder for powder metallurgy is usually produced by injecting a high-speed liquid or gas into a molten metal stream and causing the molten metal to atomize and scatter. After drying, the atomized steel powder as sprayed is subjected to finishing heat treatment in a reducing atmosphere to impart predetermined powder metallurgical properties, and then crushed to produce a product.

このような工程でJI11!令されるアトマイズ鋼粉は
、還元鉄粉にくらべ、不純物が少なく、寸だ粒子内部に
空孔がなく稠密であるため、還元鉄粉にくらべ圧縮性が
優れている。
With this process, JI11! The atomized steel powder has less impurities than reduced iron powder, and is dense with no pores inside the particles, so it has better compressibility than reduced iron powder.

近年、靜結部品の大型fヒ、高強度化にともない↓原j
ト銅粉の圧縮性の向上が強く望まれている。これは圧縮
性を向上させることによt)、φ結部品の大型化、高強
度化が可能となるほか、電磁部品の焼結化、成形金型寿
命の延長など多くの利点が期待されるからである。
In recent years, with the increase in the size and strength of fixed parts, ↓Hara J
It is strongly desired to improve the compressibility of copper powder. By improving compressibility, it is possible to increase the size and strength of φ-bonded parts, and many other benefits are expected, such as sintering of electromagnetic parts and extending the life of molding molds. It is from.

アトマイズ鋼粉の圧縮性は、銅粉の組成によりほは決定
される。従って、原料スフラッグ令・メIQ選し、不用
な合金・成・分を可能なかぎり低くすることが肝要であ
る。さらに噴n後の仕」二熱部理工稈において、O,N
およびOなどの不糾物元累を除去するノ17・要がある
 11N(・てC,Nは圧縮性を著しく劣化させZ)。
The compressibility of atomized steel powder is determined in part by the composition of the copper powder. Therefore, it is important to select the raw material SFRAG level and IQ, and to lower unnecessary alloys, components, and components as much as possible. In addition, the work after blowing "O,N" in the second heat section
It is necessary to remove impurities such as O and 11N (C and N significantly deteriorate compressibility).

従って同一の銅粉であっても、仕上熱部fIT!s 作
の適否によりアトマイズ鋼粉の圧縮性が大きく左右され
ろ。
Therefore, even if the copper powder is the same, the finished hot part fIT! The compressibility of atomized steel powder is greatly influenced by the suitability of the process.

アトマイズ鋼粉の仕上熱処理の目的は、単[0゜Nおよ
び0を低減さぜるだはでなく、■!へ様II!?の急冷
凝固、f11轡を均質軟化させ、圧縮成形容易な鋼粉と
する点にもある。さらに水アトマイズ鋼粉においては、
噴霧時(ζ鋼粉表面が酸化さねているため、これを還元
除去することも仕上熱処理の目的の一つでを)ろ。
The purpose of finishing heat treatment of atomized steel powder is not just to reduce 0°N and 0, but ■! Hey-sama II! ? Another advantage is that the rapid solidification of F11 homogeneously softens the steel powder, making it easy to compression mold. Furthermore, in water atomized steel powder,
During spraying (the surface of the ζ steel powder is oxidized, one of the purposes of finishing heat treatment is to reduce and remove this).

面って、アトマイズ鋼粉の仕上熱処理は、上記目的を達
成するため、一般にはH2を含む還元性フζj用気にお
いて850〜1050℃の温度でRO〜120分間加熱
保持する仕上熱処理が行なわれている。ところが前記の
ように金・1粉の圧縮性は、鋼粉中ONによって著しく
低下する。すなわち仕上熱部P11によって鋼粉のN聞
を低減させることによt)王権性向−にが可能であるが
、*q、 ’(r−一般に行なわねている上記のような
什」二熱処理では表面酸化物層の除去を優先するあまり
、脱窒については余り考慮されていないのが実情である
。従って上記のような通常の仕上熱処理で製造された銅
粉のN針は40 ppmを越える場合もある。このため
−殻粉末冶金用鋼粉の圧粉密度は?Fl渭剤(Zr+s
t−ステアリン酸亜鉛)をlチ混合し成形圧力5t/a
♂で成形した場合、6.75〜6.85f’、/8糧度
にとどまつでいる。
On the other hand, in order to achieve the above purpose, finishing heat treatment of atomized steel powder is generally carried out by heating and holding at a temperature of 850 to 1050 °C for 120 minutes at RO in a reducing gas containing H2. ing. However, as mentioned above, the compressibility of gold 1 powder is significantly reduced by ON in steel powder. In other words, it is possible to reduce the N ratio of the steel powder by using the finishing heat zone P11, but it is possible to improve the royal tendency by reducing the N ratio of the steel powder using the finishing heat zone P11. The reality is that removal of the surface oxide layer is prioritized, and denitrification is not given much consideration.Therefore, if the N needle of copper powder produced by the usual finishing heat treatment as described above exceeds 40 ppm. Therefore, what is the green density of steel powder for shell powder metallurgy?
t-zinc stearate) was mixed and the molding pressure was 5t/a.
When molded with male, the yield remains at 6.75 to 6.85 f', /8 grain density.

なお脱窒は、主に下記反応式により進行するものと考え
られる。
Note that denitrification is thought to proceed mainly according to the following reaction formula.

1.1 + 75’H2−)  NIP8(1)すなわ
ち脱窒におよばす熱処理雰囲気の影響は大きく、純H2
中においては容易に脱窒が進行するが雰囲気のN、IN
が増加すると脱9速度が低下あるいけ、雰囲気中のN2
が銅粉中に浸入する。Tirって、。
1.1 + 75'H2-) NIP8(1), that is, the influence of the heat treatment atmosphere on denitrification is large, and pure H2
Denitrification progresses easily inside the atmosphere, but the N, IN of the atmosphere
As N2 in the atmosphere increases, the de9ation rate decreases and
penetrates into the copper powder. What is Tir?

脱窒を促進するためには、雰囲気を純H2とするのが望
ましい。
In order to promote denitrification, it is desirable that the atmosphere be pure H2.

ところが、純H2は高価であるうえ取扱いが難しく、一
般の粉末冶金用鋼粉の製造用には必ずしも好−ましいも
のとは言えない。そこで熱処理雰囲気は一般にアンモニ
ア分解ガス(Hp、 ; 75 vol係、N。
However, pure H2 is expensive and difficult to handle, and is not necessarily suitable for producing steel powder for general powder metallurgy. Therefore, the heat treatment atmosphere is generally ammonia decomposition gas (Hp, 75 vol, N.

i 21’l vol に )などが用いられているが
、NIIが脱窒を抑制するうえ、清粉の表面m化物の還
元によって生ずる水諾気による露点の上昇および脱冑に
よって生゛1′るNH8などにより、炉内雰囲気が汚伊
されるため脱窒がさらに抑制される。従って、現在一般
に用いられている仕上熱処理雰囲気は、鋼粉0脱窒に最
適ヶ雰囲気アあ、おは言えない。2山結果、前記したよ
うに銅粉中に多量のNが残留しているものと考えられる
(21'l vol) etc. are used, but NII not only suppresses denitrification, but also increases the dew point and denitrification due to the water aeration generated by the reduction of surface oxides of fine powder. Since the atmosphere inside the furnace is polluted by NH8 and the like, denitrification is further suppressed. Therefore, it cannot be said that the finishing heat treatment atmosphere generally used at present is the optimum atmosphere for zero denitrification of steel powder. As a result of the two piles, it is considered that a large amount of N remains in the copper powder as described above.

こ1tまでにも脱窒f積極的に行ない、圧縮性を向上さ
せようとする試みはいくつか提案されている。例えば還
元鉄粉の仕上熱処理を帰路還元と脱窒との2回に分内I
f 1.、、、で行なう熱処理方法が提案されている。
Several attempts have been made to actively carry out denitrification up to this point and improve compressibility. For example, the finishing heat treatment of reduced iron powder is divided into two stages: return reduction and denitrification.
f1. A heat treatment method using , , , etc. has been proposed.

同様にシ゛トマイズ銅粉においても、組織の均一化およ
び表面酸化物の還元と脱窒とを分離した2回の熱処理に
よって、圧縮性の向トを図ることは可能と考えられるう
しかし2回の熱処理ケ行なうことによる解砕回数の増加
およびそれにともなう成形性の劣化、生産FAfitl
iの土性は避け@i6く、特殊用途向は以外の一般粉末
冶金用原料銅粉の製造方法としては、最適なものとは言
えない。
Similarly, it is thought that it is possible to improve the compressibility of atomized copper powder by homogenizing the structure and performing two heat treatments that separate reduction and denitrification of surface oxides. Due to this, the number of times of crushing increases and the resulting deterioration of formability and production FAfitl.
The soil texture of i@i6 is avoided, and it cannot be said to be the best method for producing raw material copper powder for general powder metallurgy other than for special purposes.

これと似た方法に、熱ザイクルを段階状にとる2段熱処
理法が考えられる。この方法は、高温における組織の均
一化および表面酸化物層の還元後、脱窒を目的とする低
温保持の工程を加えた熱処理方法である。この方法は、
2回熱処理にくらべ成形性の劣化などが少なく優れた方
法と言える。ところがアトマイズ圃粉の仕上熱処理は、
通常ベルト式の連続Pμ使用されでいる。このような連
続炉において2段熱処理法を採用するためには、銅粉を
加熱して高温保持、冷却し7て低温保持、更に冷却した
後に出炉と云う段階状の熱サイクルを、一つの炉内で実
現しなければならず、炉内構造の変更、炉長の延長など
、大幅な炉の改造が必要である上、ベルトスピードが制
限され炉の生産性が低下する。従って2段熱処理法は、
連続炉による比較的安価な銅粉を製造するのには最適な
方法であるとは言えない。
A similar method is a two-stage heat treatment method in which thermal cycles are performed in stages. This method is a heat treatment method that adds a step of holding at a low temperature for the purpose of denitrification after homogenizing the structure and reducing the surface oxide layer at a high temperature. This method is
This method can be said to be superior as it causes less deterioration in formability compared to two-time heat treatment. However, the finishing heat treatment of atomized field powder
Usually, a belt-type continuous Pμ is used. In order to adopt a two-stage heat treatment method in such a continuous furnace, a stepwise heat cycle of heating the copper powder, holding it at a high temperature, cooling it, holding it at a low temperature, and then cooling it and then taking it out of the furnace is carried out in one furnace. This requires significant furnace modification, such as changing the furnace internal structure and extending the furnace length, and also limits belt speed and reduces furnace productivity. Therefore, the two-stage heat treatment method is
It cannot be said that the continuous furnace is the most suitable method for producing relatively inexpensive copper powder.

すなわち、アトマイズ鋼粉の圧縮性の向上は、脱りを(
l−することによって可能であるにも拘ゎら4゛、生f
l’91士Q(薯憂メまた脱窒方法が41?案されない
ために、シ11.状Q)圧(1(’tは低い値にとと歩
っていると云うのがy、(i千古でちる。
In other words, the improvement in the compressibility of atomized steel powder reduces the
Although it is possible by doing
It is said that the pressure (1) is moving towards a low value because no denitrification method has been proposed. i Chiru Chiru.

本発明(1、噴滞?をの粉末冶金用アトマイズ鋼粉の熱
処理に訃ける従来法の間順点を解決することにより、脱
窒を積極的に行なって圧縮性の優れた粉末冶金用アトマ
イズ銀粉を、生産性よく製造できる方法を提供するもの
であって、その要旨は粉末冶金用アトマイズ鋼粉の仕、
ヒlrlシ処理において、アトマイズ鋼粉の組織の均一
化と表面酸化物の還元とを、1質元件寸たけ中性雰囲気
中で900℃以上の品温加熱保持の条件で行ない、90
0〜550℃の冷却Ll→程の冷却速度を5〜20′C
”7m inとすることによって、制圧縮性アトマイズ
銅粉を生>’Tミ性よ< 製ii’rすZ)ことが可能
な方法て7ある。
The present invention (1. Atomized steel powder for powder metallurgy with stagnation) By solving the disadvantages of the conventional method of heat treatment of steel powder, atomization for powder metallurgy that actively performs denitrification and has excellent compressibility. The purpose is to provide a method for producing silver powder with high productivity, and its gist is to improve the quality of atomized steel powder for powder metallurgy,
In the HIRL process, the structure of the atomized steel powder is made uniform and surface oxides are reduced by heating and maintaining the product temperature at 900°C or higher in a neutral atmosphere.
0~550℃ cooling Ll → Cooling rate of 5~20'C
There are 7 methods by which compressible atomized copper powder can be produced with a pressure of 7 min.

本発明溝は、噴霧されたオまのアトマイズ銀粉の仕上熱
処理について種々研究・実験f債んだ結果、11L2、
望を促進することによってアトマイズ銅粉のJE析1作
の向上は可能であり、しかも組織の均一化と銅粉表面酸
化物の還元後の脱窒で−は、保持温度および保持時間の
影響を強く受けるものであるが、高温加熱保持後の冷却
速度を適正に選釈することにより、脱窒性の劣る雰囲気
中においても、比較的容易に脱9反応が進行するこ、と
t知見した。
The groove of the present invention was developed as a result of various research and experiments on finishing heat treatment of sprayed atomized silver powder.
It is possible to improve the JE analysis of atomized copper powder by promoting the denitrification of atomized copper powder, and the effect of holding temperature and holding time is However, it has been found that by appropriately selecting the cooling rate after high-temperature heating and holding, the de-9 reaction can proceed relatively easily even in an atmosphere with poor denitrification properties.

本発明(iこの知見に基づし)でなされたものであって
、噴霧された1才のアトマイズ鋼粉の什−に熱処理にお
いて、還元性オたは中性の雰囲気中で900〜1 (1
50℃の湯度範囲内で、5へ一45分間保持した後、そ
の−rトマイズ鍋全H,+(]〜8Q vo/!・L 
NH3400ppm以下、露点40℃以下である雰囲気
中で、90.0〜550℃の温度N−17囲内を冷却速
縮性のアトマイズ鋼粉を製造すZ)方法である。
In the present invention (based on this knowledge), in the heat treatment of the sprayed one-year-old atomized steel powder, 900-1 ( 1
After keeping the hot water temperature within the temperature range of 50℃ for 5 to 45 minutes, the -r tomize pot total H, +(] ~ 8Q vo/!・L
This is method Z), in which atomized steel powder is produced which can be cooled quickly within the temperature N-17 range of 90.0 to 550°C in an atmosphere with NH of 3400 ppm or less and a dew point of 40°C or less.

以下に、本発明になるアトマイズ鋼粉のM漬方法の構成
〜事項にっ−で詳細に説明する。
Below, the structure and matters of the method for dipping atomized steel powder according to the present invention will be explained in detail.

仕上、第処理の目的の一つは、字@凝lLI!l萌の組
織を均質軟化しIE、1i11成形注の改善された粉末
にする点にある。
One of the purposes of finishing and processing is the character @Kuri LI! The purpose of this method is to homogeneously soften the structure of the IE, 1i11, into a powder with improved moldability.

第1図に示したように仕上熱処理後のアトマイズ銀粉の
微少硬度は、仕上熱処理温度に依存し900℃未≠1・
盲の熱部1「(」では90分間の保持を行なっても軟f
1;のJr”合が小さく均質軟化が十分に進んで−いる
とはf”t 、、−7’j″い。従って、均IFq軟化
のために一亘!1 fl tI C、tLJ上に、fL
 I晶する必すリがある。アトマイズく「1粉Q」、仕
上熱処理によって、粉末も′7子相互が瞬結と海綿状の
鋼粉の凝琳体となるため、これ乏、!・ンマーミルなど
て解砕[て製品と丈る。このため還元雰囲気中において
1050℃をl唱えるような高温の熱処理を行なうと、
銅粉の焼結が過度に進行し解砕が困i、:gと7)す、
適正粒度を保つために過度の解砕を施さなければならず
、そのために(1)加工硬化による圧縮性の劣化(2)
銅粉の仲秋化による成形性の劣化などの悪影響ンー生し
て好袢シ、〈ない。
As shown in Figure 1, the microhardness of the atomized silver powder after finishing heat treatment depends on the finishing heat treatment temperature, and is less than 900℃ ≠ 1.
In the blind hot part 1 "("), even after holding for 90 minutes, the soft f
It is f"t,, -7'j" that the Jr" ratio of 1; is small and the homogeneous softening is sufficiently progressing. Therefore, for uniform IFq softening, !1 fl tI C, on tLJ ,fL
There are certain things that must be done. When the atomized "1 Powder Q" is subjected to finishing heat treatment, the powder also becomes agglomerated into a spongy agglomerate of steel powder.・The product is made by crushing it using a hummer mill, etc. For this reason, when heat treatment is performed at a high temperature of 1050°C in a reducing atmosphere,
The sintering of the copper powder progresses excessively and it is difficult to crush it.
In order to maintain appropriate particle size, excessive crushing must be performed, resulting in (1) deterioration of compressibility due to work hardening; (2)
There are no negative effects such as deterioration of formability due to the aging of copper powder.

iイつで、本発明の仕上熱処理の温度(ri、、均一化
が十分に進行I7、かつ粒子の焼結による悪影響が生じ
ない5)00〜l fl 511℃と電るξとが+(4
要である。
When the finishing heat treatment temperature of the present invention (ri, uniformity is sufficiently advanced I7 and no adverse effects due to particle sintering occur5) 00 to l fl 511°C and ξ + ( 4
It is essential.

また・あ1口より鏝粉の硬1現に本−上はり仕上熱部J
ffi 時111 )影?fi’ ?!:’ nFl]
 ヘルド、@ ’4’fi (1) 軟(104,9(
10℃以上の温度では保持時a■の影111I’は少な
い。(7たがって噴霧凝固組織の均一化にt−j:45
分間以下の熱処理で十分である。々−お下限は、実施に
当っては銅粉の均熱に少くとも5分子an l−を要す
るので、本発明の仕上熱処理の高温における保持時間は
5〜番5分間とする。
In addition, the hardness of the trowel powder from A1 to the present-top finishing hot part J
ffi time 111) Shadow? fi'? ! :'nFl]
Held, @ '4'fi (1) Soft (104,9 (
At a temperature of 10° C. or higher, the shadow 111I' of a■ during holding is small. (7 Therefore, to homogenize the spray solidification structure, t-j: 45
A heat treatment of less than a minute is sufficient. Since at least 5 molecules of an l- are required for soaking the copper powder in practice, the holding time at high temperature in the finishing heat treatment of the present invention is set to 5 to 5 minutes.

また本発明のアトマイズ鋼粉の仕土熱4rtp x++
rは、凝固組織を均質軟化し、た稜、I(2金庁有する
奢uI(気中の徐冷により脱撃を促進し7て圧縮性の向
上を図るものである。そして脱9は冷却速度と雰囲気組
成とに大きく影響されることが第2図に示されている。
In addition, the atomized steel powder of the present invention 4rtp x++
r homogeneously softens the solidified structure to improve compressibility. Figure 2 shows that it is strongly influenced by speed and atmosphere composition.

図面は高温処理後の徐冷時に、鑓粉の官有N量に及ぼす
、熱処理雰囲気組成の彫りを示したもので、冷却速度を
5℃/m1nおよび45℃/rr+ inとした場合の
例である。前述したように、銅粉中の窒素の除去は(1
)式に示した)JH8生成反応である。
The drawing shows the effect of the heat treatment atmosphere composition on the amount of N in the metal powder during slow cooling after high-temperature treatment, and shows examples where the cooling rate is 5°C/m1n and 45°C/rr+ in. be. As mentioned above, the removal of nitrogen from copper powder is (1
) is the JH8 production reaction shown in the formula.

このため当然に、高H2t、低N2制−の雰囲気はど。Therefore, naturally, what is the atmosphere like with high H2t and low N2?

銅粉中の窒素触は減少する。特に冷却速度が45C/m
inと速い場合では、H2府が高い場合でなければ脱窒
がみられないが、冷却速度が遅い5℃/minの場合で
は、比較的H,川が少なく N、Itが多い雰囲気妬お
いても、脱窒が進行している。
Nitrogen content in copper powder decreases. Especially the cooling rate is 45C/m
In the case of a fast cooling rate of 5°C/min, denitrification cannot be seen unless the H2 temperature is high, but in the case of a slow cooling rate of 5°C/min, the atmosphere is relatively low in H, river and rich in N, It. Denitrification is also progressing.

冷却速度と脱窒反応との関係を笛8図に示したが、脱9
(め及はず冷却速度のけち響は顕著であり、高露点のp
(f囲気Fでも、徐冷によって脱窒が可能であることを
示【、でいる。従って、従来の比較的露点が畠< NH
,などが含寸′J1ろ脱窒性の劣る!?囲気1c %−
(八でも、銅粉の冷却速度に−遅り1゛ること(4:ま
り脱窒を(Ii″進し、従来比較的低い値にと−どまっ
ていた一般粉末冶金用アトマイズ鋼粉の圧縮性ケ・向上
づせることが出来る。本発明で、仕上熱処理後の冷却過
程において、900〜55’O℃の温度範囲内での冷却
速度ff5〜20 ℃/m1rlの範囲に限定した理由
は、5℃:/min未満の冷却速度では脱窒しt進行す
るが、冷却速度が遅いために熱処理時間が1増加するた
め生産性が劣化し好ましくなく、また2゜’C/min
を越える冷却速度では高紳H2以外の雰囲気では脱窒の
進行は遅く、銅粉のN%七を十分に除去することが出来
ず圧縮性の改善がみられないからである。
The relationship between the cooling rate and the denitrification reaction is shown in Figure 8.
(Unfortunately, the stinginess of the cooling rate is noticeable, and the p
(F shows that denitrification is possible by slow cooling even in ambient air F.) Therefore, the conventional dew point is
, etc. include 'J1 filtration and denitrification properties are inferior! ? Surrounding air 1c %-
(In 8, the cooling rate of copper powder is delayed by 1゜(4) and the denitrification is accelerated (Ii''), and the atomized steel powder for general powder metallurgy, which has conventionally remained at a relatively low value, In the present invention, in the cooling process after finishing heat treatment, the cooling rate is limited to a range of ff5 to 20°C/ml within a temperature range of 900 to 55°C. If the cooling rate is less than 5°C/min, denitrification will progress, but since the cooling rate is slow, the heat treatment time will increase by 1, which is undesirable because productivity will deteriorate.
This is because denitrification progresses slowly in an atmosphere other than high-density H2 at a cooling rate exceeding 100%, and the N% of the copper powder cannot be sufficiently removed, resulting in no improvement in compressibility.

なお脱窒は鋼中01Nの拡散速度の速bα相領域で行な
うことが望ましく、また5 5Q1:未満の低温では脱
窒の進行は見られない。従って、脱窒を目的とした熱処
理における徐冷の城を900〜550℃の温度範囲内、
!:する。
Note that denitrification is preferably carried out in the bα phase region where the diffusion rate of 01N in the steel is high, and denitrification does not proceed at low temperatures below 55Q1:. Therefore, in heat treatment for the purpose of denitrification, slow cooling should be performed within the temperature range of 900 to 550°C.
! :do.

脱窒は前Iも述べたように、冷却速度と雰囲気組成とに
密接に1男連している。従って冷却時の雰囲気組成を限
定する必要がある。まず、第2図に示したように、脱窒
に大きく影響を及ぼすH3量、N預を限定する。H2量
が80 vol係f越、する場合には、冷却速度を45
℃/ra1nと比較的速くしても脱窒が進行すイ)。従
って脱窒性の潰れた雰囲気では、必−4゛シも本発明に
よる必要がないので、H2量の上限を80vo/?%と
する。またH、量が5 (1vo/係未満の場合には、
冷却速度を5℃/m i nとしても脱窒が不十分であ
って、所定の圧縮性が得られない。従って本発明におけ
る冷却時の雰囲気組成のHz i k 50 vo/1
1以上、80vo/1以下に限定する。また第4図に示
すように、雰囲気中のNH8量は、NH8箱、が400
 ppm以上の雰囲気での熱処理では(1)式の反応が
抑制されて好寸(、<なく、徐冷によっても脱9は促進
されず、王縮性向十の効果が得られないので、雰囲気中
の7()■険は+ 00 ppt/以下とする。
As mentioned above, denitrification is closely related to the cooling rate and the atmosphere composition. Therefore, it is necessary to limit the atmosphere composition during cooling. First, as shown in FIG. 2, the amount of H3 and N deposit, which greatly affect denitrification, are limited. If the amount of H2 exceeds 80 vol f, the cooling rate should be increased to 45 vol.
Denitrification proceeds even at a relatively fast rate of ℃/ra1). Therefore, in a denitrifying, collapsed atmosphere, it is not necessary to use the present invention even at -4°, so the upper limit of the amount of H2 is set to 80 vo/? %. Also, if the amount of H is 5 (less than 1 vo/section),
Even if the cooling rate is 5° C./min, denitrification is insufficient and predetermined compressibility cannot be obtained. Therefore, the atmospheric composition during cooling in the present invention is Hz i k 50 vo/1
Limited to 1 or more and 80vo/1 or less. Also, as shown in Figure 4, the amount of NH8 in the atmosphere is 400% in the NH8 box.
In heat treatment in an atmosphere of ppm or higher, the reaction of formula (1) is suppressed, and slow cooling does not promote de9ation and does not provide the effect of improving the shrinkage property. 7() ■The risk shall be +00 ppt/or less.

++7!V霧した一F、寸の銅粉を連続炉でH2を含む
雰囲気中で大量に什土鎮処理する場合には、釦粉表面の
酸化物層のF、W元で発生4゛ろ水蒸気によって、雰囲
気の露点の上列が避けら1+、ないが、露点の上昇は下
5図に示゛tように脱窒を抑制する。本発明の場合・、
このような脱窒性に劣る雰囲気中でも、徐冷するξ−ど
で脱窒全促進することが可能であるが、同図面が示1よ
うに、本発明の徐?1)範囲内(20℃/min )で
は°、露点が4 u−cを越えると、銅粉中のNの残F
葎が多くなり脱9が十分でなくなるので、雰囲気の露点
は40℃以−「に限定する。
++7! When a large amount of V misted copper powder with a size of 1 F is subjected to soil treatment in a continuous furnace in an atmosphere containing H2, the 4 F water vapor generated at the F and W sources of the oxide layer on the surface of the button powder is Although the upper row of the dew point of the atmosphere cannot be avoided, an increase in the dew point suppresses denitrification as shown in Figure 5 below. In the case of the present invention...
Even in such an atmosphere with poor denitrification properties, it is possible to completely promote denitrification by slow cooling. 1) Within the range (20℃/min), the dew point exceeds 4 u-c, the residual F of N in the copper powder
The de9ation will not be sufficient as the number of pods increases, so the dew point of the atmosphere is limited to 40°C or higher.

以下実施例について、本発明方法を具体的に説明する。The method of the present invention will be specifically explained below with reference to Examples.

特公昭52−19540号公報に記載の溶融金属のfa
(F、粉砕装置によりアトマイズ州粉ケ刺遺し供試物と
した8この世舐粉の化学穎成を第1表に、そして見掛密
度、流動度、粒度分布t@2表に示す。
Fa of molten metal described in Japanese Patent Publication No. 52-19540
(F. The chemical formation of the 8-world powder, which was atomized using a crusher and used as a test sample, is shown in Table 1, and the apparent density, fluidity, and particle size distribution t@Table 2).

これ57 Hfl 75voe q6、N g* 2n
 v o I!’14、露点20℃の雰囲気下で第8表
に示す条件で熱処理し、熱処理後の銅粉のO,Nおよび
0桶を同じく48表に示した。
This 57 Hfl 75voe q6, N g* 2n
v o I! '14, heat treated under the conditions shown in Table 8 in an atmosphere with a dew point of 20° C., and the O, N and O buckets of the copper powder after heat treatment are also shown in Table 48.

熱処理によって粒子が焼結し、海綿状状となった鋼粉イ
ハンマーミルを用いて解砕した後、80#σ)タイラー
@をm−て篩分1+し、−FlO#の鋼粉を用いて圧縮
性を測定した。
Particles are sintered by heat treatment and become spongy. After crushing using a steel powder hammer mill, sieve 1+ using an 80#σ) tyler@m-, and compress using -FlO# steel powder. The sex was measured.

第2表 熱部理補の粉体特性 ( 特開昭59−35601(5) ここで比較例1は、950℃−60分間の仕上熱処理を
行なったものであり、−殻粉末冶金用鋼粉の仕上熱処理
条件である。比較例2は850℃−45分間の加熱保持
後に、徐冷を行なったものである。
Table 2 Powder characteristics of thermal processing (Japanese Patent Application Laid-Open No. 59-35601 (5) Here, in Comparative Example 1, finishing heat treatment was performed at 950°C for 60 minutes, and - steel powder for shell powder metallurgy. These are the final heat treatment conditions.In Comparative Example 2, after heating and holding at 850°C for 45 minutes, slow cooling was performed.

比較例1は冷却速度が速いため脱窒が十分に進行せず、
銅粉中の9素が0.11042 wt %と太きい。
In Comparative Example 1, denitrification did not proceed sufficiently due to the fast cooling rate.
The nine elements in the copper powder are large at 0.11042 wt%.

ところが比較例2および本発明の実施例1〜5は徐冷を
行なったこと(でよって、脱室が促進され、銅粉中の窒
素量は0.002 ’1以下となった。熱処理後の銅粉
に、1qtr)H?aiR剤(Zn5t )vK:加え
、V型混合機で15分間混合した後、外径1]、Rmm
φ、高さ11.Fl ±0.25 m、m、hの円柱状
の圧粉体を成形圧力5 t/cy”で成形し、外径寸法
および重Mより圧粉密度を測定し圧縮性ケ評価した。こ
の結果5C第8表中に示した。比較例1は、鋼粉中の窒
素量が多、いため圧粉密度が低く圧縮性が悪い。また比
較例2は徐冷を行ったため脱窒は進行したが、保持温度
が低温のため組織の均質軟化が不十分であり、圧粉密度
が低い。しかし本発明の熱処理ケ行なつた実施例1〜5
の圧粉密度社いずれも6.5 f/ 80π り上と優れた圧縮性を示し、本発明の熱処理方法は優れ
た圧縮性向上の手段であることが実証された。′侍に実
施例4,5のように短時間保持した後に徐?′?fを行
なうことにより、生産性に優れ、高圧縮性のアトマイズ
銅粉を安価に製造することが可能となった。
However, in Comparative Example 2 and Examples 1 to 5 of the present invention, slow cooling was performed (thus, dechambering was promoted, and the amount of nitrogen in the copper powder was 0.002'1 or less. Copper powder, 1qtr)H? aiR agent (Zn5t) vK: Added and mixed for 15 minutes with a V-type mixer, outer diameter 1], Rmm
φ, height 11. A cylindrical green compact of Fl ±0.25 m, m, h was molded at a compacting pressure of 5 t/cy", and the green compact density was measured from the outer diameter dimension and weight M to evaluate the compressibility.The results 5C is shown in Table 8. In Comparative Example 1, the amount of nitrogen in the steel powder was high, resulting in low green density and poor compressibility. In Comparative Example 2, denitrification progressed due to gradual cooling. Because the holding temperature was low, homogeneous softening of the structure was insufficient, and the green compact density was low.However, Examples 1 to 5 in which the heat treatment of the present invention was performed
All of the compressed powders exhibited excellent compressibility of 6.5 f/80π, demonstrating that the heat treatment method of the present invention is an excellent means for improving compressibility. 'After holding Samurai for a short time as in Examples 4 and 5, Xu? ′? By carrying out step f, it became possible to produce atomized copper powder with excellent productivity and high compressibility at a low cost.

以上説明したように、アトマイズ鋼粉の仕上熱処理の現
状では、銅粉の圧縮性を著しく低下させる窒素の除去に
つ亀ハては余り考慮されておらず、仕」二熱部浬後も尚
′rトマイズ鋼粉中には多量の19が残存11.でいる
ものと考、えられていたが、本発明によって高温還元熱
処理後、時定条件のもとで徐冷を行なう脱窒処理方法が
提供され、安価°な゛高圧縮性丁tマイズ鋼粉の大量生
産が6丁能となり、焼結部品の大型化・高強度化の最近
の要望に応え得ることになった本発明の粉末冶金用アト
マイズ銅粉の製造法は、極めて顕著な工苗効果をもたら
すものである。
As explained above, in the current state of finishing heat treatment of atomized steel powder, the removal of nitrogen, which significantly reduces the compressibility of copper powder, is not much considered, and even after the second heat treatment, 'rA large amount of 19 remains in the Tomized steel powder 11. However, the present invention provides a denitrification treatment method in which slow cooling is performed under timed conditions after high-temperature reduction heat treatment. The production method of atomized copper powder for powder metallurgy of the present invention has become possible to mass produce 6 pieces of powder and meet the recent demands for larger and stronger sintered parts. It is something that brings about an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1Mは粉末冶金用アトマイズ惰粉の熱処理温度と銅粉
硬度との関係を示すグラフ、 第2図は異なる冷却速度における熱処理雰囲気中のH2
量と銅粉N量との関係を示すグラフ、第8図は冷却速度
と銅粉Ntとの関係分示すグラフ、 @4図は熱処理雰囲気中のNH8情と鋼粉N量との関係
を示すグラフ、 第5図は熱処理雰囲気の露点と銅粉N量との関係を示す
グラフである〇 特許出願人   川崎製鉄株式会社 第1図 第2図 第8図 第4図 NH3量(PP”)
1M is a graph showing the relationship between heat treatment temperature of atomized inertia powder for powder metallurgy and copper powder hardness, and Figure 2 is a graph showing the relationship between H2 in the heat treatment atmosphere at different cooling rates.
Figure 8 is a graph showing the relationship between cooling rate and copper powder Nt, Figure @4 shows the relationship between NH8 in the heat treatment atmosphere and steel powder N content. Graph, Figure 5 is a graph showing the relationship between the dew point of the heat treatment atmosphere and the amount of copper powder N. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2 Figure 8 Figure 4 NH3 amount (PP")

Claims (1)

【特許請求の範囲】[Claims] 1、 粉末冶金用アトマイズ鋼粉の仕上熱処理において
、アトマイズ鋼粉を還元性あるいは中性雰囲気中で90
0〜1050℃の温度範囲内で5〜45分間保持した後
、該アトマイズi粉をHF+O〜80vol!1、Nu
s 400 ppm以下、露点40℃以下である雰囲気
中で9゛00〜FI Is OY’、 /7)温度範囲
内を冷却速度5〜zO℃/minで冷却17て、該゛γ
アトマイズ鋼粉脱窒を促進することを特徴とする生産性
に優れる℃°6圧縮性丁トーγイズ鋼粉の製造方法。
1. In finishing heat treatment of atomized steel powder for powder metallurgy, atomized steel powder is heated to 90% in a reducing or neutral atmosphere.
After maintaining the atomized i-powder within the temperature range of 0 to 1050°C for 5 to 45 minutes, the atomized i-powder was heated to HF+O to 80 vol! 1.Nu
s 400 ppm or less and a dew point of 40° C. or less, 9゛00~FI Is OY', /7) Cooling within the temperature range 17 at a cooling rate of 5~zO℃/min, and the ゛γ
A method for producing a C°6 compressible steel powder with excellent productivity, which is characterized by promoting denitrification of atomized steel powder.
JP57143657A 1982-08-19 1982-08-19 Production of atomized steel powder having high compressibility Granted JPS5935601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143657A JPS5935601A (en) 1982-08-19 1982-08-19 Production of atomized steel powder having high compressibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143657A JPS5935601A (en) 1982-08-19 1982-08-19 Production of atomized steel powder having high compressibility

Publications (2)

Publication Number Publication Date
JPS5935601A true JPS5935601A (en) 1984-02-27
JPS6253561B2 JPS6253561B2 (en) 1987-11-11

Family

ID=15343885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143657A Granted JPS5935601A (en) 1982-08-19 1982-08-19 Production of atomized steel powder having high compressibility

Country Status (1)

Country Link
JP (1) JPS5935601A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110702A (en) * 1984-11-01 1986-05-29 Kawasaki Steel Corp Heat treatment of iron and steel powder with high productivity
JPH04183401A (en) * 1990-11-19 1992-06-30 Asahi Corp Injection molding for multicolor shoe sole
AU2005320203B2 (en) * 2004-12-21 2010-06-03 Daikin Industries, Ltd. Scroll fluid machine
JPWO2019189012A1 (en) * 2018-03-26 2020-04-30 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
KR20200128157A (en) * 2018-03-26 2020-11-11 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443119A (en) * 1977-09-12 1979-04-05 Kawasaki Steel Co Heat treatment of iron powder for use in powder metallurgy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443119A (en) * 1977-09-12 1979-04-05 Kawasaki Steel Co Heat treatment of iron powder for use in powder metallurgy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110702A (en) * 1984-11-01 1986-05-29 Kawasaki Steel Corp Heat treatment of iron and steel powder with high productivity
JPH04183401A (en) * 1990-11-19 1992-06-30 Asahi Corp Injection molding for multicolor shoe sole
AU2005320203B2 (en) * 2004-12-21 2010-06-03 Daikin Industries, Ltd. Scroll fluid machine
US7789640B2 (en) * 2004-12-21 2010-09-07 Daikin Industries, Ltd. Scroll fluid machine with a pin shaft and groove for restricting rotation
US8246331B2 (en) 2004-12-21 2012-08-21 Daikin Industries, Ltd. Scroll fluid machine with a pin shaft and groove for restricting rotation
JPWO2019189012A1 (en) * 2018-03-26 2020-04-30 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
KR20200128158A (en) * 2018-03-26 2020-11-11 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
KR20200128157A (en) * 2018-03-26 2020-11-11 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
US11236411B2 (en) 2018-03-26 2022-02-01 Jfe Steel Corporation Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
EP3778963B1 (en) * 2018-03-26 2024-02-21 JFE Steel Corporation Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy

Also Published As

Publication number Publication date
JPS6253561B2 (en) 1987-11-11

Similar Documents

Publication Publication Date Title
EP3362210B1 (en) Iron based powders for powder injection molding
EP2617503B1 (en) Method for producing ferrous powder
JP2015108195A (en) Low alloy steel powder
JPS59208001A (en) Powder sintering method
JPS5935601A (en) Production of atomized steel powder having high compressibility
CN110899712A (en) Aluminum-iron-containing high-entropy alloy suitable for additive manufacturing and modification method thereof
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
CN105821172A (en) Preparation method of nanometer modified gray cast iron with high hardness
KR101657464B1 (en) Method for manufacturing iron-based powders
PL207923B1 (en) Iron-based powder composition
JPH0211701A (en) Production of fe-si alloy powder
JPH1096001A (en) Production of partially diffused alloyed steel powder
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JPS58722B2 (en) Reduction sintering method for high speed steel powder
KR20040042214A (en) FABRICATION PROCESS OF SMD CORE USING Fe-Si ALLOY POWDER
KR102402938B1 (en) Method for manufacturing iron-based powders
JPH10265803A (en) Production of ferrous powder for powder metallurgy
JPH06228603A (en) Raw iron powder for sintered metal and its production
JPS63203701A (en) Alloy steel powder for powder metallurgy and its production
KR20010055793A (en) Sintering method of metal powder by pickling
KR20240003268A (en) Amorphous composite powder core production method for high frequency
RU2364469C1 (en) Method of iron powder production
RU2529129C1 (en) Method of iron powder production
KR20200139990A (en) Method for manufacturing smd inductor core using amorphous metal alloy powder by warm forming
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body