JPS63203701A - Alloy steel powder for powder metallurgy and its production - Google Patents

Alloy steel powder for powder metallurgy and its production

Info

Publication number
JPS63203701A
JPS63203701A JP62033525A JP3352587A JPS63203701A JP S63203701 A JPS63203701 A JP S63203701A JP 62033525 A JP62033525 A JP 62033525A JP 3352587 A JP3352587 A JP 3352587A JP S63203701 A JPS63203701 A JP S63203701A
Authority
JP
Japan
Prior art keywords
powder
steel powder
annealing
alloy steel
compressibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62033525A
Other languages
Japanese (ja)
Inventor
Kuniaki Ogura
邦明 小倉
Yukio Makiishi
槙石 幸雄
Shigeaki Takagi
高城 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62033525A priority Critical patent/JPS63203701A/en
Publication of JPS63203701A publication Critical patent/JPS63203701A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit production of prealloyed Ni steel powder which has high compressibility and is suppressed in the content of N by subjecting water atom ized alloy steel powder contg. Ni at a specific ratio to primary annealing and disintegrating after dehydrating and drying, then subjecting the powder to secon dary annealing and disintegrating. CONSTITUTION:The water atomized steel powder contg. <=4wt.% Ni is dehydrat ed and dried and is then subjected to the primary annealing by heating to 1,000-1,300 deg.C; thereafter, the powder is subjected to the ordinary disintegrating. The powder is then subjected to the secondary annealing at 600-800 deg.C to relieve the disintegration stress of the primary annealing and to control the content of N to <=0.0015wt.%. The powder is thereafter subjected to the ordinary disinte grating. The alloy steel powder for powder metallurgy which has <=6,400pieces/ mm<2> crystal grains and has >=7.10g/cm<2> compacting density under 7t/cm<2> mold ing pressure when mixed with 1% solid lubricant.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、各種焼結部品の製造に使用される粉末冶金
用合金鋼粉及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an alloy steel powder for powder metallurgy used for manufacturing various sintered parts and a method for manufacturing the same.

(従来の技術) 純鉄粉を主原料とした焼結部品がよく知られているが、
この種の焼結部品は強度レベルが低くその用途が限られ
るため、純鉄粉に代えて合金銅粉を使用する技術が開発
されている。
(Conventional technology) Sintered parts using pure iron powder as the main raw material are well known.
Since this type of sintered part has a low strength level and its applications are limited, techniques have been developed to use alloyed copper powder instead of pure iron powder.

なかでもNiを予合金化した合金鋼粉は、Niの冶金学
的作用と併せて予合金化による焼結組織の均一化をはか
れるため優れた機械的特性が得られる。
Among these, alloyed steel powder prealloyed with Ni has excellent mechanical properties because the sintered structure is made uniform by the prealloying in addition to the metallurgical action of Ni.

一方該合金鋼粉の粉末冶金への適用に当り、焼結部品の
機械的特性を改善するため、合金鋼粉の圧縮性を向上さ
せることが肝要である。
On the other hand, when applying the alloy steel powder to powder metallurgy, it is important to improve the compressibility of the alloy steel powder in order to improve the mechanical properties of sintered parts.

合金鋼粉に関し特公昭45−9649号公報には、鉄粉
表面に合金成分を拡散付着させる方法が開示されている
が、Niのような比較的拡散速度の遅い合金成分を焼結
時に焼結体中へ均一に固溶させることは困難で、得られ
た焼結組織が不均一になることは避けられず、焼結部品
の機械的特性は不充分である。そこで、合金成分をすべ
て鋼粉中に予合金化する方法も考えられるが、予合金化
は原理的に合金成分量が増加するほど合金成分による固
溶硬化が促進され、銅粉の圧縮性が低下してしまう。
Regarding alloy steel powder, Japanese Patent Publication No. 45-9649 discloses a method of diffusing and adhering alloy components to the surface of iron powder. It is difficult to uniformly form a solid solution in the body, and the resulting sintered structure inevitably becomes non-uniform, resulting in insufficient mechanical properties of the sintered parts. Therefore, a method of pre-alloying all the alloy components into steel powder may be considered, but in principle, pre-alloying promotes solid solution hardening due to the alloy components as the amount of alloy components increases, and the compressibility of the copper powder decreases. It will drop.

さらにNiを予合金化した場合にはNiが銅粉の結晶粒
を微細化するため、一層圧縮性が低下する問題点がある
Furthermore, when Ni is prealloyed, Ni makes the crystal grains of the copper powder finer, so there is a problem that the compressibility is further reduced.

一方特公昭48−34509号公報には、銅粉の再結晶
工程と還元工程とを分けた製造方法により粉体特性を向
上させた鉄粉についての開示がある。しかしNiを含有
する銅粉を処理する際の配慮及び鉄粉、合金鋼粉の圧縮
性については何ら示されていない。
On the other hand, Japanese Patent Publication No. 48-34509 discloses an iron powder whose powder characteristics are improved by a manufacturing method that separates the recrystallization process and the reduction process of copper powder. However, no consideration is given when processing Ni-containing copper powder or the compressibility of iron powder and alloy steel powder.

(発明が解決しようとする問題点) Niを予合金化した合金鋼粉はその圧縮性が低いことが
問題であり、又圧縮性に影響を及ぼす要因についても不
明である。
(Problems to be Solved by the Invention) A problem with alloy steel powder prealloyed with Ni is that its compressibility is low, and the factors that affect compressibility are also unknown.

この発明は、圧縮性の高いNi予合金鋼粉及びその製造
方法を提供することが目的である。
An object of the present invention is to provide Ni prealloyed steel powder with high compressibility and a method for producing the same.

(問題点を解決するための手段) 発明者らはNk系予合金鋼粉の圧縮性について研究した
ところ、次の様な事実を知見するに至った。
(Means for Solving the Problems) The inventors studied the compressibility of Nk-based prealloyed steel powder and found the following facts.

すなわち、Niは鋼粉の結晶粒の微細化作用が大きいこ
と、純鉄粉はN、含有雰囲気中で1次焼鈍しても950
℃以上の温度範囲では1次焼鈍後の純鉄粉中のN量は温
度上昇とともに低下するのに対して、Ni予合金鋼粉の
N量はいずれの温度でも差がなくしかも純鉄粉より高く
なること、及び1200’C11、雰囲気中で1次焼鈍
された純鉄粉およびNi予合金鋼粉の解砕束はNi予合
金鋼粉の方が大きいこと、がそれぞれ圧縮性を低下する
要因である。
In other words, Ni has a large effect on refining the crystal grains of steel powder, and pure iron powder has a 950
In the temperature range above ℃, the amount of N in pure iron powder after primary annealing decreases as the temperature increases, whereas the amount of N in Ni prealloyed steel powder does not differ at any temperature and is higher than pure iron powder. factors that reduce the compressibility, and the fact that the crushed bundle of pure iron powder and Ni prealloyed steel powder that are primarily annealed in a 1200'C11 atmosphere is larger in the case of Ni prealloyed steel powder are factors that reduce compressibility. It is.

そして発明者らは上記圧縮性を低下させる要因を除くこ
とが、Ni予合金鋼粉の圧縮性を高めるのに有利である
ことを見い出し、この発明を完成した。
The inventors have discovered that eliminating the factors that reduce the compressibility described above is advantageous in increasing the compressibility of Ni prealloyed steel powder, and have completed the present invention.

すなわちこの発明は、水アトマイズ法で製造される粉末
冶金用合金鋼粉であつて、Ni:4wt%以下を含みか
つN : 0.0015wt%以下に抑制した組成にな
り、結晶粒数が6400個/m”以下であり、固体潤滑
剤1wtχ混合時、成形圧力1t/cva”で7.l。
That is, this invention is an alloy steel powder for powder metallurgy produced by a water atomization method, which has a composition containing 4 wt% or less of Ni and suppressed N to 0.0015 wt% or less, and has a crystal grain number of 6400. /m" or less, and when 1 wt.chi. of solid lubricant is mixed, a molding pressure of 1 t/cva" is 7. l.

g/cm″以上の圧粉密度を有することを特徴とする粉
末冶金用合金鋼粉及びNi:4ht%以下を含有する水
アトマイズ合金鋼粉を脱水、乾燥後、1000〜130
0”Cの温度に加熱して1次焼鈍を施してから通常の解
砕を行い、ついで600〜800℃と温度に加熱して2
次焼鈍を施してから通常の解砕を行うことを特徴とする
粉末冶金用合金鋼粉の製造方法である。
After dehydrating and drying alloy steel powder for powder metallurgy characterized by having a green density of 1000 to 130 g/cm'' or more and water atomized alloy steel powder containing Ni: 4 ht% or less,
After heating to a temperature of 0"C and performing primary annealing, normal crushing is performed, then heating to a temperature of 600 to 800C and 2
This is a method for producing alloy steel powder for powder metallurgy, which is characterized by carrying out normal crushing after subsequent annealing.

(作 用) 粉末冶金法において、焼結体の機械的特性及び焼結体製
造時の生産性の向上を達成するためには、銅粉の圧縮性
を高めることがきわめて重要となる。
(Function) In powder metallurgy, it is extremely important to improve the compressibility of copper powder in order to improve the mechanical properties of the sintered body and the productivity during production of the sintered body.

中でもNiを含有させた予合金鋼粉は、Niの冶金学的
作用と併せて、予合金化のため焼結鋼組織が均一となる
ため、優れた機械的特性が得られるが、Niの結晶粒微
細化作用のためその鋼粉の圧縮性は、粉末冶金用として
は不充分である。
Among these, prealloyed steel powder containing Ni has excellent mechanical properties because the sintered steel structure becomes uniform due to the prealloying, in addition to the metallurgical action of Ni. Due to the grain refining effect, the compressibility of the steel powder is insufficient for use in powder metallurgy.

この合金鋼粉の圧縮性を向上させるには、特に以下の様
な特性を必要とする。
In order to improve the compressibility of this alloy steel powder, the following characteristics are particularly required.

すなわち、水アトマイズ法で製造される合金鋼粉はアト
マイズ時に噴霧水で急冷されるため非常に微細な結晶粒
を有しており、圧縮性の向上には結晶粒の粗大化が要求
される。
That is, alloy steel powder produced by the water atomization method has very fine crystal grains because it is rapidly cooled with sprayed water during atomization, and coarsening of the crystal grains is required to improve compressibility.

本発明の成分範囲において、鋼粉の圧縮性と鋼粉結晶粒
数との関係を検討した結果、固体潤滑剤を1wtχ混合
し、7t/cm”の圧力で成形した時、高強度用焼結材
料に要求される7、10g/cm3以上の圧粉密度を得
るには、鋼粉結晶粒数を6400個/ffl11!以下
テ、含有Nil O,0015wtX以下、かつ1次焼
鈍後の解砕時の鋼粉中の歪を除去する必要があることが
明らかとなった。
As a result of examining the relationship between the compressibility of steel powder and the number of steel powder grains in the composition range of the present invention, it was found that when 1 wtx of solid lubricant was mixed and molded at a pressure of 7 t/cm'', high-strength sintering In order to obtain the green powder density of 7.10 g/cm3 or more required for the material, the number of steel powder crystal grains should be 6400 pieces/ffl11! or less, the content of Nil O,0015wtX or less, and the crushing after primary annealing. It became clear that it was necessary to remove the strain in the steel powder.

銅粉結晶粒数を6400個/閤2以下にするには、銅粉
の1次焼鈍温度が重要で、1000℃より低い温度では
結晶粒の粗大化が不充分となるため、1000℃以上で
1次焼鈍する必要がある。また、1300℃より高い温
度では、焼鈍時に銅粉の焼結が進行し、1次焼鈍後の解
砕時に銅粉に加わる加工歪が大きくなり、次いで行なわ
れる2次焼鈍特に歪を充分除去できなくなり、鋼粉の圧
縮性を低下させるため適当でない、このため1次焼鈍は
1000〜1300℃で行なう必要がある。
In order to reduce the number of copper powder crystal grains to 6,400 pieces/2 or less, the primary annealing temperature of the copper powder is important.If the temperature is lower than 1000℃, the coarsening of the crystal grains will be insufficient, so if the temperature is lower than 1000℃, the coarsening of the crystal grains will be insufficient. It is necessary to perform primary annealing. In addition, at temperatures higher than 1300°C, sintering of the copper powder progresses during annealing, and processing strain applied to the copper powder during crushing after the primary annealing increases, and the subsequent secondary annealing, especially the strain, cannot be removed sufficiently. This is not suitable because it reduces the compressibility of the steel powder. Therefore, the primary annealing must be carried out at a temperature of 1000 to 1300°C.

一方、1次焼鈍後の解砕束の除去と含有N量を0.0O
15s*t%以下にするには、2次焼鈍温度が重要であ
り、600″Cより低い温度では鋼粉の脱Nと上述の解
砕歪除去が不充分となるため適当でない。
On the other hand, the removal of crushed bundles after primary annealing and the content of N were reduced to 0.0O.
The secondary annealing temperature is important in order to reduce the temperature to 15 s*t% or less, and a temperature lower than 600''C is not appropriate because the de-Ning of the steel powder and the above-mentioned crushing strain removal will be insufficient.

また800℃より高い温度では再び脱Nが困難となり、
鋼粉中Nが増加するため適当でない、このため1次焼鈍
後の解砕歪を除去するための2次焼鈍温度は600〜8
00℃で行なう必要がある。
In addition, at temperatures higher than 800°C, de-N becomes difficult again.
This is not appropriate because the N content in the steel powder increases. Therefore, the secondary annealing temperature to remove the crushing strain after the primary annealing is 600 to 8
It is necessary to carry out the test at 00°C.

又合金鋼粉中のNi含有量は要求される焼結体の特性に
応じて決められるが、Niの予合金量の増加は鋼粉の圧
縮性の低下を招き、とくに4wtχをこえての含有は圧
縮性が急激に低下するため、上限を4wt$とした。一
方下限については、0.1wt%以下では焼結体の熱処
理時に強度向上の効果がなくなるため適当でない。
In addition, the Ni content in the alloyed steel powder is determined according to the required properties of the sintered body, but an increase in the amount of pre-alloyed Ni will lead to a decrease in the compressibility of the steel powder, especially if the content exceeds 4wtχ. The upper limit was set at 4 wt$ because the compressibility of the steel rapidly decreases. On the other hand, the lower limit of 0.1 wt% or less is not appropriate because the effect of improving the strength during heat treatment of the sintered body is lost.

さらに、Niに加えてMo 、 H、Cuの中から選ば
れる1種以上の合金成分を以下の組成範囲で加えること
により、銅粉の圧縮性を損うことなく、焼結体の特性を
より一層高めることが可能となる。
Furthermore, by adding one or more alloy components selected from Mo, H, and Cu in the following composition range in addition to Ni, the properties of the sintered body can be improved without impairing the compressibility of the copper powder. It is possible to further increase this.

Mo : 0.1〜1.05wtχ Moは焼結体の焼入れ性改善に有効であるが、過分の含
有は銅粉の圧縮性の低下を招き好ましくない。すなわち
Moが0.1wtχ未満では、焼結体の熱処理時の硬さ
向上に寄与せず、また1wtχを越えると銅粉の圧縮性
が低下するため適当でない。
Mo: 0.1 to 1.05 wtχ Mo is effective in improving the hardenability of the sintered body, but excessive content is undesirable because it causes a decrease in the compressibility of the copper powder. That is, if Mo is less than 0.1 wtχ, it will not contribute to improving the hardness of the sintered body during heat treatment, and if it exceeds 1 wtχ, the compressibility of the copper powder will decrease, which is not appropriate.

W : 0.2〜2.Owtχ −は、0.2wtχ未満では焼結体の熱処理時の硬さ向
上に寄与せず、一方2.Owtχを越えると銅粉の圧縮
性が低下し、さらに焼結体の熱処理において炭化物生成
が促進され基地中のCが低下して硬さが減少するため好
ましくない。
W: 0.2-2. If Owtχ - is less than 0.2wtχ, it will not contribute to improving the hardness of the sintered body during heat treatment; Exceeding Owtχ is not preferable because the compressibility of the copper powder decreases, carbide formation is promoted during heat treatment of the sintered body, C in the matrix decreases, and hardness decreases.

Cu : 0.2〜0.7s*tχ Cuは0.2wtχ未満では焼結体の熱処理時の硬さ向
上に寄与せず、一方0.1stχを越えるとやはり鋼粉
の圧縮性が低下する。
Cu: 0.2 to 0.7 s*tχ If Cu is less than 0.2 wtχ, it does not contribute to improving the hardness of the sintered body during heat treatment, while if it exceeds 0.1 stχ, the compressibility of the steel powder is reduced.

なお1次焼鈍時の雰囲気は結晶粒の粗大化を妨げない雰
囲気であればよく、通常の還元性、中性、不活性雰囲気
が使用でき、さらに脱炭性の雰囲気でも可能である。加
えて2次焼鈍時の雰囲気は1次焼鈍時に生じる可能性の
ある銅粉中N量の増加および1次焼鈍後の解砕による加
工歪を除去できる雰囲気であればよく、1次焼鈍時にN
の増加を生じない雰囲気を用いた場合には、その他の雰
囲気の使用も可能である。一方合金鋼粉の還元・脱炭は
1次焼鈍、2次焼鈍のいずれかで行なわれれば良く、用
いる工程に応じて適宜選択すれば良い。
The atmosphere during the primary annealing may be any atmosphere that does not hinder the coarsening of crystal grains, and may be a normal reducing, neutral, or inert atmosphere, or even a decarburizing atmosphere. In addition, the atmosphere during the secondary annealing may be any atmosphere that can eliminate the increase in the amount of N in the copper powder that may occur during the primary annealing and the processing strain due to crushing after the primary annealing.
Other atmospheres can also be used, provided they do not cause an increase in . On the other hand, reduction and decarburization of the alloy steel powder may be carried out by either primary annealing or secondary annealing, which may be appropriately selected depending on the process used.

(実施例) 2嵐斑上 水アトマイズされたNi予合金鋼(2−tχNi−0,
5wtχL0.5wtχMo)のアトマイズ生粉を、露
点25℃のアンモニア分解ガス雰囲気中にて950℃〜
1200℃で25分間1次焼鈍したのち、通常の解砕を
経て60メツシユ以下の粒径に篩分けし、さらに露点−
50℃のアンモニア分解ガス雰囲気中にて650℃で2
5分間2次焼鈍し、その後1次焼鈍後の解砕、篩分けと
同一の処理を行なうたところ、表1に示す特性の合金銅
粉を得た。なおN含有量は0.0011〜0.0013
wtX ニ抑制シタ。
(Example) 2 storm spot water atomized Ni prealloy steel (2-tχNi-0,
Atomized raw powder of 5wtχL0.5wtχMo) was heated to 950℃ in an ammonia decomposition gas atmosphere with a dew point of 25℃.
After primary annealing at 1,200°C for 25 minutes, the particles are sieved to a particle size of 60 mesh or less through normal crushing, and further dew point-
2 at 650℃ in an ammonia decomposition gas atmosphere at 50℃
After secondary annealing for 5 minutes, the same treatment as crushing and sieving after primary annealing was performed to obtain alloyed copper powder having the characteristics shown in Table 1. Note that the N content is 0.0011 to 0.0013.
wtX 2 suppression.

同表から、比較例1では1次焼鈍時の結晶粒粗大化が不
充分なため圧縮性が低く、一方実施例A。
From the same table, Comparative Example 1 has low compressibility due to insufficient grain coarsening during primary annealing, while Example A has low compressibility.

B及びCでは成形圧力7 t/am雪において7.10
g/cm3以上の高い圧粉密度が得られたことがわかる
Molding pressure 7 for B and C 7.10 at t/am snow
It can be seen that a high green density of g/cm3 or more was obtained.

また、比較例2では、1次焼鈍温度が1300℃を越え
るため、2次焼鈍による解砕歪の除去が不充分なため、
再び圧縮性が低下している。
In addition, in Comparative Example 2, the primary annealing temperature exceeds 1300°C, so the removal of crushing strain by secondary annealing is insufficient.
Compressibility is reduced again.

*ステアリン酸亜鉛1%混合 成形圧力 7t/cmz” 実m 水アトマイズされたNi予合金鋼(,1wtχNi−0
.3wtχCu−0.2sstχMo)のアトマイズ生
粉を、1次焼鈍温度1100℃で他の条件は実施例1と
同一の条件で一次焼鈍・解砕・篩分けののち、500〜
900℃の温度範囲で他は実施例1と同一の条件で2次
焼鈍・解砕・篩分けを行なったところ、表2に示す特性
の合金銅粉を得た。なお結晶粒数は770個/wm”で
ある。
*Molding pressure of 1% zinc stearate 7t/cmz” actual water atomized Ni prealloy steel (,1wtχNi-0
.. After primary annealing, crushing, and sieving at a primary annealing temperature of 1100°C and the same conditions as in Example 1, the atomized raw powder of 3wtχCu-0.2sstχMo) was heated to 500°C.
Secondary annealing, crushing, and sieving were performed in the temperature range of 900° C. under the same conditions as in Example 1, and alloyed copper powder having the characteristics shown in Table 2 was obtained. Note that the number of crystal grains is 770/wm''.

同表から、比較例3では1次焼鈍後解砕歪の除去が不充
分なため、又比較例4では2次焼鈍時の脱窒が不良なた
め高い圧縮性が得られず、一方実施例D−Fでは歪除去
、脱窒が充分に行なわれ高い圧縮性が得られたことがわ
かる。
From the same table, it can be seen that high compressibility could not be obtained in Comparative Example 3 due to insufficient removal of crushing strain after primary annealing, and in Comparative Example 4 due to poor denitrification during secondary annealing. It can be seen that in D-F, strain removal and denitrification were sufficiently performed and high compressibility was obtained.

本ステアリン酸亜鉛1%混合 成形圧力 7 t/cが (発明の効果) この発明ではNiを含有する予合金鋼粉特有の圧縮性に
影響をおよぼす種々の問題点を解決することにより、高
い圧縮性を有する粉末冶金用Ni予合金鋼粉の提供を可
能とした。
The molding pressure of this 1% zinc stearate mixture is 7 t/c. This makes it possible to provide Ni pre-alloyed steel powder for powder metallurgy with properties.

Claims (1)

【特許請求の範囲】 1、水アトマイズ法で製造される粉末冶金用合金鋼粉で
あって、Ni:4wt%以下を含みかつN:0.001
5wt%以下に抑制した組成になり、結晶粒数が640
0個/mm^2以下であり、固体潤滑剤1wt%混合時
、成形圧力7t/cm^2で7.10g/cm^3以上
の圧粉密度を有することを特徴とする粉末冶金用合金鋼
粉。 2、Ni:4wt%以下を含有する水アトマイズ合金鋼
粉を脱水、乾燥後、1000〜1300℃の温度に加熱
して1次焼鈍を施してから通常の解砕を行い、ついで6
00〜800℃に加熱して2次焼鈍を施してから通常の
解砕を行うことを特徴とする粉末冶金用合金鋼粉の製造
方法。
[Claims] 1. An alloy steel powder for powder metallurgy produced by a water atomization method, which contains Ni: 4 wt% or less and N: 0.001
The composition is suppressed to 5wt% or less, and the number of crystal grains is 640.
An alloy steel for powder metallurgy, characterized in that it has a powder density of 0 pieces/mm^2 or less and a green density of 7.10 g/cm^3 or more at a compacting pressure of 7 t/cm^2 when mixed with 1 wt% of solid lubricant. powder. 2. After dehydrating and drying the water atomized alloy steel powder containing 4 wt% or less of Ni, the powder is heated to a temperature of 1000 to 1300°C to undergo primary annealing, followed by normal crushing.
A method for producing alloy steel powder for powder metallurgy, which comprises heating the steel powder to 00 to 800°C, performing secondary annealing, and then performing normal crushing.
JP62033525A 1987-02-18 1987-02-18 Alloy steel powder for powder metallurgy and its production Pending JPS63203701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62033525A JPS63203701A (en) 1987-02-18 1987-02-18 Alloy steel powder for powder metallurgy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62033525A JPS63203701A (en) 1987-02-18 1987-02-18 Alloy steel powder for powder metallurgy and its production

Publications (1)

Publication Number Publication Date
JPS63203701A true JPS63203701A (en) 1988-08-23

Family

ID=12388960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62033525A Pending JPS63203701A (en) 1987-02-18 1987-02-18 Alloy steel powder for powder metallurgy and its production

Country Status (1)

Country Link
JP (1) JPS63203701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182801A (en) * 1989-01-05 1990-07-17 Daido Steel Co Ltd Combined powder
JPH0456704A (en) * 1990-06-27 1992-02-24 Daido Steel Co Ltd Stainless steel powder for powder metallurgy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182801A (en) * 1989-01-05 1990-07-17 Daido Steel Co Ltd Combined powder
JPH0456704A (en) * 1990-06-27 1992-02-24 Daido Steel Co Ltd Stainless steel powder for powder metallurgy

Similar Documents

Publication Publication Date Title
US5462577A (en) Water-atomized iron powder and method
EP3362210B1 (en) Iron based powders for powder injection molding
JPS6366362B2 (en)
JPS61130401A (en) Alloy steel powder for powder metallurgy and its production
JPS63203701A (en) Alloy steel powder for powder metallurgy and its production
JPS6075501A (en) Alloy steel powder for high strength sintered parts
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
US2315302A (en) Process of manufacturing shaped bodies from iron powders
JPS6318001A (en) Alloy steel powder for powder metallurgy
JP2608178B2 (en) Iron powder for powder metallurgy
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
JPH06228603A (en) Raw iron powder for sintered metal and its production
JPS6253561B2 (en)
JPS6137321B2 (en)
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JPH0459362B2 (en)
JPH0995701A (en) Production of partially alloyed steel powder
JPS5923840A (en) Production of high strength sintered material
JPS63238201A (en) Method for annealing tool steel powder
JPH0480302A (en) Ni alloy powder and manufacture thereof
JPS62107001A (en) Finish heat treatment method for reduced iron powder
JPS6152302A (en) Alloy steel powder for powder metallurgy
WO2021100613A1 (en) Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body