JPH04118572A - Measuring process of magnetic field intensity - Google Patents

Measuring process of magnetic field intensity

Info

Publication number
JPH04118572A
JPH04118572A JP2237195A JP23719590A JPH04118572A JP H04118572 A JPH04118572 A JP H04118572A JP 2237195 A JP2237195 A JP 2237195A JP 23719590 A JP23719590 A JP 23719590A JP H04118572 A JPH04118572 A JP H04118572A
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
sensitivity
temperature
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2237195A
Other languages
Japanese (ja)
Other versions
JP3005628B2 (en
Inventor
Hiromasa Shimojima
浩正 下嶋
Mamoru Ishii
守 石井
Keizo Tsukamoto
塚本 惠三
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP2237195A priority Critical patent/JP3005628B2/en
Publication of JPH04118572A publication Critical patent/JPH04118572A/en
Application granted granted Critical
Publication of JP3005628B2 publication Critical patent/JP3005628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To measure the intensity of a weak magnetic field stably at high sensitivity to magnetism by setting the temperature of a thin film at less than a critical temperature, and applying a current more than a critical current value for the thin film at that temperature. CONSTITUTION:A film is formed on a substrate of MgO monocrystals by using 1) Bi0.5Pb0.5Ox (mixed powder of Bi2O3 and PbO), 2) CaCu0.75Ox (950 deg.C baked powder of CaCO3 and CuO), 3) SrCu0.75Ox (950 deg.C baked powder of SrCO3 and CuO) as sputtering target. Such a deposition layer as a single layer is laminated for 200 times to obtain a thin film of about 1mum. This is temporarily baked for two hours at 780 deg.C, and heat processes are applied for 110 hours at 832 deg.C, 835 deg.C, 839 deg.C respectively, so three sorts of thin films A - C of different heat process temperatures are obtained. The sensitivity of the obtained thin film to magnetism is measured in a four-terminal method by changing an applied current. By detecting to the order of 0.1muV in this method, an external magnetic field can be measured at a sensitivity to the order of 10<-5> gauss.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、1iii界強さ測定方法に関し、特にB1−
Pb−3r−Ca−Cu−0系、 B1−3r−Ca−
Cu−0系、Y−Ba−Cu−0系、Tl−Ba−Ca
−Cu−0系などの酸化物超伝導多結晶薄膜を磁気セン
サとして用い、その磁気抵抗効果を利用した磁気強さ測
定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for measuring the field strength of B1-1.
Pb-3r-Ca-Cu-0 system, B1-3r-Ca-
Cu-0 series, Y-Ba-Cu-0 series, Tl-Ba-Ca
The present invention relates to a method for measuring magnetic strength using a magnetoresistance effect using an oxide superconducting polycrystalline thin film such as -Cu-0 system as a magnetic sensor.

[従来の技術〕 従来より磁界強さの測定方法としては、微弱な磁界を測
定する方法とそれほど弱くない磁界を測定する方法の2
つに大きく分けられる。
[Prior art] Conventionally, there are two methods for measuring magnetic field strength: a method of measuring a weak magnetic field and a method of measuring a not-so-weak magnetic field.
It can be broadly divided into

微弱な磁界用の高感度磁気センサとしては、超伝導量子
干渉効果を利用した5QUIDが知られており、10−
”ガウス程度の感度がある。
As a highly sensitive magnetic sensor for weak magnetic fields, 5QUID, which utilizes the superconducting quantum interference effect, is known.
``It has a sensitivity of Gaussian level.

一方、1ガウス程度以上の磁界強さを測定するには、半
導体又は磁性体の磁気抵抗効果を利用した方式による磁
気センサが使われていた。半導体としてはInSb、 
InAsなど、磁性体としてはFe−Niパーマロイ、
 CoNiなどが使われていた。
On the other hand, to measure magnetic field strengths of about 1 Gauss or more, magnetic sensors have been used that utilize the magnetoresistive effect of semiconductors or magnetic materials. As a semiconductor, InSb,
Magnetic materials such as InAs include Fe-Ni permalloy,
CoNi etc. were used.

ここでいう磁気抵抗効果とは、磁界の強さが増加するに
伴い抵抗が増加する現象である。
The magnetoresistive effect referred to here is a phenomenon in which resistance increases as the strength of the magnetic field increases.

最近に至り、セラミックス超伝導体を用いた磁気抵抗素
子が注目され1例えば特開平1−138770号公報に
は、結晶粒界を有する超伝導材料をその臨界温度以下の
温度で、その結晶粒間の弱結合状態が破られる磁界より
わずかに大きいバイアス磁界を印加した状態で、外部の
微弱磁界を磁気抵抗効果によって測定する磁界検出装置
が提案されている。
Recently, magnetoresistive elements using ceramic superconductors have attracted attention. For example, in Japanese Patent Application Laid-Open No. 1-138770, a superconducting material having crystal grain boundaries is A magnetic field detection device has been proposed that measures an external weak magnetic field using the magnetoresistive effect while applying a bias magnetic field that is slightly larger than the magnetic field that breaks the weak coupling state.

〔発明が解決しようとする課題1 前記の方法中5QUIDは構造が複雑で価格及び維持費
が高く、半導体や磁性体を用いた磁気センサは感度が低
いという問題点があった。また、特開平1−13877
0号公報で提案された方法は、感度の点で優れているが
、バイアス磁界を必要とし、磁気変化の測定には有用で
あるとしても、1微弱磁気の検出には相当量のバイアス
磁気の存在が問題となり得る。
[Problem to be Solved by the Invention 1] Among the above methods, QUID has a complicated structure, high price and maintenance costs, and magnetic sensors using semiconductors or magnetic materials have low sensitivity. Also, JP-A-1-13877
The method proposed in Publication No. 0 is superior in terms of sensitivity, but requires a bias magnetic field, and although it is useful for measuring magnetic changes, it requires a considerable amount of bias magnetic field to detect 1 weak magnetism. Existence can be a problem.

本発明は、簡単な構造で、しかもバイアス磁界を用いず
に純粋に微弱磁気を高感度で検出する方法を提供しよう
とするものである。
The present invention aims to provide a method for detecting pure weak magnetism with high sensitivity using a simple structure and without using a bias magnetic field.

〔課題を解決するための手段1 本発明者らは、酸化物超伝導薄膜の磁気感度と印加11
1流値の関係を調べた結果、磁気感度が印加する電流値
に依存し、ある程度以上の印加電流を加えると磁気感度
が上ることを見出して1本発明を完成するに至った。
[Means for Solving the Problems 1 The present inventors have discovered the magnetic sensitivity and application of oxide superconducting thin films 11
As a result of investigating the relationship between current values, the present inventors found that magnetic sensitivity depends on the applied current value, and that magnetic sensitivity increases when an applied current above a certain level is applied, leading to the completion of the present invention.

すなわち本発明は、物理的手法により作製した酸化物超
伝導多結晶薄膜を磁気センサとして用いて、磁界強さを
測定するにあたり、該薄膜の温度を臨界温度未満にし、
かつ、その温度における該薄膜の臨界電流値以上の電流
を印加することを特徴とする磁界強さ測定方法である。
That is, the present invention uses an oxide superconducting polycrystalline thin film produced by a physical method as a magnetic sensor to measure magnetic field strength by lowering the temperature of the thin film below a critical temperature,
The magnetic field strength measuring method is characterized in that a current higher than the critical current value of the thin film at that temperature is applied.

酸化物超伝導体は、セラミックスであるゆえに、絶縁相
である結晶粒界を有し、このために磁界が印加されると
抵抗が生じ、臨界電流密度が急激に低下する。この性質
を利用することにより、磁界の測定が可能になる。
Since oxide superconductors are ceramics, they have crystal grain boundaries that are insulating phases, and therefore, when a magnetic field is applied, resistance occurs and the critical current density sharply decreases. By utilizing this property, it becomes possible to measure magnetic fields.

磁界の測定は、通常図−1に示すように、超伝導薄膜の
ストリップに電流電極と電圧電極とを設けた4端子法で
行い、磁界によって電圧電極間に発生する抵抗による電
圧出力を測定する。薄膜の巾を調節することにより、薄
膜の臨界電流値(Iclは適当な値、例えば0.2mA
程度に制御することができる。
As shown in Figure 1, magnetic fields are usually measured using the four-terminal method in which current electrodes and voltage electrodes are provided on a strip of superconducting thin film, and the voltage output due to the resistance generated between the voltage electrodes due to the magnetic field is measured. . By adjusting the width of the thin film, the critical current value (Icl) of the thin film can be adjusted to an appropriate value, for example 0.2 mA.
It can be controlled to a certain degree.

この場合、薄膜に印加される電流が、臨界電流よりも小
さいときは、外部磁界が大きくないと、上記で説明した
抵抗が発生しない、また、その温度における臨界1!流
値の電流を印加した状態では、微弱磁界に対しての感度
が低く、微弱磁界の測定には、臨界電流よりも大きな電
流を薄膜に印加することが必要であり、しかもその印加
電流が臨界電流の10倍以上であるとき、感度が更に良
好である。
In this case, when the current applied to the thin film is smaller than the critical current, the resistance explained above will not occur unless the external magnetic field is large, and the critical 1! When a current with a current value is applied, the sensitivity to a weak magnetic field is low, and to measure a weak magnetic field, it is necessary to apply a current larger than the critical current to the thin film, and the applied current is When the current is 10 times or more, the sensitivity is even better.

図−2は、印加電流の臨界電流値に対する倍率を変えて
、磁場ゼロのときの出力電圧をベースとして、印加磁場
による出力電圧の変化を示したもので、微弱磁場に対す
る磁気感度が高く、がっ、印加電流倍率が11〜100
で優れた磁気感度を示している。
Figure 2 shows the change in output voltage due to the applied magnetic field, based on the output voltage when the magnetic field is zero, by changing the magnification of the applied current to the critical current value. The applied current magnification is 11 to 100.
It shows excellent magnetic sensitivity.

また、微弱磁界に対する感度は、臨界電流密度にも依存
し、測定温度でのゼロ磁場における臨界電流密度が20
0A/cm”以下の超伝導膜が磁気感応素子として好ま
しい、臨界電流密度の高い超伝導膜は粒界相が少なく、
磁束が捕捉されやすいために、かえって微弱磁界に対す
る感度が低下すると考えられる。
In addition, the sensitivity to weak magnetic fields also depends on the critical current density, and the critical current density in zero magnetic field at the measurement temperature is 20
A superconducting film of 0 A/cm" or less is preferable as a magnetic sensing element. A superconducting film with a high critical current density has few grain boundary phases,
It is thought that because the magnetic flux is easily captured, the sensitivity to weak magnetic fields is rather reduced.

図−3、は各種の臨界電流密度の超伝導薄膜について、
77にでその最高感度を示した印加電流倍率での磁気感
度を比較したもので、臨界電流密度(Jclが100A
/cm”以下の薄膜で最高の磁気感度を示している。
Figure 3 shows superconducting thin films with various critical current densities.
This is a comparison of the magnetic sensitivity at the applied current magnification that showed the highest sensitivity in 77.
The highest magnetic sensitivity is shown for thin films of less than /cm".

また、図−4は、臨界電流密度が400OA/c■2の
超伝導薄膜について、Ic=1.5mA 、印加t4流
60mA(40倍)での磁気抵抗効果を出力電圧で測定
した結果を示し、印加磁場が約1.5ガウスに達するま
では実質的に磁気抵抗効果を示さず、それ以上の磁場に
対しても磁気感度はあまり高(ない。
In addition, Figure 4 shows the results of measuring the magnetoresistive effect in terms of output voltage for a superconducting thin film with a critical current density of 400 OA/c2 at Ic = 1.5 mA and an applied t4 current of 60 mA (40 times). , it shows virtually no magnetoresistive effect until the applied magnetic field reaches about 1.5 Gauss, and its magnetic sensitivity is not very high even for magnetic fields higher than that.

超伝導薄膜の製造方法は、スパッタリング法。The method used to manufacture superconducting thin films is sputtering.

蒸着法等の物理的手法により行なう、スパッタリング法
により薄膜を製造する際のスパッタリングターゲットの
数は問わない。
The number of sputtering targets is not limited when manufacturing a thin film by a sputtering method, which is performed by a physical method such as a vapor deposition method.

冷媒として液体窒素(沸点77K)を用いる場合、その
沸点以上の臨界温度を具備する超伝導薄膜を用いて磁界
の強さを測定する。
When liquid nitrogen (boiling point 77K) is used as a refrigerant, the strength of the magnetic field is measured using a superconducting thin film having a critical temperature equal to or higher than the boiling point.

このような超伝導薄膜は、例えばBi糸のBiaPbm
Sr+、 oocaccuaLでは、 a、b、c、d
が0.5 < a <1.2 b  <1.0 0J  < c <1.2 1.4  < d <2.0 の範囲のものが好ましい。
Such a superconducting thin film is, for example, BiaPbm made of Bi thread.
Sr+, oocaccuaL, a, b, c, d
is preferably in the following ranges: 0.5 < a < 1.2 b < 1.0 0 J < c < 1.2 1.4 < d < 2.0.

Biは0.5より少ないと超伝導体を合成しに(く、1
.2より多いと磁気感応性が悪くなる。Pbは1.0よ
り多いと膜が溶融しやすいために、半導体相を生成しや
すい、 Caは0.6より少ないと半導体相を生成し易
く、 1.2より多いとILOK相は生成するが、超伝
導粒子間に絶縁相が多量に析出してしまうために、超伝
導電流のパスが妨害され、超伝導体となりにくい、 C
uは1.4より少ないと超伝導体を合成しにくく、2.
0より多いと膜が溶融しやすいために、半導体相を生成
しやすい。
If Bi is less than 0.5, it will be difficult to synthesize a superconductor.
.. When the number is more than 2, magnetic sensitivity deteriorates. When Pb is more than 1.0, the film tends to melt and a semiconductor phase is easily generated. When Ca is less than 0.6, a semiconductor phase is easily generated, and when it is more than 1.2, an ILOK phase is generated. , because a large amount of insulating phase precipitates between superconducting particles, the path of superconducting current is obstructed, making it difficult to become a superconductor, C
If u is less than 1.4, it will be difficult to synthesize a superconductor; 2.
When the amount is more than 0, the film tends to melt and a semiconductor phase tends to be generated.

また、Y−Ba−Cu−0系ではYBazCuxO−、
Tj−BaCa−Cu−0系ではTjJazCaiCu
Jmであればよい。
In addition, in the Y-Ba-Cu-0 system, YBazCuxO-,
In the Tj-BaCa-Cu-0 system, TjJazCaiCu
Jm is fine.

基板としては、MgO、5rTiOz、LaGa0i、
Laue。
As the substrate, MgO, 5rTiOz, LaGa0i,
Laue.

などの酸化物単結晶、絶縁物の緩衝層を設けたAg、 
Au、 Pt、 Cu等の多結晶金属及びSi、 Ga
As等の半導体などが使用される。
Oxide single crystals such as Ag with an insulating buffer layer,
Polycrystalline metals such as Au, Pt, Cu and Si, Ga
A semiconductor such as As is used.

また、スパッタリングや蒸着法に15ケるターゲットは
、酸化物、炭酸塩、硝酸塩などの無機化合物粉末やこれ
らの粉末を焼結させたセラミックス、又は金属単体合金
が用いられる。
Further, as targets for sputtering and vapor deposition, powders of inorganic compounds such as oxides, carbonates, and nitrates, ceramics made by sintering these powders, or metal alloys are used.

作製された薄膜は、下記に示す温度範囲で熱処理をし結
晶化させる。
The produced thin film is heat-treated in the temperature range shown below to crystallize it.

B1−Pb−5r−Ca−Cu−0系−820〜850
℃B1−5r−Ca−Cu−0系・850〜880℃Y
−Ba−Cu−0系  −900〜1000℃TトBa
−Ca−Cu−0系 −900〜1000℃熱処理の前
に700〜800℃で2〜lO時間あらかじめ仮焼する
と特性が安定する。熱処理後は、炉内で徐冷する。
B1-Pb-5r-Ca-Cu-0 series-820-850
℃B1-5r-Ca-Cu-0 system・850~880℃Y
-Ba-Cu-0 system -900~1000℃T Ba
-Ca-Cu-0 system - Properties will be stabilized if pre-calcined at 700-800°C for 2-10 hours before heat treatment at 900-1000°C. After heat treatment, it is slowly cooled in a furnace.

[作用〕 超伝導体は、その臨界温度以下では抵抗がゼロになり、
磁気抵抗効果はある程度の磁界が印加されないと現われ
ないが、臨界電流値以上の電流を流した場合には、バイ
アス磁界を印加しないでも超伝導体に抵抗が発生し、こ
の抵抗は微弱な外部磁界によっても高感度の磁気抵抗効
果を示す。
[Operation] A superconductor has zero resistance below its critical temperature;
The magnetoresistive effect does not appear unless a certain degree of magnetic field is applied, but if a current exceeding the critical current value is passed, resistance will occur in the superconductor even if no bias magnetic field is applied, and this resistance will be caused by a weak external magnetic field. It also shows a highly sensitive magnetoresistive effect.

この効果は、超伝導薄膜中の粒界相の存在によるもので
、この粒界相の少ない高臨界電流密度の薄膜では、かえ
って磁気抵抗効果による感度は小さくなる。
This effect is due to the presence of a grain boundary phase in the superconducting thin film, and in a thin film with a high critical current density with few grain boundary phases, the sensitivity due to the magnetoresistive effect is rather reduced.

また、本発明による磁気抵抗効果は、図−2がらも明ら
かなように、印加磁場が増大するにつれてその出力電圧
曲線が緩やかになるので、バイアス磁界の印加は感度を
低下させる作用を有する。
Furthermore, as is clear from FIG. 2, the magnetoresistive effect according to the present invention has an output voltage curve that becomes gentler as the applied magnetic field increases, so that the application of a bias magnetic field has the effect of lowering the sensitivity.

〔実施例1 実施例1〜I5 スパッタリングターゲットとして、 ■Bio、 5Pbo、 so++ fBizOiとp
boの混合粉末)■CaCuo、 ys低fCaCO−
とCuOの950 ”C焼成粉末)■5rCuo、 ?
IL fsrcOiとCuOの950 ’C焼成粉末)
を用いて、MgO単結晶基板上に製膜した。各ターゲッ
トの堆積時間は以下の通りである。
[Example 1 Examples 1 to I5 As sputtering targets, ■Bio, 5Pbo, so++ fBizOi and p
mixed powder of bo) ■CaCuo, ys low fCaCO-
and CuO 950 “C fired powder) ■5rCuo, ?
950'C calcined powder of IL fsrcOi and CuO)
was used to form a film on an MgO single crystal substrate. The deposition time for each target is as follows.

■Blo、 1lPbo、 sad、 −” 6秒■C
aCuo、 ysO,−58秒 ■5rCua、 tsO,−34秒 この堆積を1層として200回積層し、約1μ−の薄膜
を得た、得られた薄膜の組成をEPMAにより分析した
結果、(Bi+Pbl +、 oosrl、 ooca
a、 *aCu+、 *sOmであった。これを、78
0℃で2時間仮焼後、熱処理温度をそれぞれ832℃、
835℃及び839℃として110時間熱処理し、熱処
理温度の異なる3種の薄HA−Cを得た。それぞれの臨
界温度(Tc)、臨界電流密度1Jcl及び77にでの
臨界電流値flclは、薄膜 熱処理温度  Tc  
 Jc    IcA332℃  80K  14A/
am”  0.2mAB       836℃   
  93K     7A/c+w”   0.2mA
C839℃    100K     7A/am” 
  0.2s+Aであった。ただし、臨界電流値fIc
lは、センサとしての各薄膜の膜中を調節して、0.2
■Aに制御したものである。
■Blo, 1lPbo, sad, -” 6 seconds ■C
aCuo, ysO, -58 seconds 5rCua, tsO, -34 seconds This deposition was laminated 200 times as one layer to obtain a thin film of approximately 1 μ-.As a result of analyzing the composition of the obtained thin film by EPMA, it was found that (Bi+Pbl +, oosrl, ooca
a, *aCu+, *sOm. This is 78
After calcination at 0℃ for 2 hours, the heat treatment temperature was changed to 832℃ and 832℃, respectively.
Heat treatment was performed at 835°C and 839°C for 110 hours to obtain three types of thin HA-C with different heat treatment temperatures. The respective critical temperature (Tc), critical current density 1Jcl, and critical current value flcl at 77 are determined by the thin film heat treatment temperature Tc
Jc IcA332℃ 80K 14A/
am" 0.2mAB 836℃
93K 7A/c+w” 0.2mA
C839℃ 100K 7A/am”
It was 0.2s+A. However, critical current value fIc
l is adjusted to 0.2 in each thin film as a sensor.
■It is controlled by A.

得られた薄膜の磁気感度を4端子法で、印加電流を変化
させて測定した(0.4〜30a+A) 、なお、測定
は77にで行なった。磁気感度は、薄膜に直流電流を流
した状態で、磁界を印加すると(0〜2ガウス)、薄膜
の抵抗値が増加する。この抵抗値の増加は、抵抗により
生じた出力電圧の増加量で評価した。すなわち、測定結
果はμV/ガウスで表され、この値が大きいほど磁気感
度が良好なことを示す、なお、測定電圧の電極間の長さ
は2■寵とした。各薄膜での測定結果を表−1〜3に示
す。
The magnetic sensitivity of the obtained thin film was measured by a four-terminal method while changing the applied current (0.4 to 30A+A). Regarding magnetic sensitivity, when a magnetic field is applied (0 to 2 Gauss) while a direct current is flowing through the thin film, the resistance value of the thin film increases. This increase in resistance value was evaluated by the amount of increase in output voltage caused by the resistance. That is, the measurement results are expressed in μV/Gauss, and the larger the value, the better the magnetic sensitivity.The length between the electrodes for the measurement voltage was set to 2. The measurement results for each thin film are shown in Tables 1 to 3.

なお、実施例11〜15については、印加磁場に対する
出力電圧の変化曲線を図−2に示した。
In addition, regarding Examples 11 to 15, the change curve of the output voltage with respect to the applied magnetic field is shown in FIG.

表−1薄膜A (Tc:80に、 Jc:14A/cm
”1表−2 薄膜B (Tc:93に、 JCニアA/CI+”1表
−3 薄膜C(Tc:100K 、 JcニアA/cm21実
施例16〜19、比較例1〜2 スパッタリングターゲットとして、 ■Bla、 5Pbo、 sO居Bi、O,とpboの
混合粉末)■CaCuo、 tsL fcacOzとC
uOの950℃焼成粉末)■5rCuo、 750m+
 (SrCOiとCuOの950℃焼成粉末)を用いて
、MgO単結晶基板上に製膜した。各ターゲットの堆積
時間は以下の通りである。
Table-1 Thin film A (Tc: 80, Jc: 14A/cm
"1 Table-2 Thin film B (Tc: 93, JC near A/CI+"1 Table-3 Thin film C (Tc: 100K, Jc near A/cm21 Examples 16-19, Comparative examples 1-2 As a sputtering target, ■Mixed powder of Bla, 5Pbo, sO Bi, O, and pbo) ■CaCuo, tsL fcacOz and C
uO 950℃ calcined powder)■5rCuo, 750m+
(SrCOi and CuO powder fired at 950°C) was used to form a film on an MgO single crystal substrate. The deposition time for each target is as follows.

■Bio、 5Pbo、 5ons−6秒■CaCuo
、 t、0m−58秒 ■5rCuo、 ysO++=−34秒この堆積を1層
として400回積層し、約2μ腸の薄膜を得た。得られ
た薄膜の組成をEPMAにより分析した結果、fB1+
Pt1l +、 oosr+ oocao、 5scu
+、 *sOxであった。これを、780℃で2時間仮
焼後、 815〜844℃で110時間熱処理した。
■Bio, 5Pbo, 5ons-6 seconds■CaCuo
, t, 0 m - 58 seconds ■ 5 rCuo, ysO++ = -34 seconds This deposition was made into one layer and laminated 400 times to obtain a thin film of about 2μ intestine. As a result of analyzing the composition of the obtained thin film by EPMA, fB1+
Pt1l +, oosr+ oocao, 5scu
+, *sOx. This was calcined at 780°C for 2 hours and then heat treated at 815-844°C for 110 hours.

熱処理後、得られた薄膜の磁気感度を77にで4端子法
により測定間隔2■■で測定した。
After the heat treatment, the magnetic sensitivity of the obtained thin film was measured at 77°C using a four-terminal method at measurement intervals of 2■■.

各薄膜について測定した抵抗率の温度変化は図−5のと
おりであり、磁気感度の測定結果を表−4に示す。
The temperature change in resistivity measured for each thin film is shown in Figure 5, and the measurement results for magnetic sensitivity are shown in Table 4.

表−1〜4の結果から明らかなように、本発明により 
0.1iVオーダーまで検出することにより、外部磁界
を10−’ガウスオーダーの感度で測定することができ
る。
As is clear from the results in Tables 1 to 4, the present invention
By detecting down to the order of 0.1 iV, external magnetic fields can be measured with a sensitivity on the order of 10-' Gauss.

(以下余白) 表−4 〔発明の効果1 本発明によれば、臨界電流値のより大きな電流を超伝導
体に印加することにより、10−’ガウスオーダーの高
い磁気感度をもって微弱磁界の強さを安定して測定する
ことができる。
(Left below) Table 4 [Effect of the invention 1] According to the present invention, by applying a current with a larger critical current value to a superconductor, it is possible to reduce the strength of a weak magnetic field with a high magnetic sensitivity on the order of 10-' Gauss. can be measured stably.

また、バイアス磁界を印加していないので、地磁気を加
味した絶対磁気を捕捉することが可能である。
Furthermore, since no bias magnetic field is applied, it is possible to capture the absolute magnetism including the earth's magnetism.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は、本発明で磁場測定に用いた4極子法による磁
気センサの概念図である。 図−2は、印加電流の臨界電流値に対する倍率を変えて
、磁場ゼロのときの出力電圧をベースとする印加磁場に
よる出力電圧の変化曲線である。 図−3は、各種の臨界電流密度の超伝導薄膜について、
77にでその最高感度を示した印加電流倍率での磁気感
度を比較したものである。 図−4は、臨界電流密度が4000A/c■2の超伝導
薄膜についての出力電圧の変化曲線である。 図−5は、各種超伝導薄膜の抵抗率の温度変化を示す。
FIG. 1 is a conceptual diagram of a magnetic sensor based on the quadrupole method used for magnetic field measurement in the present invention. FIG. 2 shows a change curve of the output voltage due to the applied magnetic field, which is based on the output voltage when the magnetic field is zero, by changing the magnification of the applied current with respect to the critical current value. Figure 3 shows superconducting thin films with various critical current densities.
The magnetic sensitivity is compared at the applied current magnification that showed the highest sensitivity in No. 77. Figure 4 shows a change curve of output voltage for a superconducting thin film with a critical current density of 4000 A/c2. Figure 5 shows the temperature change in resistivity of various superconducting thin films.

Claims (2)

【特許請求の範囲】[Claims] (1)物理的手法により作製した酸化物超伝導多結晶薄
膜を磁気センサとして用いて、磁界強さを測定するにあ
たり、該薄膜の温度を臨界温度未満にし、かつ、その温
度における該薄膜の臨界電流値以上の電流を印加するこ
とを特徴とする磁界強さ測定方法。
(1) When measuring the magnetic field strength using an oxide superconducting polycrystalline thin film prepared by a physical method as a magnetic sensor, the temperature of the thin film must be lower than the critical temperature, and the critical temperature of the thin film at that temperature must be lowered. A magnetic field strength measuring method characterized by applying a current greater than a current value.
(2)測定温度における臨界電流密度が200A/cm
^2以下の薄膜を用いることを特徴とする請求項(1)
に記載の方法。
(2) Critical current density at measurement temperature is 200A/cm
Claim (1) characterized in that a thin film of ^2 or less is used.
The method described in.
JP2237195A 1990-09-10 1990-09-10 Magnetic field strength measurement method Expired - Lifetime JP3005628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237195A JP3005628B2 (en) 1990-09-10 1990-09-10 Magnetic field strength measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237195A JP3005628B2 (en) 1990-09-10 1990-09-10 Magnetic field strength measurement method

Publications (2)

Publication Number Publication Date
JPH04118572A true JPH04118572A (en) 1992-04-20
JP3005628B2 JP3005628B2 (en) 2000-01-31

Family

ID=17011781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237195A Expired - Lifetime JP3005628B2 (en) 1990-09-10 1990-09-10 Magnetic field strength measurement method

Country Status (1)

Country Link
JP (1) JP3005628B2 (en)

Also Published As

Publication number Publication date
JP3005628B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
Cava et al. Bulk superconductivity at 36 K in La 1.8 Sr 0.2 CuO 4
Tkaczyk et al. Transport critical currents in spray pyrolyzed films of tlba2ca2cu3o z on polycrystalline zirconia substrates
Nishikawa et al. Anomalous Temperature Dependence of the Hall Coefficient in L a 2-x S rx C u O 4 above Room Temperature
Hayashi et al. Ca 4 Cu 5 O 10: Copper oxide chains highly occupied by Zhang-Rice singlets
JPH04118572A (en) Measuring process of magnetic field intensity
Shi et al. Superconducting transition broadening and flux-creep activation energy in Tl2Ca2Ba2Cu3Ox
Yamasaki et al. Critical current density of high‐quality Bi2Sr2Ca2Cu3O x thin films prepared by metalorganic chemical‐vapor deposition
Togano et al. Critical currents and magnetic properties of Bi-and Tl-based new high Tc superconductors
Liu et al. Zero resistance up to 162 K in a multiphase Tl-Ca-Ba-Cu-O system
JP2936125B2 (en) Magnetic bearing detection method
US5377141A (en) Superconducting magnetic memory device having intentionally induced non-superconducting regions
Nakamura et al. Specific heat in a magnetic field for the extremely low carrier system Yb4As3
Yamagata et al. Highly sensitive magnetic sensor made with a superconducting Y-Ba-Cu-O thick film
Nomura et al. Increased flux pinning in cation‐deficient Bi2 (Sr, Ca) 3− x Cu2O8+ δ
JPH04123476A (en) Superconducting magnetic sensing element
Thier et al. Hall effect and Hall resistivity in REBa/sub 2/Cu/sub 3/O/sub 7-delta
JP2936126B2 (en) Magnetic sensor capable of detecting magnetic orientation
Suzuki et al. Synthesis of [Ca 2 (Co 1-x Cu x) 2 O 4] y CoO 2 Single Crystals and Their Intrinsic Properties
JP2893034B2 (en) High sensitivity magnetic sensitive element
Aboulkassim et al. Enhancement of Structure, Tc and Irreversibility Line in High Tc Superconductors by Heat Treatments
Hagberg et al. Performance characterisation of superconducting (Bi, Pb) Sr Ca Cu O Thick films
JPH0282178A (en) Superconducting magnetic sensor
Suzuki et al. Tunneling investigation of high Tc Bi-system films on SrTiO3 (110)
Wang et al. Manipulating vortex motion by thermal and Lorentz force in high-temperature superconductors
Nakano et al. A study of annealing Bi-Pb-Sr-Ca-Cu-O thin films with Pb or PbO