JPH04274379A - Magnetic sensitive element - Google Patents

Magnetic sensitive element

Info

Publication number
JPH04274379A
JPH04274379A JP3057725A JP5772591A JPH04274379A JP H04274379 A JPH04274379 A JP H04274379A JP 3057725 A JP3057725 A JP 3057725A JP 5772591 A JP5772591 A JP 5772591A JP H04274379 A JPH04274379 A JP H04274379A
Authority
JP
Japan
Prior art keywords
film
sensitive element
container
thin film
magnetic sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3057725A
Other languages
Japanese (ja)
Inventor
Hiromasa Shimojima
浩正 下嶋
Mamoru Ishii
守 石井
Keizo Tsukamoto
塚本 惠三
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP3057725A priority Critical patent/JPH04274379A/en
Publication of JPH04274379A publication Critical patent/JPH04274379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To prevent deterioration of a filmlike superconducting magnetic sensitive element using a magnetoresistance effect with moisture. CONSTITUTION:An oxide superconducting polycrystalline thin film is sealed in a vessel made of a material having high thermal conductivity such as aluminum nitride, silicon carbide, Ag, Ti, etc., by filling gas such as Me, He gas, etc., at a liquid nitrogen temperature or lower. Deterioration of the film due to invasion of moisture is prevented by the sealing, and it can be used stably as a magnetic sensitive element for a long period.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気感応素子に関し、特
に物理的手法を用いて作製した酸化物超伝導多結晶薄膜
を用いた磁気感応素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetically sensitive element, and more particularly to a magnetically sensitive element using an oxide superconducting polycrystalline thin film produced using a physical method.

【0002】0002

【従来の技術】従来より、Bi(Pb)−Sr−Ca−
Cu−O 系およびY−Ba−Cu−O 系酸化物超伝
導体の磁気抵抗効果を利用して、酸化物系超伝導体を磁
気感応素子として応用する試みがなされている。
[Prior Art] Conventionally, Bi(Pb)-Sr-Ca-
Attempts have been made to utilize the magnetoresistive effect of Cu-O 2 and Y-Ba-Cu-O 2 oxide superconductors to apply oxide superconductors as magnetic sensing elements.

【0003】0003

【発明が解決しようとする課題】前記の方法において、
酸化物超伝導体を磁気感応素子として用いた場合、酸化
物超伝導体は粒界部分から H2Oが侵入するために劣
化し、酸化物超伝導体は超伝導物質から常伝導物質に変
態し、磁気感応素子として長期間に亘って使用すること
ができない。
[Problem to be solved by the invention] In the above method,
When an oxide superconductor is used as a magnetic sensing element, the oxide superconductor deteriorates due to the intrusion of H2O from the grain boundaries, and the oxide superconductor transforms from a superconducting material to a normal conducting material. It cannot be used as a magnetically sensitive element for a long period of time.

【0004】小型化が可能な膜状のものを用いた場合も
、この H2Oによる化学的な劣化のほか、素子を室温
と液体窒素温度との間での温度変化に繰り返しさらすこ
とにより、膜に付着した H2Oが液体と固体の変態を
繰り返すため、その熱膨張差により膜が機械的に劣化し
、磁気感度の低下を生じるという問題点があった。
[0004] Even when a film-like material that can be miniaturized is used, in addition to chemical deterioration due to H2O, the film may be damaged by repeatedly exposing the device to temperature changes between room temperature and liquid nitrogen temperature. Since the attached H2O undergoes repeated transformations between liquid and solid, there is a problem in that the film deteriorates mechanically due to the difference in thermal expansion, resulting in a decrease in magnetic sensitivity.

【0005】[0005]

【課題を解決するための手段】本発明者らは、酸化物超
伝導多結晶薄膜を磁気感応素子として、長期に亘り使用
することの可能性を調べた結果、超伝導体への水分の接
触を遮断することにより、上記の問題点を解決した。
[Means for Solving the Problem] As a result of investigating the possibility of using an oxide superconducting polycrystalline thin film as a magnetic sensing element over a long period of time, the present inventors found that the contact of moisture to the superconductor The above problem was solved by blocking the .

【0006】すなわち、本発明は、物理的手法を用いて
作製した酸化物超伝導多結晶薄膜を、熱伝導率の高い材
質からなる密閉容器内に設置し、容器内に液体窒素温度
以下で気体の状態であるガスを充填してなることを特徴
とする磁気感応素子にある。
That is, in the present invention, an oxide superconducting polycrystalline thin film produced using a physical method is placed in a closed container made of a material with high thermal conductivity, and a gas is injected into the container at a temperature below the temperature of liquid nitrogen. A magnetic sensing element is characterized in that it is filled with a gas that is in a state of.

【0007】[0007]

【発明の具体的説明】酸化物超伝導体は、セラミックス
であるがゆえに、絶縁相である結晶粒界を有し、このた
めに磁界が印加されると臨界電流密度が急激に低下する
。つまり、臨界電流を印加した状態で外部から磁場を印
加すると、抵抗が生じる。この性質を利用することによ
り、磁界の測定が可能になる。
DETAILED DESCRIPTION OF THE INVENTION Since oxide superconductors are ceramics, they have crystal grain boundaries that are insulating phases, and for this reason, when a magnetic field is applied, the critical current density decreases rapidly. In other words, when a magnetic field is applied from the outside while a critical current is applied, resistance occurs. By utilizing this property, it becomes possible to measure magnetic fields.

【0008】酸化物超伝導多結晶薄膜の製造方法として
は、膜中の微細部分においても組成の変化を生じない、
スパッタリング法、蒸着法、レーザーアブレイション法
、MBE 法等の物理的手法が好ましい。
[0008] As a method for producing an oxide superconducting polycrystalline thin film, there is a method that does not cause a change in composition even in minute parts of the film.
Physical methods such as sputtering, vapor deposition, laser ablation, and MBE are preferred.

【0009】基板上に酸化物超伝導多結晶膜の構成成分
を堆積する場合、膜の堆積方法として、各構成成分の原
料により、それぞれの成分を順次基板上に堆積する方法
や構成成分を組合せた原料を用いて堆積する方法が挙げ
られる。
When depositing the constituents of an oxide superconducting polycrystalline film on a substrate, the film deposition method may include a method of sequentially depositing each constituent on the substrate depending on the raw material for each constituent, or a combination of constituents. An example is a method of depositing using raw materials.

【0010】しかし、構成成分をすべて含んだ原料を用
いると、原料の組成と基板上に堆積した膜の組成とが大
きくズレるため、目的とする膜組成が得られるように原
料組成を決定するのが難しい。とりわけ、Bi系超伝導
酸化物の場合、構成成分の種類が多いので、構成成分を
分けて用いることが好ましい。
However, if a raw material containing all the constituent components is used, the composition of the raw material and the composition of the film deposited on the substrate will differ greatly, so it is difficult to determine the raw material composition so as to obtain the desired film composition. is difficult. In particular, in the case of a Bi-based superconducting oxide, since there are many types of constituent components, it is preferable to use the constituent components separately.

【0011】膜を作製する際に、基板を加熱して直接超
伝導膜としても、基板を加熱しないで非晶質膜を作製し
、熱処理することにより超伝導膜としてもよい。その際
、非晶質膜の組成は、熱処理した後に超伝導体になる組
成であればよい。
[0011] When producing a film, the superconducting film may be produced directly by heating the substrate, or by producing an amorphous film without heating the substrate and heat-treating it. In this case, the composition of the amorphous film may be any composition that becomes a superconductor after heat treatment.

【0012】非晶質膜は、それぞれの化合物が生成する
温度で、所定の時間熱処理し、結晶化させる。その温度
は、以下の通りである。
[0012] The amorphous film is heat-treated for a predetermined period of time at a temperature at which each compound is formed to crystallize it. The temperature is as follows.

【0013】Bi−Pb−Sr−Ca−Cu−O系: 
820〜850 ℃Bi−Sr−Ca−Cu−O 系:
 850〜880 ℃Y−Ba−Cu−O 系: 90
0〜1000℃Tl−Ba−Ca−Cu−O 系: 9
00〜1000℃Tl−Sr−V−O 系: 800〜
1000℃
Bi-Pb-Sr-Ca-Cu-O system:
820-850°C Bi-Sr-Ca-Cu-O system:
850-880°C Y-Ba-Cu-O system: 90
0~1000℃ Tl-Ba-Ca-Cu-O system: 9
00~1000℃ Tl-Sr-V-O system: 800~
1000℃

【0014】熱処理する前に 700〜80
0 ℃で 2〜10時間あらかじめ仮焼すると特性が安
定する。熱処理後は、炉内で冷却する。
700-80 before heat treatment
Preliminary calcination at 0°C for 2 to 10 hours stabilizes the properties. After heat treatment, it is cooled in a furnace.

【0015】膜を支持する基板としては、 MgO、S
rTiO3、LaGaO3、LaAlO3等の酸化物単
結晶、絶縁物の緩衝層を設けたAg、Au、Pt、Cu
等の金属、Si、GaAs等の半導体などが使用される
[0015] As the substrate supporting the film, MgO, S
rTiO3, LaGaO3, LaAlO3, etc. oxide single crystal, Ag, Au, Pt, Cu with an insulating buffer layer
metals such as, semiconductors such as Si, GaAs, etc. are used.

【0016】酸化物超伝導多結晶薄膜を収納する容器は
、周囲の冷却媒体の熱を内部にある膜に伝達するため、
熱伝導率の高い材料を用いるのが好ましい。材料として
は、例えば窒化アルミニウムや炭化珪素等のセラミック
ス又はAg、Ti等の金属が挙げられる。
[0016] The container housing the oxide superconducting polycrystalline thin film transfers the heat of the surrounding cooling medium to the film inside.
It is preferable to use a material with high thermal conductivity. Examples of the material include ceramics such as aluminum nitride and silicon carbide, and metals such as Ag and Ti.

【0017】容器内には、液体窒素温度(77.3)以
下で気体の状態であるNe、He等のガスが充填される
The container is filled with a gas such as Ne or He that is in a gaseous state at a temperature below the liquid nitrogen temperature (77.3).

【0018】酸化物超伝導薄膜の容器との接着は、In
やSn等を用いてボンディングを行ない、リード線は、
密閉容器に接続部分を設けた容器内から容器外に引き出
す。 容器が金属の場合、メタライズ部品などを用いることが
好ましい。
[0018] The adhesion of the oxide superconducting thin film to the container is achieved using In
Bonding is done using or Sn, etc., and the lead wire is
A connection part is provided in a sealed container and the container is pulled out from inside the container. When the container is metal, it is preferable to use metallized parts or the like.

【0019】磁界の測定は、この容器を液体窒素等の冷
却溶媒に一部又は全部を浸漬して用いる。
To measure the magnetic field, the container is partially or completely immersed in a cooling solvent such as liquid nitrogen.

【0020】[0020]

【作用】酸化物超伝導多結晶薄膜を熱伝導率の高い密閉
容器に収容し、液体窒素温度以下で気体のガスを充填す
ることにより、超伝導薄膜がH2O の影響を受けるこ
とがなく、かつ、充填ガス及び容器の熱伝導により超伝
導体の周囲の熱的揺らぎも軽減される。
[Operation] By housing the oxide superconducting polycrystalline thin film in a closed container with high thermal conductivity and filling it with gas at a temperature below the temperature of liquid nitrogen, the superconducting thin film is not affected by H2O, and , thermal fluctuations around the superconductor are also reduced due to thermal conduction of the filling gas and the container.

【0021】[0021]

【実施例】実施例 薄膜の作製は、スパッタリング法により行った。スパッ
タリングターゲットとしては、以下の 3種類を用いた
[Example] Example thin films were prepared by a sputtering method. The following three types of sputtering targets were used.

【0022】 ■Bi0.5Pb0.5Ox  (Bi2O3とPbO
 の混合粉末)■CaCu0.75Ox  (CaCO
3とCuO の950 ℃焼成粉末)■SrCu0.7
5Ox  (SrCO3とCuO の950 ℃焼結粉
末)
■Bi0.5Pb0.5Ox (Bi2O3 and PbO
Mixed powder of) ■CaCu0.75Ox (CaCO
3 and CuO sintered powder at 950 °C)■SrCu0.7
5Ox (950℃ sintered powder of SrCO3 and CuO)

【0023】薄膜組成は、各ターゲットの堆積時間
を以下の様にして調整した。
The thin film composition was adjusted by adjusting the deposition time of each target as follows.

【0024】■Bi0.5Pb0.5Ox: 6秒■C
aCu0.75Ox:58秒 ■SrCu0.75Ox:34秒
■Bi0.5Pb0.5Ox: 6 seconds ■C
aCu0.75Ox: 58 seconds ■SrCu0.75Ox: 34 seconds

【0025】この一巡堆積を 1層として 400回積
層し、 2μm の薄膜を得た。
[0025] This single layer was stacked 400 times to form a 2 μm thin film.

【0026】この膜(組成 (Bi+Pb)1.00S
r1.00Ca0.96Cu1.95Ox)を、780
 ℃で 2時間熱処理後 844℃で65時間熱処理し
た。
[0026] This film (composition (Bi+Pb) 1.00S
r1.00Ca0.96Cu1.95Ox), 780
After heat treatment at 844°C for 2 hours, heat treatment was performed at 844°C for 65 hours.

【0027】熱処理して得られた超伝導膜の磁気感度を
測定し、1875.3μV/ガウスの磁気感度を得た。
The magnetic sensitivity of the superconducting film obtained by heat treatment was measured, and a magnetic sensitivity of 1875.3 μV/Gauss was obtained.

【0028】この膜を、MgO でコーティングした窒
化アルミニウムからなる容器に入れ、Inにより接着し
て密閉し、容器内をHeガスで充満した。
[0028] This film was placed in a container made of aluminum nitride coated with MgO 2 and sealed with In, and the inside of the container was filled with He gas.

【0029】この容器を、液体窒素に10分間浸漬した
後、10分間室温に放置した。この繰り返しを、10回
、20回及び30回行い、その都度磁気感度を測定した
。その結果、それぞれ1862.4μV/ガウス、18
60.1μV/ガウス及び1850.2μV/ガウスで
あった。
This container was immersed in liquid nitrogen for 10 minutes and then left at room temperature for 10 minutes. This was repeated 10, 20, and 30 times, and the magnetic sensitivity was measured each time. The results were 1862.4 μV/Gauss and 18
They were 60.1 μV/Gauss and 1850.2 μV/Gauss.

【0030】比較例 比較として、容器に入れない磁気感応素子(磁気感度は
、1800.3μV/ガウス)を液体窒素に10分間浸
漬した後、10分間室温に放置した。この繰り返しを、
10回、20回及び30回行い、その都度磁気感度を測
定した。その結果、繰り返し回数にしたがい膜は劣化し
、それぞれ1623.1μV/ガウス、1022.4μ
V/ガウス及び 852.1μV/ガウスであった。
Comparative Example As a comparison, a magnetically sensitive element (magnetic sensitivity: 1800.3 μV/Gauss) that was not placed in a container was immersed in liquid nitrogen for 10 minutes and then left at room temperature for 10 minutes. This repetition,
The test was repeated 10, 20, and 30 times, and the magnetic sensitivity was measured each time. As a result, the membrane deteriorated as the number of repetitions increased, 1623.1μV/Gauss and 1022.4μV/Gauss, respectively.
V/Gauss and 852.1 μV/Gauss.

【0031】[0031]

【発明の効果】本発明の磁気感応素子を用いれば、酸化
物超伝導多結晶薄膜はH2O に対して遮断されるので
、超伝導特性の劣化が起こらず、磁気感応素子として長
期間、安定に使用すことが可能になった。
[Effects of the Invention] When the magnetically sensitive element of the present invention is used, the oxide superconducting polycrystalline thin film is blocked from H2O, so the superconducting properties do not deteriorate and the magnetically sensitive element can be used stably for a long period of time. became possible to use.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  物理的手法を用いて作製した酸化物超
伝導多結晶薄膜を、熱伝導率の高い材質からなる密閉容
器内に設置し、容器内に液体窒素温度以下で気体の状態
であるガスを充填してなることを特徴とする磁気感応素
子。
[Claim 1] An oxide superconducting polycrystalline thin film produced using a physical method is placed in a closed container made of a material with high thermal conductivity, and the film is in a gaseous state at a temperature below the temperature of liquid nitrogen inside the container. A magnetic sensing element characterized by being filled with gas.
JP3057725A 1991-03-01 1991-03-01 Magnetic sensitive element Pending JPH04274379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3057725A JPH04274379A (en) 1991-03-01 1991-03-01 Magnetic sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3057725A JPH04274379A (en) 1991-03-01 1991-03-01 Magnetic sensitive element

Publications (1)

Publication Number Publication Date
JPH04274379A true JPH04274379A (en) 1992-09-30

Family

ID=13063914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3057725A Pending JPH04274379A (en) 1991-03-01 1991-03-01 Magnetic sensitive element

Country Status (1)

Country Link
JP (1) JPH04274379A (en)

Similar Documents

Publication Publication Date Title
US5084438A (en) Electronic device substrate using silicon semiconductor substrate
CA2029355C (en) Compound oxide superconducting thin film with buffer layer
US5096878A (en) Method for production of bi-containing superconducting ceramics laminates
JP2711253B2 (en) Superconducting film and method for forming the same
US5736488A (en) Multilayered composites and process of manufacture
CA1338864C (en) Process for producing thallium type superconducting thin film
JPH04274379A (en) Magnetic sensitive element
AU615102B2 (en) Process for preparing a bismuth-type superconducting thin film
JP2502893B2 (en) Superconductor manufacturing method
US5114910A (en) Passivation of thin film oxide superconductors
Rowell The status, recent progress and promise of superconducting materials for practical applications
JP3061634B2 (en) Oxide superconducting tape conductor
US5206214A (en) Method of preparing thin film of superconductor
JP3005628B2 (en) Magnetic field strength measurement method
JPH0567812A (en) High sensitive magneto sensitive element
JP2936125B2 (en) Magnetic bearing detection method
JPH0567817A (en) Magneto-sensitive element
JPS63239740A (en) Manufacture for superconductive compound thin film
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JP2569055B2 (en) Preparation method of oxide superconductor thin film
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
Iida Introduction to Processing Methods
JP2759469B2 (en) Superconducting thin film fabrication method
JPH04269878A (en) Formation method of electrode of superconducting magnetic sensor element
JP2501609B2 (en) Method for producing complex oxide superconducting thin film