JP3005628B2 - Magnetic field strength measurement method - Google Patents

Magnetic field strength measurement method

Info

Publication number
JP3005628B2
JP3005628B2 JP2237195A JP23719590A JP3005628B2 JP 3005628 B2 JP3005628 B2 JP 3005628B2 JP 2237195 A JP2237195 A JP 2237195A JP 23719590 A JP23719590 A JP 23719590A JP 3005628 B2 JP3005628 B2 JP 3005628B2
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
magnetic
sensitivity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2237195A
Other languages
Japanese (ja)
Other versions
JPH04118572A (en
Inventor
浩正 下嶋
守 石井
惠三 塚本
千丈 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2237195A priority Critical patent/JP3005628B2/en
Publication of JPH04118572A publication Critical patent/JPH04118572A/en
Application granted granted Critical
Publication of JP3005628B2 publication Critical patent/JP3005628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁界強さ測定方法に関し、特にBi−Pb−Sr
−Ca−Cu−O系、Bi−Sr−Ca−Cu−O系、Y−Ba−Cu−
O系、Tl−Ba−Ca−Cu−O系などの酸化物超伝導多結晶
薄膜を磁気センサとして用い、その磁気抵抗効果を利用
した磁気強さ測定方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a magnetic field strength measuring method, and particularly to a Bi-Pb-Sr
-Ca-Cu-O system, Bi-Sr-Ca-Cu-O system, Y-Ba-Cu-
The present invention relates to a method for measuring magnetic strength using a magnetoresistive effect using an O-based, Tl-Ba-Ca-Cu-O-based oxide superconducting polycrystalline thin film as a magnetic sensor.

〔従来の技術〕[Conventional technology]

従来より磁界強さの測定方法としては、微弱な磁界を
測定する方法とそれほど弱くない磁界を測定する方法の
2つに大きく分けられる。
2. Description of the Related Art Conventionally, methods for measuring magnetic field strength can be broadly divided into two methods: a method for measuring a weak magnetic field and a method for measuring a magnetic field that is not so weak.

微弱な磁界用の高感度磁気センサとしては、超伝導量
子干渉効果を利用したSQUIDが知られており、10-10ガウ
ス程度の感度がある。
As a high-sensitivity magnetic sensor for a weak magnetic field, an SQUID using the superconducting quantum interference effect is known, and has a sensitivity of about 10 to 10 Gauss.

一方、1ガウス程度以上の磁界強さを測定するには、
半導体又は磁性体の磁気抵抗効果を利用した方式による
磁気センサが使われていた。半導体としてはInSb、InAs
など、磁性体としてはFe−Niパーマロイ、CoNiなどが使
われていた。
On the other hand, to measure a magnetic field strength of about 1 Gauss or more,
A magnetic sensor based on a method utilizing the magnetoresistance effect of a semiconductor or a magnetic material has been used. InSb, InAs for semiconductors
For example, Fe-Ni permalloy, CoNi, and the like have been used as magnetic materials.

ここでいう磁気抵抗効果とは、磁界の強さが増加する
に伴い抵抗が増加する現象である。
Here, the magnetoresistance effect is a phenomenon in which the resistance increases as the strength of the magnetic field increases.

最近に至り、セラミックス超伝導体を用いた磁気抵抗
素子が注目され、例えば特開平1−138770号公報には、
結晶粒界を有する超伝導材料をその臨界温度以下の温度
で、その結晶粒間の弱結合状態が破られる磁界よりわず
かに大きいバイアス磁界を印加した状態で、外部の微弱
磁界を磁気抵抗効果によって測定する磁界検出装置が提
案されている。
Recently, a magnetoresistive element using a ceramic superconductor has attracted attention. For example, JP-A-1-138770 discloses that
A superconducting material having crystal grain boundaries is applied at a temperature lower than its critical temperature and a bias magnetic field slightly larger than the magnetic field that breaks the weak coupling between the crystal grains is applied. A magnetic field detection device for measuring has been proposed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の方法中SQUIDは構造が複雑で価格及び維持費が
高く、半導体や磁性体を用いた磁気センサは感度が低い
という問題点があった。また、特開平1−138770号公報
で提案された方法は、感度の点で優れているが、バイア
ス磁界を必要とし、磁気変化の測定には有用であるとし
ても、微弱磁気の検出には相当量のバイアス磁気の存在
が問題となり得る。
In the above method, the SQUID has a problem that the structure is complicated, the price and the maintenance cost are high, and the magnetic sensor using a semiconductor or a magnetic material has low sensitivity. The method proposed in Japanese Patent Application Laid-Open No. 1-138770 is excellent in sensitivity, but requires a bias magnetic field and is useful for measurement of magnetic change, but is equivalent to detection of weak magnetism. The presence of an amount of bias magnetism can be problematic.

本発明は、簡単な構造で、しかもバイアス磁界を用い
ずに純粋に微弱磁気を高感度で検出する方法を提供しよ
うとするものである。
An object of the present invention is to provide a method for detecting a weak magnetism with high sensitivity without using a bias magnetic field with a simple structure.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、酸化物超伝導薄膜の磁気感度と印加電
流値の関係を調べた結果、磁気感度が印加する電流値に
依存し、ある程度以上の印加電流を加えると磁気感度が
上ることを見出して、本発明を完成するに至った。
The present inventors have investigated the relationship between the magnetic sensitivity of the oxide superconducting thin film and the applied current value and found that the magnetic sensitivity depends on the applied current value, and that the magnetic sensitivity increases when an applied current of a certain level or more is applied. They have found and completed the present invention.

すなわち本発明は、物理的手法により作製した酸化物
超伝導多結晶薄膜を磁気センサとして用いて、磁界強さ
を測定するにあたり、該薄膜の結晶粒界を磁界感知部と
し、その薄膜の温度を臨界温度未満にし、かつ、その温
度における該薄膜の臨界電流値以上の電流を印加するこ
とを特徴とする磁界強さ測定方法である。
That is, the present invention uses an oxide superconducting polycrystalline thin film produced by a physical method as a magnetic sensor to measure the magnetic field strength. A magnetic field strength measuring method characterized by applying a current lower than the critical temperature and higher than the critical current value of the thin film at that temperature.

酸化物超伝導体は、セラミックスであるゆえに、絶縁
相である結晶粒界を有し、このために磁界が印加される
と抵抗が生じ、臨界電流密度が急激に低下する。この性
質を利用することにより、磁界の測定が可能になる。
Since the oxide superconductor is a ceramic, it has a crystal grain boundary which is an insulating phase. For this reason, when a magnetic field is applied, resistance is generated, and the critical current density sharply decreases. By utilizing this property, a magnetic field can be measured.

磁界の測定は、通常図−1に示すように、超伝導薄膜
のストリップに電流電極と電圧電極とを設けた4端子法
で行い、磁界によって電圧電極間に発生する抵抗による
電圧出力を測定する。薄膜の巾を調節することにより、
薄膜の臨界電流値(Ic)は適当な値、例えば0.2mA程度
に制御することができる。
The measurement of the magnetic field is usually performed by a four-terminal method in which a current electrode and a voltage electrode are provided on a superconducting thin film strip as shown in FIG. 1, and a voltage output is measured by a resistance generated between the voltage electrodes due to the magnetic field. . By adjusting the width of the thin film,
The critical current value (Ic) of the thin film can be controlled to an appropriate value, for example, about 0.2 mA.

この場合、薄膜に印加される電流が、臨界電流よりも
小さいときは、外部磁界が大きくないと、上記で説明し
た抵抗が発生しない。また、その温度における臨界電流
値の電流を印加した状態では、微弱磁界に対しての感度
が低く、微弱磁界の測定には、臨界電流よりも大きな電
流を薄膜に印加することが必要であり、しかもその印加
電流が臨界電流の10倍以上であるとき、感度が更に良好
である。
In this case, when the current applied to the thin film is smaller than the critical current, the above-described resistance does not occur unless the external magnetic field is large. In addition, when a current having a critical current value at that temperature is applied, the sensitivity to a weak magnetic field is low, and to measure a weak magnetic field, it is necessary to apply a current larger than the critical current to the thin film, Moreover, when the applied current is at least 10 times the critical current, the sensitivity is further improved.

図−2は、印加電流の臨界電流値に対する倍率を変え
て、磁場ゼロのときの出力電圧をベースとして、印加磁
場による出力電圧の変化を示したもので、微弱磁場に対
する磁気感度が高く、かつ、印加電流倍率が11〜100で
優れた磁気感度を示している。
FIG. 2 shows the change in the output voltage due to the applied magnetic field based on the output voltage when the magnetic field is zero by changing the magnification of the applied current with respect to the critical current value. The magnetic sensitivity to a weak magnetic field is high, and And an applied current magnification of 11 to 100 indicates excellent magnetic sensitivity.

また、微弱磁界に対する感度は、臨界電流密度にも依
存し、測定温度でのゼロ磁場における臨界電流密度が20
0A/cm2以下の超伝導膜が磁気感応素子として好ましい。
臨界電流密度の高い超伝導膜は粒界相が少なく、磁束が
捕捉されやすいために、かえって微弱磁界に対する感度
が低下すると考えられる。
The sensitivity to a weak magnetic field also depends on the critical current density.
A superconducting film of 0 A / cm 2 or less is preferable as the magnetically sensitive element.
It is considered that a superconducting film having a high critical current density has a small grain boundary phase and is apt to capture magnetic flux, so that the sensitivity to a weak magnetic field is rather lowered.

図−3、は各種の臨界電流密度の超伝導薄膜につい
て、77Kでその最高感度を示した印加電流倍率での磁気
感度を比較したもので、臨界電流密度(Jc)が100A/cm2
以下の薄膜で最高の磁気感度を示している。
Fig. 3 compares the magnetic sensitivities of the superconducting thin films of various critical current densities at the applied current magnification, which showed the highest sensitivity at 77K, and the critical current density (Jc) was 100 A / cm 2.
The following thin films show the highest magnetic sensitivity.

また、図−4は、臨界電流密度が4000A/cm2の超伝導
薄膜について、Ic=1.5mA、印加電流60mA(40倍)での
磁気抵抗効果を出力電圧で測定した結果を示し、印加磁
場が約1.5ガウスに達するまでは実質的に磁気抵抗効果
を示さず、それ以上の磁場に対しても磁気感度はあまり
高くない。
Fig. 4 shows the results of measuring the magnetoresistance effect of the superconducting thin film having a critical current density of 4000 A / cm 2 at an output voltage of Ic = 1.5 mA and an applied current of 60 mA (40 times). Shows substantially no magnetoresistance until it reaches about 1.5 gauss, and the magnetic sensitivity is not so high for magnetic fields above that.

超伝導薄膜の製造方法は、スパッタリング法、蒸着法
等の物理的手法により行なう。スパッタリング法により
薄膜を製造する際のスパッタリングターゲットの数は問
わない。
The superconducting thin film is manufactured by a physical method such as a sputtering method and a vapor deposition method. The number of sputtering targets for producing a thin film by a sputtering method is not limited.

冷媒として液体窒素(沸点77K)を用いる場合、その
沸点以上の臨界温度を具備する超伝導薄膜を用いて磁界
の強さを測定する。
When liquid nitrogen (boiling point 77K) is used as the refrigerant, the strength of the magnetic field is measured using a superconducting thin film having a critical temperature equal to or higher than the boiling point.

このような超伝導薄膜は、例えばBi系のBiaPbbSr1.00
CacCudOxでは、a,b,c,dが 0.5<a<1.2 b<1.0 0.6<c<1.2 1.4<d<2.0 の範囲のものが好ましい。
Such a superconducting thin film is, for example, Bi-based Bi a Pb b Sr 1.00
In Ca c Cu d O x , it is preferable that a, b, c, d are in the range of 0.5 <a <1.2 b <1.0 0.6 <c <1.2 1.4 <d <2.0.

Biは0.5より少ないと超伝導体を合成しにくく、1.2よ
り多いと磁気感応性が悪くなる。Pbは1.0より多いと膜
が溶融しやすいために、半導体相を生成しやすい。Caは
0.6より少ないと半導体相を生成し易く、1.2より多いと
110K相は生成するが、超伝導粒子間に絶縁相が多量に析
出してしまうために、超伝導電流のパスが妨害され、超
伝導体となりにくい。Cuは1.4より少ないと超伝導体を
合成しにくく、2.0より多いと膜が溶融しやすいため
に、半導体相を生成しやすい。
If Bi is less than 0.5, it is difficult to synthesize a superconductor, and if it is more than 1.2, the magnetic sensitivity is deteriorated. When Pb is more than 1.0, the film is easily melted, and thus a semiconductor phase is easily generated. Ca
If it is less than 0.6, a semiconductor phase is easily generated, and if it is more than 1.2,
Although a 110K phase is generated, a large amount of an insulating phase is precipitated between the superconducting particles, so that the path of the superconducting current is disturbed, and it is difficult to become a superconductor. If Cu is less than 1.4, it is difficult to synthesize a superconductor, and if it is more than 2.0, the film is easily melted, so that a semiconductor phase is easily generated.

また、Y−Ba−Cu−O系ではYBa2Cu3Ox、Tl−Ba−Ca
−Cu−O系ではTl2Ba2Ca2Cu3Oxであればよい。
In the Y-Ba-Cu-O system, YBa 2 Cu 3 O x , Tl-Ba-Ca
In -cu-O system may be a Tl 2 Ba 2 Ca 2 Cu 3 O x.

基板としては、MgO、SrTiO3、LaGaO3、LaAlO3などの
酸化物単結晶、絶縁物の緩衝層を設けたAg、Au、Pt、Cu
等の多結晶金属及びSi、CaAs等の半導体などが使用され
る。
Substrates include MgO, SrTiO 3 , LaGaO 3 , LaAlO 3 and other oxide single crystals, Ag, Au, Pt, Cu with an insulating buffer layer
And polycrystalline metals such as Si and CaAs.

また、スパッタリングや蒸着法におけるターゲット
は、酸化物、炭酸塩、硝酸塩などの無機化合物粉末やこ
れらの粉末を焼結させたセラミックス、又は金属単体合
金が用いられる。
In addition, as a target in sputtering or vapor deposition, inorganic compound powders such as oxides, carbonates, and nitrates, ceramics obtained by sintering these powders, or metal alloys are used.

作製された薄膜は、下記に示す温度範囲で熱処理をし
結晶化させる。
The produced thin film is crystallized by heat treatment in the following temperature range.

Bi−Pb−Sr−Ca−Cu−O系…820〜850 ℃ Bi−Sr−Ca−Cu−O系 …850〜880 ℃ Y−Ba−Cu−O系 …900〜1000℃ Tl−Ba−Ca−Cu−O系 …900〜1000℃ 熱処理の前に700〜800℃で2〜10時間あらかじめ仮焼
すると特性が安定する。熱処理後は、炉内で徐冷する。
Bi-Pb-Sr-Ca-Cu-O: 820-850 ° C Bi-Sr-Ca-Cu-O: 850-880 ° C Y-Ba-Cu-O: 900-1000 ° C Tl-Ba-Ca -Cu-O-based: 900-1000 ° C If calcined at 700-800 ° C for 2-10 hours before heat treatment, the characteristics will be stable. After the heat treatment, it is gradually cooled in the furnace.

〔作用〕[Action]

超伝導体は、その臨界温度以下では抵抗がゼロにな
り、磁気抵抗効果はある程度の磁界が印加されないと現
われないが、臨界電流値以上の電流を流した場合には、
バイアス磁界を印加しないでも超伝導体に抵抗が発生
し、この抵抗は微弱な外部磁界によっても高感度の磁気
抵抗効果を示す。
The superconductor has zero resistance below its critical temperature, and the magnetoresistance effect does not appear unless a certain magnetic field is applied, but when a current greater than the critical current value is passed,
Even without applying a bias magnetic field, a resistance is generated in the superconductor, and this resistance shows a highly sensitive magnetoresistance effect even with a weak external magnetic field.

この効果は、超伝導薄膜中の粒界相の存在によるもの
で、この粒界相の少ない高臨界電流密度の薄膜では、か
えって磁気抵抗効果による感度は小さくなる。
This effect is due to the existence of a grain boundary phase in the superconducting thin film. In a thin film having a high critical current density with a small grain boundary phase, the sensitivity due to the magnetoresistance effect is rather reduced.

また、本発明による磁気抵抗効果は、図−2からも明
らかなように、印加磁場が増大するにつれてその出力電
圧曲線が緩やかになるので、バイアス磁界の印加は感度
を低下させる作用を有する。
In the magnetoresistance effect according to the present invention, as is apparent from FIG. 2, the output voltage curve becomes gentle as the applied magnetic field increases, so that the application of the bias magnetic field has the effect of lowering the sensitivity.

〔実施例〕〔Example〕

実施例1〜15 スパッタリングターゲットとして、 Bi0.5Pb0.5Ox(Bi2O3とPbOの混合粉末) CaCu0.75Ox(CaCO3とCuOの950℃焼成粉末) SrCu0.75Ox(SrCO3とCuOの950℃焼成粉末) を用いて、MgO単結晶基板上に製膜した。各ターゲット
の堆積時間は以下の通りである。
Examples 1 to 15 As sputtering targets, Bi 0.5 Pb 0.5 O x (mixed powder of Bi 2 O 3 and PbO) CaCu 0.75 O x (950 ° C. baked powder of CaCO 3 and CuO) SrCu 0.75 O x (SrCO 3 and CuO 950 ° C. baked powder) to form a film on an MgO single crystal substrate. The deposition time for each target is as follows.

Bi0.5Pb0.50Ox…6秒 CaCu0.75Ox…58秒 SrCu0.75Ox…34秒 この堆積を1層として200回積層し、約1μmの薄膜
を得た、得られた薄膜の組成をEPMAにより分析した結
果、(Bi+Pb)1.00Sr1.00Ca0.96Cu1.95Oxであった。こ
れを、780℃で2時間仮焼後、熱処理温度をそれぞれ832
℃、835℃及び839℃として110時間熱処理し、熱処理温
度の異なる3種の薄膜A〜Cを得た。それぞれの臨界温
度(Tc)、臨界電流密度(Jc)及び77Kでの臨界電流値
(Ic)は、 薄膜 熱処理温度 Tc Jc Ic A 832℃ 80K 14A/cm2 0.2mA B 836℃ 93K 7A/cm2 0.2mA C 839℃ 100K 7A/cm2 0.2mA であった。ただし、臨界電流値(Ic)は、センサとして
の各薄膜の膜巾を調節して、0.2mAに制御したものであ
る。
Bi 0.5 Pb 0.50 O x … 6 seconds CaCu 0.75 O x … 58 seconds SrCu 0.75 O x … 34 seconds This deposit was laminated 200 times to obtain a thin film of about 1 μm. The composition of the obtained thin film was EPMA. As a result of analysis by, it was (Bi + Pb) 1.00 Sr 1.00 Ca 0.96 Cu 1.95 O x . This was calcined at 780 ° C for 2 hours, and the heat treatment temperature was set to 832
C., 835.degree. C. and 839.degree. C. for 110 hours to obtain three kinds of thin films A to C having different heat treatment temperatures. The critical temperature (Tc), critical current density (Jc) and critical current value (Ic) at 77K are as follows: Thin film heat treatment temperature Tc Jc Ic A 832 ° C 80K 14A / cm 2 0.2mA B 836 ° C 93K 7A / cm 2 0.2 mA C 839 ° C 100K 7 A / cm 2 0.2 mA. However, the critical current value (Ic) is controlled to 0.2 mA by adjusting the film width of each thin film as a sensor.

得られた薄膜の磁気感度を4端子法で、印加電流を変
化させて測定した(0.4〜30mA)。なお、測定は77Kで行
なった。磁気感度は、薄膜に直流電流を流した状態で、
磁界を印加すると(0〜2ガウス)、薄膜の抵抗値が増
加する。この抵抗値の増加は、抵抗により生じた出力電
圧の増加量で評価した。すなわち、測定結果はμV/ガウ
スで表され、この値が大きいほど磁気感度が良好なこと
を示す。なお、測定電圧の電極間の長さは2mmとした。
各薄膜での測定結果を表−1〜3に示す。
The magnetic sensitivity of the obtained thin film was measured by a four-terminal method while changing the applied current (0.4 to 30 mA). The measurement was performed at 77K. The magnetic sensitivity is measured with a DC current flowing through the thin film.
When a magnetic field is applied (0-2 Gauss), the resistance of the thin film increases. The increase in the resistance value was evaluated based on the increase in the output voltage caused by the resistance. That is, the measurement result is expressed in μV / Gauss, and a larger value indicates better magnetic sensitivity. The length between the electrodes at the measurement voltage was 2 mm.
Tables 1 to 3 show the measurement results for each thin film.

なお、実施例11〜15については、印加磁場に対する出
力電圧の変化曲線を図−2に示した。
In addition, about Examples 11-15, the change curve of the output voltage with respect to the applied magnetic field was shown in FIG.

実施例16〜19、比較例1〜2 スパッタリングターゲットとして、 Bi0.5Pb0.5Ox(Bi2O3とPbOの混合粉末) CaCu0.75Ox(CaCO3とCuOの950℃焼成粉末) SrCu0.75Ox(SrCO3とCuOの950℃焼成粉末) を用いて、MgO単結晶基板上に製膜した。各ターゲット
の堆積時間は以下の通りである。
Examples 16 to 19, Comparative Examples 1 and 2 Bi 0.5 Pb 0.5 O x (mixed powder of Bi 2 O 3 and PbO) CaCu 0.75 O x (a 950 ° C. baked powder of CaCO 3 and CuO) as a sputtering target SrCu 0.75 O x (SrCO 3 and CuO calcined powder at 950 ° C.) was used to form a film on a MgO single crystal substrate. The deposition time for each target is as follows.

Bi0.5Pb0.50Ox…6秒 CaCu0.75Ox…58秒 SrCu0.75Ox…34秒 この堆積を1層として400回積層し、約2μmの薄膜
を得た、得られた薄膜の組成をEPMAにより分析した結
果、(Bi+Pb)1.00Sr1.00Ca0.96Cu1.95Oxであった。こ
れを、780℃で2時間仮焼後、815〜844℃で110時間熱処
理した。
Bi 0.5 Pb 0.50 O x … 6 seconds CaCu 0.75 O x … 58 seconds SrCu 0.75 O x … 34 seconds This deposit was laminated 400 times to obtain a thin film of about 2 μm. The composition of the obtained thin film was EPMA. As a result of analysis by, it was (Bi + Pb) 1.00 Sr 1.00 Ca 0.96 Cu 1.95 O x . This was calcined at 780 ° C for 2 hours and then heat-treated at 815 to 844 ° C for 110 hours.

熱処理後、得られた薄膜の磁気感度を77Kで4端子法
により測定間隔2mmで測定した。
After the heat treatment, the magnetic sensitivity of the obtained thin film was measured at 77 K by a four-terminal method at a measurement interval of 2 mm.

各薄膜について測定した抵抗率の温度変化は図−5の
とおりであり、磁気感度の測定結果を表−4に示す。
The temperature change of the resistivity measured for each thin film is as shown in FIG. 5, and the measurement results of the magnetic sensitivity are shown in Table-4.

表−1〜4の結果から明らかなように、本発明により
0.1μVオーダーまで検出することにより、外部磁界を1
0-5ガウスオーダーの感度で測定することができる。
As is clear from the results of Tables 1 to 4, according to the present invention,
By detecting up to the order of 0.1 μV,
0 can -5 measured at a sensitivity of Gaussian order.

〔発明の効果〕 本発明によれば、臨界電流値のより大きな電流を超伝
導体に印加することにより、10-5ガウスオーダーの高い
磁気感度をもって微弱磁界の強さを安定して測定するこ
とができる。
[Effects of the Invention] According to the present invention, by applying a current having a larger critical current value to a superconductor, it is possible to stably measure the intensity of a weak magnetic field with a high magnetic sensitivity of the order of 10 -5 Gauss. Can be.

また、バイアス磁界を印加していないので、地磁気を
加味した絶対磁気を捕捉することが可能である。
Further, since no bias magnetic field is applied, it is possible to capture absolute magnetism in consideration of terrestrial magnetism.

【図面の簡単な説明】[Brief description of the drawings]

図−1は、本発明で磁場測定に用いた4極子法による磁
気センサの概念図である。 図−2は、印加電流の臨界電流値に対する倍率を変え
て、磁場ゼロのときの出力電圧をベースとする印加磁場
による出力電圧の変化曲線である。 図−3は、各種の臨界電流密度の超伝導薄膜について、
77Kでその最高感度を示した印加電流倍率での磁気感度
を比較したものである。 図−4は、臨界電流密度が4000A/cm2の超伝導薄膜につ
いての出力電圧の変化曲線である。 図−5は、各種超伝導薄膜の抵抗率の温度変化を示す。
FIG. 1 is a conceptual diagram of a quadrupole magnetic sensor used for measuring a magnetic field in the present invention. FIG. 2 is a change curve of the output voltage due to the applied magnetic field based on the output voltage when the magnetic field is zero by changing the magnification of the applied current with respect to the critical current value. Figure 3 shows superconducting thin films of various critical current densities.
It is a comparison of the magnetic sensitivity at the applied current magnification which showed the highest sensitivity at 77K. FIG. 4 is a change curve of an output voltage for a superconducting thin film having a critical current density of 4000 A / cm 2 . FIG. 5 shows the temperature change of the resistivity of various superconducting thin films.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−159589(JP,A) 特開 昭64−82576(JP,A) 特開 平2−264879(JP,A) 特開 昭63−233387(JP,A) 特開 平1−286978(JP,A) 特開 平2−205784(JP,A) 特開 平1−250875(JP,A) 特開 平1−138770(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 33/00 - 33/18 H01L 39/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-159589 (JP, A) JP-A-64-82576 (JP, A) JP-A-2-264879 (JP, A) JP-A 63-82 233387 (JP, A) JP-A-1-286978 (JP, A) JP-A-2-205784 (JP, A) JP-A-1-250875 (JP, A) JP-A-1-138770 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01R 33/00-33/18 H01L 39/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物理的手法により作製した酸化物超伝導多
結晶薄膜を磁気センサとして用いて、磁界強さを測定す
るにあたり、該薄膜の結晶粒界を磁界感知部とし、その
薄膜の温度を臨界温度未満にし、かつ、その温度におけ
る該薄膜の臨界電流値以上の電流を印加することを特徴
とする磁界強さ測定方法。
When a magnetic field strength is measured using an oxide superconducting polycrystalline thin film prepared by a physical method as a magnetic sensor, a crystal grain boundary of the thin film is used as a magnetic field sensing portion, and the temperature of the thin film is measured. A method for measuring a magnetic field strength, comprising applying a current lower than the critical temperature and not less than the critical current value of the thin film at that temperature.
【請求項2】測定温度における臨界電流密度が200A/cm2
以下の薄膜を用いることを特徴とする請求項(1)に記
載の方法。
2. The critical current density at the measurement temperature is 200 A / cm 2.
The method according to claim 1, wherein the following thin film is used.
JP2237195A 1990-09-10 1990-09-10 Magnetic field strength measurement method Expired - Lifetime JP3005628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237195A JP3005628B2 (en) 1990-09-10 1990-09-10 Magnetic field strength measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237195A JP3005628B2 (en) 1990-09-10 1990-09-10 Magnetic field strength measurement method

Publications (2)

Publication Number Publication Date
JPH04118572A JPH04118572A (en) 1992-04-20
JP3005628B2 true JP3005628B2 (en) 2000-01-31

Family

ID=17011781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237195A Expired - Lifetime JP3005628B2 (en) 1990-09-10 1990-09-10 Magnetic field strength measurement method

Country Status (1)

Country Link
JP (1) JP3005628B2 (en)

Also Published As

Publication number Publication date
JPH04118572A (en) 1992-04-20

Similar Documents

Publication Publication Date Title
Takagi et al. Superconductor-to-nonsuperconductor transition in (La 1− x Sr x) 2 CuO 4 as investigated by transport and magnetic measurements
JP2907832B2 (en) Superconducting device and manufacturing method thereof
JP3005628B2 (en) Magnetic field strength measurement method
Wire et al. Proximity-coupled weak links in YBCO films
Yamasaki et al. Critical current density of high‐quality Bi2Sr2Ca2Cu3O x thin films prepared by metalorganic chemical‐vapor deposition
JP2936125B2 (en) Magnetic bearing detection method
Shi et al. Superconducting transition broadening and flux-creep activation energy in Tl2Ca2Ba2Cu3Ox
EP0350959B1 (en) An apparatus and method for magnetic measurement using a superconductive magneto-resistive device
Rowell The status, recent progress and promise of superconducting materials for practical applications
JP2893034B2 (en) High sensitivity magnetic sensitive element
US5377141A (en) Superconducting magnetic memory device having intentionally induced non-superconducting regions
JP2936126B2 (en) Magnetic sensor capable of detecting magnetic orientation
JP2501035B2 (en) Superconducting thin film
Liu et al. Jc enhancement of Bi2Sr2CaCu2O8/Ag thick films melt-grown under an elevated magnetic field (0–10 T)
RU2221314C1 (en) Weak magnetic field sensor
JPH0567812A (en) High sensitive magneto sensitive element
JP3379533B2 (en) Method for manufacturing superconducting device
JPH0567817A (en) Magneto-sensitive element
Yokoyama et al. Flux density distribution in Bi2Sr2CaCu2Ox and its critical current
Tiefel et al. High transport Jc and magnetization in textured Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors
Yamashita et al. Grain boundary Josephson devices by YBaCuO films and 77 K operations
JPH05121789A (en) Superconductive magnetic sensing element
Glowacki Critical current anisotropy of Tl-1223 superconductors
JP2798370B2 (en) Copper oxide superconducting material
JPH04274379A (en) Magnetic sensitive element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees