JP2936125B2 - Magnetic bearing detection method - Google Patents

Magnetic bearing detection method

Info

Publication number
JP2936125B2
JP2936125B2 JP2290909A JP29090990A JP2936125B2 JP 2936125 B2 JP2936125 B2 JP 2936125B2 JP 2290909 A JP2290909 A JP 2290909A JP 29090990 A JP29090990 A JP 29090990A JP 2936125 B2 JP2936125 B2 JP 2936125B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
magnetic
orientation
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2290909A
Other languages
Japanese (ja)
Other versions
JPH04166780A (en
Inventor
浩正 下嶋
守 石井
惠三 塚本
千丈 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2290909A priority Critical patent/JP2936125B2/en
Publication of JPH04166780A publication Critical patent/JPH04166780A/en
Application granted granted Critical
Publication of JP2936125B2 publication Critical patent/JP2936125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気方位検出方法に関し、特に、配向性の
高い酸化物超伝導多結晶薄膜を用いた磁気センサによる
磁気方位検出方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a magnetic azimuth detecting method, and more particularly, to a magnetic azimuth detecting method using a magnetic sensor using a highly-oriented oxide superconducting polycrystalline thin film. is there.

〔従来の技術〕[Conventional technology]

従来より磁気の方位を調べる方法として、地磁気程度
の弱い磁界(0.3〜0.5ガウス程度)の方位を調べる方位
磁石がある。
2. Description of the Related Art Conventionally, as a method of examining the direction of magnetism, there is a compass for examining the direction of a weak magnetic field (about 0.3 to 0.5 gauss) similar to the geomagnetism.

最近に至り、セラミック超伝導体を用いた磁気抵抗素
子が注目され、例えば特開平1−138770号公報には、結
晶粒界を有する超伝導材料を、その臨界温度以下の温度
で、該超伝導体の結晶粒間の弱結合状態が破られる磁界
よりわずかに大きなバイアス磁界を印加した状態で、外
部の微弱磁界を磁気抵抗効果により検出する磁界検出装
置が開示されている。
Recently, a magnetoresistive element using a ceramic superconductor has attracted attention. For example, Japanese Patent Application Laid-Open No. 1-138770 discloses that a superconducting material having a crystal grain boundary is superconductive at a temperature below its critical temperature. There is disclosed a magnetic field detecting device that detects an external weak magnetic field by a magnetoresistance effect in a state where a bias magnetic field slightly larger than a magnetic field that breaks a weak coupling state between crystal grains of a body is applied.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の方法において、方位磁石では地磁気程度の磁界
方位しか検出できないため、0.1ガウス以下でも測定可
能な磁気感度の優れた磁気方位センサが求められてい
た。
In the above-mentioned method, since a compass magnet can detect only a magnetic field direction of about the earth magnetism, a magnetic direction sensor having excellent magnetic sensitivity capable of measuring even 0.1 Gauss or less has been demanded.

また、超伝導体の磁気抵抗効果を利用する方法では、
磁界強度の測定は可能であっても、その磁界の方位につ
いては、相当量のバイアス磁界の存在により、必ずしも
正確な情報を与えなかった。
In the method using the magnetoresistance effect of a superconductor,
Although the field strength could be measured, the orientation of the field was not always accurate given the presence of a considerable amount of bias field.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、酸化物超伝導多結晶薄膜について、そ
の臨界温度以下の温度で、その温度における臨界電流値
より大きい電流を印加した場合、外部磁気による磁気抵
抗効果が顕著に現われ、バイアス磁界の存在無しで、外
部臨界を検出できることを見出した。さらに、酸化物超
伝導多結晶薄膜として配向性の高い薄膜を用いて、その
磁気感度を、磁界と薄膜表面の角度を変化させて調べた
結果、磁気感度は磁界の印加方向と薄膜表面との角度に
大きく依存することを見出して、本発明を完成するに至
った。
The present inventors have found that when a current larger than the critical current value at a temperature below the critical temperature is applied to the oxide superconducting polycrystalline thin film, the magnetoresistance effect due to the external magnetism appears remarkably, and the bias magnetic field It was found that external criticality could be detected without the presence of Furthermore, using a highly oriented thin film as an oxide superconducting polycrystalline thin film, the magnetic sensitivity was examined by changing the angle between the magnetic field and the surface of the thin film. The inventors have found that the present invention largely depends on the angle, and have completed the present invention.

すなわち、本発明は、磁気抵抗効果が薄膜表面に対す
る磁気方位の角度により変化する配向性の高い酸化物超
伝導多結晶薄膜に、その臨界温度未満の温度で、その温
度における臨界電流値以上の電流を印加し、薄膜の向き
を変化させ、磁気抵抗効果により検出された磁界強度が
最大となる薄膜の向きにより磁界の強さ及び方位を測定
することを特徴とする磁気方位検出方法を提供するもの
である。
That is, the present invention relates to a highly oriented oxide superconducting polycrystalline thin film in which the magnetoresistance effect changes depending on the angle of the magnetic azimuth with respect to the thin film surface, at a temperature lower than the critical temperature and a current higher than the critical current value at that temperature. A magnetic azimuth detecting method characterized in that the magnetic field strength and azimuth are measured according to the direction of the thin film in which the magnetic field strength detected by the magnetoresistance effect is maximized by applying a magnetic field to the thin film. It is.

酸化物超伝導体は、セラミックスであるゆえに、絶縁
相である結晶粒界を有し、このために磁界が印加される
と臨界電流密度が急激に低下する。すなわち、酸化物超
伝導体薄膜の臨界温度未満の温度で、その温度における
臨界電流以上の電流を流すと薄膜にある抵抗が生じる
が、この抵抗は外部からの磁界によって更に増大する。
この抵抗値の増大は磁界の強度により変化するので、こ
の性質を利用することにより、磁界の測定が可能にな
る。
Since the oxide superconductor is a ceramic, it has a crystal grain boundary which is an insulating phase. Therefore, when a magnetic field is applied, the critical current density sharply decreases. That is, at a temperature lower than the critical temperature of the oxide superconductor thin film, when a current equal to or higher than the critical current at that temperature flows, a certain resistance is generated in the thin film, but this resistance further increases due to an external magnetic field.
Since the increase in the resistance value changes depending on the strength of the magnetic field, the magnetic field can be measured by using this property.

さらに、磁界の方位は、酸化物超伝導体の配向性を利
用することにより求められる。すなわち、酸化物超伝導
体は板状結晶であるがゆえに、薄膜にすると薄膜面に垂
直にC軸が配向し、磁気感度は結晶の異方性に大きく依
存し、磁界がC軸に平行に印加された場合磁気感度が大
きく、C軸に対し直角に印加された場合磁気感度が小さ
くなる。この性質を利用して、薄膜の向きを動かして、
その磁気感度が最大となる薄膜の向きを求めることによ
り、磁界の強さとその方位を求めることができる。
Further, the direction of the magnetic field can be determined by utilizing the orientation of the oxide superconductor. In other words, since the oxide superconductor is a plate-like crystal, when it is made into a thin film, the C axis is oriented perpendicular to the thin film surface, the magnetic sensitivity greatly depends on the anisotropy of the crystal, and the magnetic field becomes parallel to the C axis. When applied, the magnetic sensitivity is large, and when applied perpendicular to the C-axis, the magnetic sensitivity is reduced. By utilizing this property, the direction of the thin film is moved,
By determining the orientation of the thin film at which the magnetic sensitivity is maximized, the strength of the magnetic field and its orientation can be determined.

磁界の印加方向により、薄膜の磁気感度が異なる理由
については、現在明らかになっていないが、超伝導体の
伝導面がC軸に直角であることに大きく関係していると
考えられている。
Although the reason why the magnetic sensitivity of the thin film varies depending on the direction of application of the magnetic field is not clear at present, it is considered to be largely related to the fact that the conduction surface of the superconductor is perpendicular to the C axis.

酸化物超伝導体の板状結晶の配向性は、薄膜の単結晶
性を測定する場合に用いられるロッキング曲線の半値幅
を目安として評価する。この場合、このロッキング曲線
の半値幅が小さいほど板状結晶が配向しており、この値
が15゜以下であることが好ましい。
The orientation of the plate-like crystal of the oxide superconductor is evaluated using the half width of a rocking curve used for measuring the single crystallinity of the thin film as a guide. In this case, the smaller the half width of the rocking curve, the more the plate-like crystal is oriented, and it is preferable that this value is 15 ° or less.

ロッキング曲線は、ある程度の配向性をもった薄膜や
エピタキシャル膜の結晶性を評価するのに用いられるも
ので、検出器をある結晶面間隔に対応した角度(2θ)
に固定し、試料の角度(θ)を変化させることにより得
られた回折強度を示す。薄膜が少しづつ方位の異なった
小さな結晶硬からできているとき、回折ピーク上に、結
晶方位の広がりに対応した幅が生じる。この幅(ロッキ
ング曲線の半値幅)が狭いと結晶軸がそろっていること
を意味しており、幅が狭いほぼ配向性が高い。
The rocking curve is used to evaluate the crystallinity of a thin film or an epitaxial film having a certain degree of orientation.
And the diffraction intensity obtained by changing the angle (θ) of the sample. When the thin film is made of a small crystal hardness having different directions little by little, a width corresponding to the spread of the crystal orientation is generated on the diffraction peak. When this width (the half width of the rocking curve) is narrow, it means that the crystal axes are aligned, and the width is narrow and the orientation is high.

薄膜の製造方法は、特に限定しないが、スパッタリン
グ法、蒸着法等の物理的手法が配向性に優れた薄膜を得
やすく好ましい。
The method for producing the thin film is not particularly limited, but a physical method such as a sputtering method or a vapor deposition method is preferable because a thin film having excellent orientation can be obtained.

製造した薄膜の組成は、それぞれの化合物に応じ、熱
処理した後に超伝導体になればよい。
The composition of the manufactured thin film may be a superconductor after heat treatment according to each compound.

しかし、安価で一般的に普及している液体窒素温度で
使用して高い磁気感度を得るためには、超伝導体の臨界
温度は77K以上であることが望ましい。
However, in order to obtain high magnetic sensitivity using liquid nitrogen which is inexpensive and widely used, it is desirable that the superconductor has a critical temperature of 77K or more.

製造した薄膜の組成について、例えばBi系の場合BiaP
bbSr1.00CacCudOxで表される組成式において下記の範囲
であれば、77K以上の臨界温度を有する超伝導薄膜が得
られ、液体窒素温度での使用が可能である。
Regarding the composition of the manufactured thin film, for example, Bi a P
Within the following range in the composition formula represented by b b Sr 1.00 Ca c Cu d O x , a superconducting thin film having a critical temperature of 77 K or more can be obtained, and can be used at liquid nitrogen temperature.

0.5<a<1.0 b<1.0 0.6<c<1.2 1.4<d<2.0 Biは0.5より少ないと超伝導体を合成しにくく、1.0よ
り多いと粒界相としてSr−Ca−Cu−O化合物が生成しに
くいために、結晶粒界の析出物が少なく磁気感度が悪く
なる。Pbは1.0より多いと膜が溶融しやすいために、半
導体相を生成しやすい。Caは0.6より少ないと半導体相
を生成し易く、超伝導体となりにくい。1.2より多いと1
10K相は生成するが、超伝導粒子間に絶縁相が大量に析
出してしまうために、超伝導電流のパスが妨害され、超
伝導体となりにくい。Cuは1.4より少ないと超伝導体を
合成しにくく、2.0より多いと膜が溶融しやすいため
に、半導体相を生成しやすく超伝導体となりにくい。
If 0.5 <a <1.0 b <1.0 0.6 <c <1.2 1.4 <d <2.0 Bi is less than 0.5, it is difficult to synthesize a superconductor, and if it is more than 1.0, a Sr—Ca—Cu—O compound is formed as a grain boundary phase. Therefore, the precipitates at the crystal grain boundaries are small and the magnetic sensitivity is deteriorated. When Pb is more than 1.0, the film is easily melted, and thus a semiconductor phase is easily generated. If the Ca content is less than 0.6, a semiconductor phase is easily generated, and it is difficult to become a superconductor. 1 if more than 1.2
Although a 10K phase is generated, a large amount of an insulating phase is precipitated between the superconducting particles, which obstructs the path of the superconducting current and makes it difficult to become a superconductor. If Cu is less than 1.4, it is difficult to synthesize a superconductor, and if it is more than 2.0, the film is likely to be melted, so that a semiconductor phase is easily formed and it is difficult to become a superconductor.

また、Y−Ba−Cu−O系ではYBa2Cu3Ox、Tl−Ba−Ca
−Cu−O系ではTl2Ba2Ca2Cu3Oxが理論組成となる。
In the Y-Ba-Cu-O system, YBa 2 Cu 3 O x , Tl-Ba-Ca
Tl 2 Ba 2 Ca 2 Cu 3 O x is theoretical composition in -cu-O system.

基板としては、MgO、SrTiO3、LaGaO3、Al2O3等の酸化
物単結晶及び多結晶、絶縁物の緩衝層を設けたAg、Au、
Pt、Cu等の多結晶金属及びSi、GaAs等の半導体などが使
用される。
As the substrate, MgO, SrTiO 3 , LaGaO 3 , oxide single crystal and polycrystal such as Al 2 O 3 , Ag, Au, provided with a buffer layer of an insulator,
Polycrystalline metals such as Pt and Cu and semiconductors such as Si and GaAs are used.

薄膜製造の際、基板加熱は行なっても行なわなくても
よい。
Substrate heating may or may not be performed during thin film production.

また、使用される原料は、酸化物、炭酸塩及び硝酸塩
等の向化合物粉末やこれらの粉末を焼結させたセラミッ
クス、また、製膜方法によっては各単体の金属、2種以
上の金属、金属有機物等が用いられる。
The raw materials used are compound powders such as oxides, carbonates and nitrates, ceramics obtained by sintering these powders, and, depending on the film forming method, individual metals, two or more metals, and metals. Organic substances and the like are used.

作製された薄膜は、それぞれの化合物が生成する温度
で、所定の時間熱処理をして薄膜を結晶化させる。
The prepared thin film is subjected to a heat treatment at a temperature at which each compound is generated for a predetermined time to crystallize the thin film.

例えば、 Bi−Pb−Sr−Ca−Cu−O系……820〜850℃ Bi−Sr−Ca−Cu−O系 ……850〜880℃ Y−Ba−Cu−O系 ……900〜1000℃ Tl−Ba−Ca−Cu−O系 ……900〜1000℃ で熱処理を行う。なお、熱処理の前に予め700〜800℃で
2〜10時間仮焼することは特性の安定に効果がある。熱
処理後は、炉内で徐冷する。
For example, Bi-Pb-Sr-Ca-Cu-O system: 820-850 ° C Bi-Sr-Ca-Cu-O system: 850-880 ° C Y-Ba-Cu-O system: 900-1000 ° C Tl-Ba-Ca-Cu-O system Heat treatment is performed at 900 to 1000 ° C. Pre-calcining at 700 to 800 ° C. for 2 to 10 hours before the heat treatment is effective for stabilizing the characteristics. After the heat treatment, it is gradually cooled in the furnace.

〔実施例〕〔Example〕

スパッタリングターゲットとして、 Bi0.5Pb0.5Ox(Bi2O3とPbOの混合粉末) CaCu0.75Ox(CaCo3とCuOの950℃焼成粉末) SrCu0.75Ox(SrCO3とCuOの950℃焼結粉末) を用いて、MgO単結晶基板上に製膜した。各ターゲット
の堆積時間は以下の通りである。
As a sputtering target, Bi 0.5 Pb 0.5 O x (mixed powder of Bi 2 O 3 and PbO) CaCu 0.75 O x (fired powder of 950 ° C. of CaCo 3 and CuO) SrCu 0.75 O x (sintered powder of SrCO 3 and CuO at 950 ° C.) (Powder) was used to form a film on a MgO single crystal substrate. The deposition time for each target is as follows.

Bi0.5Pb0.5Ox……9秒 CaCu0.75Ox……50秒 SrCu0.75Ox……40秒 この堆積を1層として400回積層し、約2μmの薄膜
を得た。得られた薄膜の組成をEPMAにより分析した結
果、(Bi+Pb)1.10Sr1.00Ca0.70Cu1.32Oxであった。こ
れを780℃で2時間熱処理後、835℃で65時間熱処理し
た。
Bi 0.5 Pb 0.5 O x ··· 9 seconds CaCu 0.75 O x ··· 50 seconds SrCu 0.75 O x ··· 40 seconds This deposition was used as one layer and laminated 400 times to obtain a thin film of about 2 μm. As a result of analyzing the composition of the obtained thin film by EPMA, it was (Bi + Pb) 1.10 Sr 1.00 Ca 0.70 Cu 1.32 O x . This was heat-treated at 780 ° C. for 2 hours and then heat-treated at 835 ° C. for 65 hours.

熱処理後、得られた薄膜の磁気感度を、薄膜表面に対
して外部印加磁界の方位を変化させながら、液体窒素温
度(77K)で4端子法により測定した。
After the heat treatment, the magnetic sensitivity of the obtained thin film was measured by a four-terminal method at a liquid nitrogen temperature (77 K) while changing the direction of an externally applied magnetic field with respect to the thin film surface.

磁気感度は、薄膜に臨界電流値(1μA)より大きい
直流電流(1.0mA)を流した状態で、磁界を0から2ガ
ウスまで印加すると、膜の抵抗値が増加するに従い電圧
端子間に生じる出力電圧が変化するので、その出力電圧
の値はμV/ガウスで評価した。この値が大きいほど磁気
感度が高いことになる。なお、測定電圧の電極間の長さ
は15mmとした。
When a magnetic field is applied from 0 to 2 gauss with a DC current (1.0 mA) larger than the critical current value (1 μA) applied to the thin film, the output generated between the voltage terminals as the resistance value of the film increases. Since the voltage changes, the value of the output voltage was evaluated in μV / Gauss. The larger the value, the higher the magnetic sensitivity. The length between the electrodes of the measurement voltage was 15 mm.

また、得られた薄膜の110K超伝導体の(0014)回折線
を用いてロッキング曲線の測定を行なった結果、その曲
線の半値幅は4.2゜であり、十分に配向した試料であっ
た。測定結果を表−1に示す。
Further, the rocking curve was measured using the (0014) diffraction line of the 110K superconductor of the obtained thin film. As a result, the half width of the curve was 4.2 °, indicating that the sample was well oriented. Table 1 shows the measurement results.

なお、薄膜表面と外部印加磁界の角度θは、磁気方位が
薄膜表面に対し垂直をθ=0とした。
The angle θ between the surface of the thin film and the externally applied magnetic field was set to θ = 0 when the magnetic direction was perpendicular to the surface of the thin film.

上記の結果から、得られた薄膜は10-5ガウスのオーダ
ーまでの磁気感度を有し、薄膜の向きを変化させて、磁
界に対し最大の出力電圧を示す薄膜の方向を求めれば、
そのときの薄膜に垂直な方向が磁気方位であり、その際
に磁界強度も高感度で測定される。
From the above results, the obtained thin film has magnetic sensitivity up to the order of 10 -5 Gauss, and by changing the direction of the thin film, if the direction of the thin film showing the maximum output voltage with respect to the magnetic field is obtained,
The direction perpendicular to the thin film at that time is the magnetic direction, and the magnetic field strength is measured with high sensitivity.

〔発明の効果〕〔The invention's effect〕

本発明によれば、C軸配向性の優れた酸化物超伝導薄
膜を用いることにより、10-5ガウスオーダーの感度が得
られ、かつ磁界の方位を容易に求めることができる。
According to the present invention, by using an oxide superconducting thin film having excellent C-axis orientation, a sensitivity of the order of 10 −5 Gauss can be obtained, and the direction of the magnetic field can be easily obtained.

フロントページの続き (56)参考文献 特開 昭63−233387(JP,A) 特開 平1−250875(JP,A) 特開 昭64−82576(JP,A) 特開 平2−159589(JP,A) 特開 平2−264879(JP,A) 特開 平1−286978(JP,A) 特開 平2−205784(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01R 33/00 - 33/10 Continuation of front page (56) References JP-A-62-233387 (JP, A) JP-A-1-250875 (JP, A) JP-A-64-82576 (JP, A) JP-A-2-159589 (JP) JP-A-2-264879 (JP, A) JP-A 1-286978 (JP, A) JP-A-2-205784 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) G01R 33/00-33/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気抵抗効果が薄膜表面に対する磁気方位
の角度により変化する配向性の高い酸化物超伝導多結晶
薄膜に、その臨界温度未満の温度で、その温度における
臨界電流値以上の電流を印加し、薄膜の向きを変化さ
せ、磁気抵抗効果により検出された磁界強度が最大とな
る薄膜の向きにより磁界の強さ及び方位を測定すること
を特徴とする磁気方位検出方法。
1. An oxide superconducting polycrystalline thin film having a high orientation in which a magnetoresistance effect changes with an angle of a magnetic azimuth with respect to a surface of a thin film, a current lower than the critical temperature and higher than a critical current value at the temperature. A magnetic azimuth detecting method, comprising: applying the applied magnetic field, changing the direction of the thin film, and measuring the strength and azimuth of the magnetic field based on the direction of the thin film in which the magnetic field strength detected by the magnetoresistance effect is maximized.
【請求項2】酸化物超伝導多結晶薄膜が、物理的手法に
より製造されたものであり、基板の垂直方向をC軸とし
て、超伝導粒子のC軸の配向度が15゜以下である請求項
(1)に記載の方法。
2. The method according to claim 1, wherein the oxide superconducting polycrystalline thin film is manufactured by a physical method, and the degree of orientation of the C axis of the superconducting particles is not more than 15 ° with respect to the vertical direction of the substrate as the C axis. Item (1).
JP2290909A 1990-10-30 1990-10-30 Magnetic bearing detection method Expired - Lifetime JP2936125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2290909A JP2936125B2 (en) 1990-10-30 1990-10-30 Magnetic bearing detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2290909A JP2936125B2 (en) 1990-10-30 1990-10-30 Magnetic bearing detection method

Publications (2)

Publication Number Publication Date
JPH04166780A JPH04166780A (en) 1992-06-12
JP2936125B2 true JP2936125B2 (en) 1999-08-23

Family

ID=17762080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2290909A Expired - Lifetime JP2936125B2 (en) 1990-10-30 1990-10-30 Magnetic bearing detection method

Country Status (1)

Country Link
JP (1) JP2936125B2 (en)

Also Published As

Publication number Publication date
JPH04166780A (en) 1992-06-12

Similar Documents

Publication Publication Date Title
KR100192103B1 (en) Grain boundary-free crystalline body of manganese-based composite oxide and method for the preparation thereof
EP0330214B2 (en) High-Tc oxide superconductor and method for producing the same
Topal et al. The Role of Oxygenation on Superconducting Properties of RE 3 Ba 5 Cu 8 O 18 (RE= Y, Sm and Nd) Compounds
Poddar et al. Excess conductivity in Tl1Ca3Ba1Cu3Oχ and Bi1Ca1Sr1Cu2Oχ systems due to thermodynamic fluctuations
JP2936125B2 (en) Magnetic bearing detection method
EP0350959B1 (en) An apparatus and method for magnetic measurement using a superconductive magneto-resistive device
JP2936126B2 (en) Magnetic sensor capable of detecting magnetic orientation
JP3005628B2 (en) Magnetic field strength measurement method
JP2893034B2 (en) High sensitivity magnetic sensitive element
Takagi et al. Origin of grain boundary weak links in BaPb1− x Bi x O3 superconductor
Nomura et al. Increased flux pinning in cation‐deficient Bi2 (Sr, Ca) 3− x Cu2O8+ δ
JP3219563B2 (en) Metal oxide and method for producing the same
Maeda et al. A new high-T c oxide superconductor without a rare earth element
JPH0567812A (en) High sensitive magneto sensitive element
Thier et al. Hall effect and Hall resistivity in REBa/sub 2/Cu/sub 3/O/sub 7-delta
JP3038485B2 (en) Bi-based oxide superconducting thin film
JPH06263441A (en) Metal oxide material and its production
US5360786A (en) Superconductive material
JPH0567817A (en) Magneto-sensitive element
Allen et al. Critical current density measurements of thin films of YBaCuO
JPH05121789A (en) Superconductive magnetic sensing element
JPH01164728A (en) Oxide superconducting material
Park et al. Effect of silver addition on the processing of T10. 5Pb0. 5Sr2CaCu2O7− δ
EP0431170A1 (en) Oxide superconductor
JPH05102539A (en) Superconducting magneto-sensitive element