JPH0282178A - Superconducting magnetic sensor - Google Patents

Superconducting magnetic sensor

Info

Publication number
JPH0282178A
JPH0282178A JP23548488A JP23548488A JPH0282178A JP H0282178 A JPH0282178 A JP H0282178A JP 23548488 A JP23548488 A JP 23548488A JP 23548488 A JP23548488 A JP 23548488A JP H0282178 A JPH0282178 A JP H0282178A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic field
magnetic sensor
current
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23548488A
Other languages
Japanese (ja)
Other versions
JP2742691B2 (en
Inventor
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63235484A priority Critical patent/JP2742691B2/en
Publication of JPH0282178A publication Critical patent/JPH0282178A/en
Application granted granted Critical
Publication of JP2742691B2 publication Critical patent/JP2742691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To realize a new type sensor of simple structure with high sensitivity and high reliability by utilizing Josephson junction characteristics generated at the grain boundary part that a superconductor has. CONSTITUTION:The superconductor 1 where the grain boundary serves as Josephson junction is arranged in a solenoid coil 2. The superconductor 1 is fitted with two current supply electrodes and two voltage measuring electrodes and a current I1 is supplied from a stabilized power source 3. The coil 2 can controls its magnetic field extremely accurately, its internal magnetic field is uniform, and a current I2 is supplied from an AC power source (several Hz - tens of Hz) 4. A stationary magnetic field H is applied from outside as shown by an arrow. The intensity of the maximum magnetic field in one cycle which is generated by the coil 2 is larger than that of the magnetic field H. The sensor of this structure uses a material which has a small lower critical magnetic field and a material which is large grain size and this sensor is used almost at superconductive transition temperature to obtain 0.1Oe detection sensitivity.

Description

【発明の詳細な説明】 「発明の利用分野J 本発明は粒界を有する超伝導体を用いた磁気センサーに
関する。本発明は全く新しいタイプの磁気センサーに関
するものであり、さらに本発明ではこの磁気センサーを
より高感度なものとする方法について述べる。本発明に
よる高感度でかつ構造が簡単で安価な磁気センサーは学
術上も工業上も有益なものであり、様々な分野で利用さ
れることが期待される。
Detailed Description of the Invention Field of Application of the Invention The present invention relates to a magnetic sensor using a superconductor having grain boundaries. A method for making the sensor more sensitive will be described.The highly sensitive, simple-structured, and inexpensive magnetic sensor of the present invention is useful both academically and industrially, and can be used in various fields. Be expected.

r従来の技術j 従来より高感度磁気センサーとしては量子干渉型磁気セ
ンサー、いわゆる5QUIDが知られている。この従来
の磁気センサーの感度は非常に高いが、構造が複雑で、
価格・維持費が高くつくという欠点があった。
rPrior Art j A quantum interference magnetic sensor, so-called 5QUID, has been known as a high-sensitivity magnetic sensor. This conventional magnetic sensor has very high sensitivity, but its structure is complex;
The disadvantage was that the price and maintenance costs were high.

一方、感度はそれほど要求されないが、手軽に使えて、
価格も安いというタイプの磁気センサーの需要もあった
。そのような要求を満たす磁気センサーとしては半導体
磁気センサーがあったが、その感度は50 (Oe)(
エールステッド)程度であり、これより多少感度の高い
1 (Oe)以下の検出感度をもつ磁気センサーの登場
が待ち望まれていた。
On the other hand, sensitivity is not required so much, but it is easy to use,
There was also demand for a type of magnetic sensor that was inexpensive. Semiconductor magnetic sensors were available as magnetic sensors that met such requirements, but their sensitivity was only 50 (Oe) (
The arrival of a magnetic sensor with a detection sensitivity of 1 (Oe) or less, which is slightly more sensitive than this, has been eagerly awaited.

近年、酸化物超伝導体YBCOやB5CC0が発見され
、その物性を調査するうえで、微小な磁場によって、T
cもしくは臨界電流値が著しく低下するという現象が報
告されている。
In recent years, oxide superconductors YBCO and B5CC0 have been discovered, and in order to investigate their physical properties, T
It has been reported that there is a significant decrease in c or critical current value.

この現象は、超伝導体の粒界がジョセフソン接合となっ
て作用する為である。
This phenomenon occurs because the grain boundaries of the superconductor act as Josephson junctions.

本発明はこの性質を利用して超伝導体を磁気センサーと
して使用するものであります。
The present invention utilizes this property to use superconductors as magnetic sensors.

すなわち、超伝導体に臨界電流よりやや少ない電流を流
しておき(この状態では超伝導体に電圧は生じていない
)、この超伝導体に微少な磁場をかけると超伝導状態が
一部破れて、電圧が生じる。
In other words, if a current slightly lower than the critical current is passed through a superconductor (in this state, no voltage is generated in the superconductor) and a small magnetic field is applied to this superconductor, the superconducting state is partially broken. , a voltage is generated.

発生する電圧と磁場との間には第1図に示すようなl対
lの対応関係があるため電圧を読み取れば磁場の大きさ
がわかる。しかしながら、このような磁気センサーでは
同じ材料で作製しても作製条件によって特性が異なるた
め、信鎖性に乏しい。
Since there is an l-to-l correspondence between the generated voltage and the magnetic field as shown in FIG. 1, the magnitude of the magnetic field can be determined by reading the voltage. However, such magnetic sensors have poor reliability because their characteristics vary depending on the manufacturing conditions even if they are made from the same material.

そこで本発明者は、この磁気センサーを発展させ、より
高感度で信顛性が高く工業的な応用も簡単な磁気センサ
ーを提供するものである。
Therefore, the present inventor has developed this magnetic sensor to provide a magnetic sensor with higher sensitivity, higher reliability, and easier industrial application.

以下にその構造と動作を第2図に従って示す。Its structure and operation are shown below according to FIG.

第2図はその概念図である。4つの電極、すなわち、通
常の抵抗率を測定する際に取りつけるのと同じように、
電流供給電極と電圧測定電極がそれぞれ2つずつが取り
つけられた超伝導体(1)がソレノイドコイル(2)の
中にあるという構造になっている。ソレノイドコイル(
2)は極めて正確にその磁場を制御できるものであり、
その内部の磁場は均一である。超伝導体には安定化電源
(3ンによって電流11が流されている。ソレノイドコ
イル(2)には交流電源(周波数は数Hzから数十Hz
 ) (4)によって電流■2が流される。外部からは
図の左から定常磁場Hがかけられている。
Figure 2 is a conceptual diagram. Four electrodes, i.e., the same as those used when measuring normal resistivity,
The structure is such that a superconductor (1), to which two current supply electrodes and two voltage measurement electrodes are attached, is located within a solenoid coil (2). Solenoid coil (
2) allows the magnetic field to be controlled extremely accurately;
The magnetic field inside it is uniform. A current 11 is passed through the superconductor by a stabilized power supply (3).The solenoid coil (2) is supplied with an alternating current power (frequency is from several Hz to several tens of Hz).
) (4) causes current ■2 to flow. A steady magnetic field H is applied from the outside from the left side of the figure.

ソレノイドコイル(2)の発生する1周期の最大磁場の
大きさは、磁場Hよりも大きいとする。交流電源(4)
によってソレノイドコイル(2)の発生する磁場の大き
さと向きは周期的に変化し、磁場Hとの合成によってソ
レノイドコイル(2)の内部の磁場の大きさは周期的に
ゼロになったり、ゼロでなくなったりする。このとき、
オシロスコープ(5)を用いて、ソレノイドコイル(2
)に流れる電流を横軸に、超伝導体(1)に生ずる電圧
を縦軸にとると、超伝導隊(1)に流す電流値11の値
に依って、第3図のようなスペクトルが得られる。
It is assumed that the magnitude of the maximum magnetic field in one cycle generated by the solenoid coil (2) is larger than the magnetic field H. AC power supply (4)
The magnitude and direction of the magnetic field generated by the solenoid coil (2) change periodically, and by combining with the magnetic field H, the magnitude of the magnetic field inside the solenoid coil (2) periodically becomes zero or remains zero. It may disappear. At this time,
Using the oscilloscope (5), check the solenoid coil (2).
), the horizontal axis represents the voltage generated in the superconductor (1), and the spectrum shown in Figure 3 depends on the value of the current 11 flowing through the superconductor (1). can get.

第3図には3種類のスペクトルが描かれているが、(a
)は電流■1が小さいとき、(b)は丁度よいとき、(
C)は大きすぎるときである。
Three types of spectra are depicted in Figure 3, (a
) is when the current ■1 is small, (b) is when it is just right, (
C) is too large.

これらのスペクトルは、ソレノイドコイル(2)に流れ
る電流I2がI。のとき、ソレノイドコイル(2)内の
磁場がゼロになり、超伝導体(1)の電圧がゼロ、ある
いは電圧が極小値を取り、それ以外のときには磁場電圧
効果によって電圧が生じている状態を示している。(b
)のスペクトルにおける半値幅Wがこの磁気センサーの
分解能である。
These spectra indicate that the current I2 flowing through the solenoid coil (2) is I. When , the magnetic field in the solenoid coil (2) becomes zero and the voltage of the superconductor (1) is zero or reaches a minimum value, and at other times a voltage is generated due to the magnetic field-voltage effect. It shows. (b
) is the resolution of this magnetic sensor.

これはソレノイドコイル(2)が十分精密に作られてい
るならば、超伝導体(1)によって決定される。
This is determined by the superconductor (1) if the solenoid coil (2) is made with sufficient precision.

実際、コイルは極めて精密に作ることができるので、超
伝導体(1)の持つ特性が磁気センサーの特性を左右す
ることになる。
In fact, since the coil can be made extremely precisely, the properties of the superconductor (1) will influence the properties of the magnetic sensor.

粒界がジョセフソン接合の役割をする超伝導体において
この超伝導体が反応する最小磁場H0はで与えられる。
In a superconductor whose grain boundaries function as Josephson junctions, the minimum magnetic field H0 to which this superconductor reacts is given by:

ここでφ。は磁束量子で2.o7XIO−’Oecm”
、λは超伝導体の磁場侵入長、Lは接合部の長さの代表
的な大きさである。このHoが上記スペクトルの半値幅
Wとなる。
Here φ. is the magnetic flux quantum and 2. o7XIO-'Oecm"
, λ is the magnetic field penetration length of the superconductor, and L is the typical length of the junction. This Ho becomes the half width W of the spectrum.

したがって、磁気センサーの感度を上げるためには、λ
かしかを大きくすればい。λは物質によって決まってい
るからλの大きな材料、すなわち下部臨界磁場の小さな
材料を使うと感度をあげることができる。
Therefore, to increase the sensitivity of the magnetic sensor, λ
Just make the scarecrow bigger. Since λ is determined by the material, sensitivity can be increased by using a material with a large λ, that is, a material with a small lower critical magnetic field.

さらに超伝導転移温度近傍ではλは大きくなるから、磁
気センサーを超伝導転移温度近傍で使用すると感度を上
げることができる。
Furthermore, since λ increases near the superconducting transition temperature, sensitivity can be increased by using a magnetic sensor near the superconducting transition temperature.

Lについては、セラミックスの場合、Lは粒径と考えら
れるので、粒径の大きな材料を使用すると感度があがる
Regarding L, in the case of ceramics, L is considered to be the particle size, so the sensitivity increases when a material with a large particle size is used.

以上のような工夫をした結果、0.1 (Oe)の検出
感度を達成することができた。以下に実施例を示し、さ
らに詳しく本発明を説明する。
As a result of the above efforts, we were able to achieve a detection sensitivity of 0.1 (Oe). EXAMPLES The present invention will be explained in more detail with reference to Examples below.

r実施例j 超伝導体はYBCOに不純物としてニッケルをくわえた
ものを用いた。ニッケルは超伝導転移温度を下げる作用
をする。
r Example j The superconductor used was YBCO with nickel added as an impurity. Nickel acts to lower the superconducting transition temperature.

本実施例では磁気センサーを液体窒素温度で使用するの
で、前述のように、超伝導転移温度を液体窒素温度に近
づけるためにニッケルを加えた。
In this example, since the magnetic sensor is used at liquid nitrogen temperature, nickel was added to bring the superconducting transition temperature close to the liquid nitrogen temperature, as described above.

これにより、磁気センサーの感度を向上させることが可
能となった。
This made it possible to improve the sensitivity of the magnetic sensor.

本実施例における超伝導酸化物の作製には通常の固相反
応を用いた。原料としては、酸化イツトリウム、炭酸バ
リウム、酸化銅、酸化ニッケルの粉末(純度は全て3N
)を用いた。
A normal solid phase reaction was used to produce the superconducting oxide in this example. The raw materials are yttrium oxide, barium carbonate, copper oxide, and nickel oxide powder (all purity is 3N).
) was used.

原料中のイツトリウム、バリウム、銅、ニッケルの比を
1:2:3. 9:o、1としてよく混合し、大気中で
900°C112時間仮焼成した後、10XIX0.7
mm3の直方体に成形し、再び、大気中で900°C1
12時間焼成したのち、毎分1 ”Cの速度で冷却した
The ratio of yttrium, barium, copper, and nickel in the raw materials was 1:2:3. After mixing well as 9:o and 1 and calcining in the atmosphere at 900°C for 112 hours, 10XIX0.7
Formed into a rectangular parallelepiped of mm3 and heated again at 900°C1 in the atmosphere.
After firing for 12 hours, it was cooled at a rate of 1"C per minute.

銅を化学量論比より多く加えたのは粒径を太き(して感
度を増すためである。このようにして作成された超伝導
体のTc(ゼロ抵抗温度)は79にである。この超伝導
材料に電極を付け、第2図のようにソレノイドコイル(
2)の中に置いた。
The reason for adding more copper than the stoichiometric ratio is to increase the grain size (thus increasing sensitivity). The Tc (zero resistance temperature) of the superconductor thus prepared is 79. Electrodes are attached to this superconducting material, and a solenoid coil (
2).

この磁気センサー装置を液体窒素中に置き、超伝導体(
1)には50mAの電流を流した。この時にソレノイド
コイル(2)に流れる電流と超伝導体(1)に生じる電
圧の関係は第3図に示されている。コイルに流れる電流
1mAの時、コイルに生じる磁場は05 (Oe)であ
った。
This magnetic sensor device is placed in liquid nitrogen, and a superconductor (
1), a current of 50 mA was applied. The relationship between the current flowing through the solenoid coil (2) and the voltage generated across the superconductor (1) at this time is shown in FIG. When the current flowing through the coil was 1 mA, the magnetic field generated in the coil was 0.5 (Oe).

またIoは2.2mAであったので、このソレノイドコ
イル(2)により発生する磁場に等しい、外部磁場fI
の大きさは1.1 (Oe)であり、磁気センサーの検
出感度は0.1 (Oe)であった。
Also, since Io was 2.2 mA, an external magnetic field fI equal to the magnetic field generated by this solenoid coil (2)
The magnitude was 1.1 (Oe), and the detection sensitivity of the magnetic sensor was 0.1 (Oe).

本実施例では超伝導体として酸化物超伝導体を用いたが
他の超伝導体においても同様に適用することが可能であ
る。
In this example, an oxide superconductor was used as the superconductor, but other superconductors can be similarly applied.

「効果」 本発明では超伝導体の作製条件、種類に関係なく、粒界
を有する超伝導体であるなら全ての超伝導体によって、
同じ磁場の絶対値が得られる。
"Effect" In the present invention, regardless of the manufacturing conditions and type of superconductor, all superconductors that have grain boundaries can:
The absolute value of the same magnetic field is obtained.

すなわち、超伝導体の作製条件、種類による、特性曲線
等を作製しなくてもよい。ただし検出感度は作製条件、
種類に依存するが、°これは一定の基準を超えればよく
、量産にあたって何ら問題とならない。本発明によって
ローコストで高感度な磁気センサーが作成できるように
なった。このことによる工業上の利益は莫大なものであ
る。本発明においては、超伝導体が板状であっても、薄
膜状であってもその動作原理は変わらない。実施例には
述べなかったが、超伝導体を適当な基板上に薄膜として
形成しその断面積を小さくすることによって、より高感
度な磁気センサーを作成することが可能である。
That is, it is not necessary to create characteristic curves and the like depending on the manufacturing conditions and types of superconductors. However, the detection sensitivity depends on the manufacturing conditions.
Although it depends on the type, it only needs to exceed a certain standard and will not cause any problems in mass production. The present invention has made it possible to create a low-cost, highly sensitive magnetic sensor. The industrial benefits of this are enormous. In the present invention, the principle of operation remains the same whether the superconductor is in the form of a plate or a thin film. Although not described in the examples, it is possible to create a magnetic sensor with higher sensitivity by forming a superconductor as a thin film on a suitable substrate and reducing its cross-sectional area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粒界を有する超伝導体の磁気電圧効果の例を示
す。 横軸:印加磁場 縦軸:超伝導体に生じる電圧 第2図は磁気センサーの概念図を示す。 第3図は本発明の磁気センサーの特性の一例を示す。 横軸:ソレノイドコイルに流れる電流 縦軸:超伝導体に生じる電圧 (a)I、=10mA (b)I+=50mA (c)I+=200mA 119.超伝導体 230.ソレノイドコイル
FIG. 1 shows an example of the magnetovoltage effect in a superconductor with grain boundaries. Horizontal axis: Applied magnetic field Vertical axis: Voltage generated in the superconductor Figure 2 shows a conceptual diagram of a magnetic sensor. FIG. 3 shows an example of the characteristics of the magnetic sensor of the present invention. Horizontal axis: Current flowing through the solenoid coil Vertical axis: Voltage generated in the superconductor (a) I, = 10mA (b) I+ = 50mA (c) I+ = 200mA 119. Superconductor 230. solenoid coil

Claims (1)

【特許請求の範囲】 1、超伝導体の持つ粒界部分に発生するジョセフソン接
合特性を利用した磁気センサー。2、ソレノイドコイル
と前記ソレノイドコイルに電流を流し、磁場を発生させ
る手段と前記ソレノイドコイル中に置かれた超伝導体と
前記超伝導体に定電流を流す手段と前記超伝導体に発生
する電圧を測定する手段を有する超伝導磁気センサー。 3、特許請求の範囲第1項または第2項において使用さ
れる超伝導体は磁気センサーの使用温度近傍に超伝導転
移温度を有することを特徴とする超伝導磁気センサー。
[Claims] 1. A magnetic sensor that utilizes the Josephson junction characteristics that occur at the grain boundaries of a superconductor. 2. A solenoid coil, a means for passing a current through the solenoid coil to generate a magnetic field, a superconductor placed in the solenoid coil, a means for passing a constant current through the superconductor, and a voltage generated in the superconductor. A superconducting magnetic sensor having means for measuring . 3. A superconducting magnetic sensor, characterized in that the superconductor used in claim 1 or 2 has a superconducting transition temperature near the operating temperature of the magnetic sensor.
JP63235484A 1988-09-19 1988-09-19 Superconducting magnetic sensor Expired - Lifetime JP2742691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235484A JP2742691B2 (en) 1988-09-19 1988-09-19 Superconducting magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235484A JP2742691B2 (en) 1988-09-19 1988-09-19 Superconducting magnetic sensor

Publications (2)

Publication Number Publication Date
JPH0282178A true JPH0282178A (en) 1990-03-22
JP2742691B2 JP2742691B2 (en) 1998-04-22

Family

ID=16986744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235484A Expired - Lifetime JP2742691B2 (en) 1988-09-19 1988-09-19 Superconducting magnetic sensor

Country Status (1)

Country Link
JP (1) JP2742691B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254945A (en) * 1989-06-30 1993-10-19 Sharp Kabushiki Kaisha Magneto-resistive superconductive device and method for sensing magnetic fields
CN109490798A (en) * 2018-09-26 2019-03-19 上海交通大学 High temperature superconductor coil Measurement Method for Magnetic Field based on fibre optic magnetic field sensing technology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138770A (en) * 1987-07-29 1989-05-31 Sharp Corp Superconducting magnetoresistance element system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138770A (en) * 1987-07-29 1989-05-31 Sharp Corp Superconducting magnetoresistance element system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254945A (en) * 1989-06-30 1993-10-19 Sharp Kabushiki Kaisha Magneto-resistive superconductive device and method for sensing magnetic fields
CN109490798A (en) * 2018-09-26 2019-03-19 上海交通大学 High temperature superconductor coil Measurement Method for Magnetic Field based on fibre optic magnetic field sensing technology
CN109490798B (en) * 2018-09-26 2020-02-21 上海交通大学 High-temperature superconducting coil magnetic field measurement method based on optical fiber magnetic field sensing technology

Also Published As

Publication number Publication date
JP2742691B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
Wenger et al. Absence of specific-heat anomaly at the superconducting transition in La 1.8 Ba 0.2 CuO 4− y
JPH0282178A (en) Superconducting magnetic sensor
EP0444873B1 (en) Apparatus for measuring distribution of magnetic field
Nizhankovskii et al. Investigation of the influence of a magnetic field on the chemical potential of electrons in superconducting and ferromagnetic thin films
US5055785A (en) Superconductive magneto resistive apparatus for measuring weak magnetic field using superconductive magneto-resistive element
US5254945A (en) Magneto-resistive superconductive device and method for sensing magnetic fields
HUT55561A (en) Binary data storing unit, cryotron and crystalline superconductive material
US5126668A (en) Method of eliminating the effect of hysteresis in a superconductive magneto-resistive device
Shaulov et al. Characterization of Y‐Ba‐Cu‐O thin films using their nonlinear magnetic response
Aliev et al. Effect of a magnetic field on the thermal and kinetic properties of the Sm 0.55 Sr 0.45 MnO 3.02 manganite
Yamagata et al. Highly sensitive magnetic sensor made with a superconducting Y-Ba-Cu-O thick film
GB2213267A (en) Hall effect magnetometer
Thier et al. Hall effect and Hall resistivity in REBa/sub 2/Cu/sub 3/O/sub 7-delta
RU1785056C (en) Superconducting electronic device and method for it manufacturing
JPH0671101B2 (en) Superconductor Magnetoresistive element
JP2936126B2 (en) Magnetic sensor capable of detecting magnetic orientation
JPH01175781A (en) Magnetoresistive device system
JPS5990069A (en) Magnetic field measuring method
Katona et al. CURRENT CONDUCTION PROPERTIES OF BiPbSrCaCuO THICK FILMS K. Vad, S. Mészáros, N. Hegman Institute of Nuclear Research of the Hungarian Academy of Sciences H-4001 Debrecen, POB 51, Hungary
JPH04118572A (en) Measuring process of magnetic field intensity
Chen et al. Electron-spin-resonance studies of the hole-doping effect on (Tl 0.5 Pb 0.5) Sr 2 (Ca 1− x Y x) Cu 2 O 7 high-T c superconductors
EP0634056A1 (en) Thermopower mapping of superconducting cuprates
Chanda et al. Influence of lead content on temperature dependence of thermoelectric power of 2223 (Bi Pb) sintered cuprates
JPH04166780A (en) Method of detecting magnetic direction
Hoshino et al. ESR Investigation of Organic Conductors (DTM-TTP)(TCNQ)(TCE) and (TMET-TTP) 2 (TCNQ)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11