JPH01175781A - Magnetoresistive device system - Google Patents
Magnetoresistive device systemInfo
- Publication number
- JPH01175781A JPH01175781A JP62333970A JP33397087A JPH01175781A JP H01175781 A JPH01175781 A JP H01175781A JP 62333970 A JP62333970 A JP 62333970A JP 33397087 A JP33397087 A JP 33397087A JP H01175781 A JPH01175781 A JP H01175781A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- resistance
- electrodes
- resistance change
- superconducting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 27
- 239000004020 conductor Substances 0.000 claims abstract description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 9
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 abstract description 8
- 239000002826 coolant Substances 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 2
- 238000010304 firing Methods 0.000 abstract description 2
- 239000008188 pellet Substances 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 239000004332 silver Substances 0.000 abstract description 2
- 239000010419 fine particle Substances 0.000 abstract 2
- 238000001354 calcination Methods 0.000 abstract 1
- 238000007738 vacuum evaporation Methods 0.000 abstract 1
- 239000002887 superconductor Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- RSEIMSPAXMNYFJ-UHFFFAOYSA-N europium(III) oxide Inorganic materials O=[Eu]O[Eu]=O RSEIMSPAXMNYFJ-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y02E40/642—
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、従来に例を見ない優れた特性を示す磁気抵抗
素子システムに関するものであり、現在開発途上にある
セラミック超電導材料を例えば冷却媒体を使用すること
なく用いることが出来る具体的な応用デバイスシステム
として始めて世の中に提唱するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a magnetoresistive element system exhibiting excellent characteristics unprecedented in the art. This is the first time that we are proposing to the world a specific applied device system that can be used without the use of .
〈従来の技術及びその問題点〉
従来、磁界を印加することにより電気抵抗の増加を示す
磁気抵抗素子としては、半導体を用いたもの及び磁性体
を用いたものがあり、磁界に対する抵抗変化は第6図に
示すように2乗曲線に沿う特性を示し、数十ガウス程度
の弱磁界に対して抵抗増加ΔRは極めて微少であった。<Prior art and its problems> Conventionally, magnetoresistive elements that show an increase in electrical resistance when a magnetic field is applied include those using semiconductors and those using magnetic materials. As shown in Fig. 6, the characteristics followed a square curve, and the resistance increase ΔR was extremely small for a weak magnetic field of several tens of Gauss.
一方、超電導現象を利用した5QUID(超電導量子干
渉素子)は、極めて高い感度(1g−10ガウス)を示
すことが知られているが、完全な超電導体間に極めて薄
い絶縁層を形成したトンネル効果を利用する必要がある
。セラミ’)クス系の高温超°IE導体のコヒーレンス
長は数十Xであり、この長さに相当する薄い絶縁層を作
製するには、極めてデリケートな構造を必要とし、その
使用法も簡便ではなかった。したがって従来より、微弱
な磁界に対して高性能に抵抗変化を示し、簡単な構造を
有し、簡便な取扱いが可能な磁気抵抗素子システムの開
発が望まれていた。On the other hand, 5QUID (superconducting quantum interference device), which utilizes the superconducting phenomenon, is known to exhibit extremely high sensitivity (1 g-10 Gauss), but the tunnel effect created by forming an extremely thin insulating layer between complete superconductors need to be used. The coherence length of ceramic-based high-temperature ultra-degree IE conductors is several tens of times, and creating a thin insulating layer corresponding to this length requires an extremely delicate structure, and its usage is not simple. There wasn't. Therefore, it has been desired to develop a magnetoresistive element system that exhibits high performance resistance change in response to a weak magnetic field, has a simple structure, and is easy to handle.
本出願人は既にセラξソクス超電導体の粒子間の弱結合
を利用した高性能磁気センサを特願昭62−23386
9として提案している。しかし、現状の超電導状態を実
現させるためには、液体窒素などの冷却媒体を必要とし
ていた。The applicant has already filed a patent application for a high-performance magnetic sensor utilizing the weak coupling between particles of Cerasox superconductor in patent application No. 62-23386.
It is proposed as 9. However, in order to achieve the current superconducting state, a cooling medium such as liquid nitrogen was required.
本発明は上記の点に鑑みて創案されたものであり、従来
の磁気抵抗素子とは異なる新規な現象にもつすく作用を
なして、微弱な磁界に対しても高性能に抵抗変化を示す
冷却媒体の不要な超電導物質を含む磁気抵抗素子システ
ムを提供することを目的としている。The present invention has been devised in view of the above points, and is a cooling device that effectively responds to novel phenomena different from conventional magnetoresistive elements and exhibits high performance resistance changes even in the presence of weak magnetic fields. The object is to provide a magnetoresistive element system including a superconducting material that does not require a medium.
く問題点を解決するだめの手段及びその原理〉上記の目
的を達成するため本発明の磁気抵抗素子システムは、常
電導体の中に、臨界温度の高い結晶粒界を有する超電導
材料を部分的に含むセラミックスからなる素子と、この
素子に磁界を印加する手段と、上記の素子に磁界を印加
したときに生ずる電気抵抗の変化を検出する手段とを備
えてなるように構成している。Means and Principles for Solving the Problems In order to achieve the above object, the magnetoresistive element system of the present invention partially incorporates a superconducting material having grain boundaries with a high critical temperature in a normal conductor. The device is configured to include an element made of ceramic, a means for applying a magnetic field to the element, and a means for detecting a change in electrical resistance that occurs when a magnetic field is applied to the element.
本発明を実施するに際し、磁気抵抗素子として、多くの
粒子からなるセラミックス中の一部に高温で超電導とな
る超電導体が含まれておれば、第1図に示す様に磁界が
印加されない場合に、素子の電気抵抗RQは、高温で超
電導を示さない物質の固有抵抗を持っているが、磁界を
印加すると、印加磁界の増大と共に、電気抵抗が急激に
幅大する新しい現象を利用したものであり、従来の磁性
体や半導体からなる磁気抵抗素子とは比較にならない高
性能磁気センサが提供される。しかも、本発明において
は、素子を構成するセラミックスのすべてが必ずしも同
一超電導体物質から成っている必要がない。最近の研究
から、常温付近で、超電導の兆候を示す抵抗異常が存在
するものの、セラばツクス全ての抵抗が完全に零になら
ないものが出来ている。しかし、超電導体としての応用
はまだ困難な状況にあるものの、本発明の様に、セラミ
ックスに局在する超電導体の弱結合部、即ち、その粒子
がポイント状接触や、粒子間に極めて薄い絶縁層が介在
している部分に磁界を印加すると、そのトンネリング効
果が失なわれるところを利用することによって、磁気抵
抗変化として十分に利用することが出来る。When carrying out the present invention, if a part of the ceramic consisting of many particles contains a superconductor that becomes superconducting at high temperature, as shown in Fig. 1, when no magnetic field is applied, The electrical resistance RQ of the element has the specific resistance of a material that does not exhibit superconductivity at high temperatures, but when a magnetic field is applied, the electrical resistance rapidly increases as the applied magnetic field increases. This provides a high-performance magnetic sensor that is incomparable to conventional magnetoresistive elements made of magnetic materials or semiconductors. Furthermore, in the present invention, all of the ceramics constituting the element do not necessarily need to be made of the same superconductor material. Recent research has shown that although there are resistance abnormalities that indicate signs of superconductivity near room temperature, the resistance of all ceramic batteries does not completely go to zero. However, although it is still difficult to apply it as a superconductor, as in the present invention, the weak bonds of the superconductor localized in ceramics, that is, the particles have point-like contact or extremely thin insulation between particles. By utilizing the fact that when a magnetic field is applied to the part where the layer is interposed, the tunneling effect is lost, it can be fully utilized as a change in magnetoresistance.
〈実施例〉 以下、実施例により本発明の詳細な説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to Examples.
まず、本発明の実施例において用いる結晶粒界を有する
高温超電導材料を含むセラミックスよりなる素子の作製
例について説明するが、本発明の実施例において用いる
セラミックス材料の作製方法そのものについて、限定さ
れるものではない。First, an example of manufacturing an element made of ceramics containing a high-temperature superconducting material having grain boundaries used in the examples of the present invention will be described, but there are limitations regarding the method itself for manufacturing the ceramic material used in the examples of the present invention. isn't it.
最近、多くの研究機関で進められているセラミックス高
温超電導材料の研究方向は、臨界温度がTcの向上を目
指しているものの、比較的高温で抵抗異常を認められて
も高温で完全に抵抗が零になっているものはない。しか
し、この様なセラミックスの中に一部常温付近の超電導
体が含まれていることは伺える。Recently, the direction of research into ceramic high-temperature superconducting materials that has been progressing in many research institutions is to improve the critical temperature Tc, but even if resistance abnormalities are observed at relatively high temperatures, the resistance completely disappears at high temperatures. There is nothing that is. However, it can be seen that some of these ceramics contain superconductors near room temperature.
本発明はこの様な常温付近の超電導体が局在するセラミ
ックスを利用する高性能磁気抵抗素子システムで、この
超電導体の粒界間の弱結合部が極めて弱い磁界でトンネ
ル効果が破れて電気抵抗を示し、印加磁界の強さと共に
急激に増加することを見出し、しかも冷却媒体を不要と
した応用を可能にしたものである。The present invention is a high-performance magnetoresistive element system that utilizes ceramics in which superconductors near room temperature are localized, and the weak coupling between the grain boundaries of this superconductor is broken by an extremely weak magnetic field, causing the tunnel effect to break, resulting in electrical resistance. It was discovered that the magnetic field increases rapidly with the strength of the applied magnetic field, and furthermore, it has become possible to use an application that does not require a cooling medium.
まず、本発明の一実施例において用いるセラミックス層
、即ち結晶粒界を有する超電導を示す物質を部分的に含
んだセラミックス層は次の工程により作製した。First, a ceramic layer used in an example of the present invention, that is, a ceramic layer partially containing a substance exhibiting superconductivity having grain boundaries, was fabricated by the following steps.
BaCO3、Y203 、 CuOを原子数比でBa:
Y:Cu=9 : 4 : 7となるよう所定量秤量し
、分散混合した後900℃、5時間空気中で仮焼成を行
なった。次に再び粉砕1分散させ粉体を作り、加圧力1
ton/ctAにてベレットを作製した。次に本焼成を
950℃で15時間空気中で行なった。BaCO3, Y203, CuO in atomic ratio Ba:
A predetermined amount of Y:Cu=9:4:7 was weighed out, dispersed and mixed, and then pre-calcined in air at 900°C for 5 hours. Next, make a powder by crushing and dispersing again, and apply pressure 1
A pellet was prepared using ton/ctA. Next, main firing was performed at 950° C. for 15 hours in air.
次に、第2図に示すようにサンプル素子1のセラミック
ス層の表面に電流を流すだめの1対の電流電極2.及び
電圧を検出するための1対の電圧電極3として密着性の
良好なTi電極を蒸着して設け、更にそれらの電極に銀
ペーストにてリード線を固定して磁気抵抗素子を作製し
た。精密な測定のためにはこのように電流電極と電圧電
極を別に設けた方が良いが、実用には電流電極と電圧電
極を共通にしても差しつかえない。Next, as shown in FIG. 2, a pair of current electrodes 2. is used to pass current through the surface of the ceramic layer of the sample element 1. Ti electrodes with good adhesion were provided by vapor deposition as a pair of voltage electrodes 3 for detecting voltage, and lead wires were further fixed to these electrodes with silver paste to produce a magnetoresistive element. For precise measurements, it is better to provide separate current and voltage electrodes, but for practical purposes, it is acceptable to use a common current and voltage electrode.
第3図に上記のようにして作製した素子1の電気抵抗の
温度依存性を示す。この第3図から分るように、温度的
240にで抵抗が急激に減少し、その後一定値を保持し
た後再び約90にで減少し83にで完全に零となる。発
明者等は、約240Kにおける抵抗の急激な減少が、セ
ラミックス層内に部分的に含まれた臨界温度(”rc)
の高い層が超電導状態になるためにおこるものと考え、
素子を第5図に示すように電子冷却素子と一体化するこ
とにより230KK冷却した状態で磁気検出特性を測定
した。その結果を第4図に示す。磁界のない場合はわず
かな抵抗を有するが、磁界を印加することによって抵抗
の急激な増加を示した。その磁界に対する抵抗の変化は
、第6図に示す従来の半導体や磁性体などの磁気抵抗型
センナの磁界に対する抵抗変化の様に二乗曲線に沿った
特性ではなく、全く異なった急峻な特性を示しており磁
界に対する極めて大きな感度を有することが分った。本
出願人は既に超電導を用いた高性能磁気センサを特願昭
62−233365として提案しているが、本発明は部
分的に臨界温度(Tc)の高い層が含まれていることを
使用したものであり、これによって液体窒素等の冷却媒
体を必要とせず、現状の電子冷却素子と一体化すること
により高性能磁気センサの使用を可能にしたものである
。FIG. 3 shows the temperature dependence of the electrical resistance of the element 1 manufactured as described above. As can be seen from FIG. 3, the resistance rapidly decreases at a temperature of 240 degrees, then maintains a constant value, decreases again at about 90 degrees, and becomes completely zero at 83 degrees. The inventors believe that the rapid decrease in resistance at about 240 K is due to the critical temperature ("rc") partially contained within the ceramic layer.
It is thought that this occurs because the layer with high
The magnetic detection characteristics were measured in a state where the element was cooled by 230 KK by integrating it with a thermoelectric cooling element as shown in FIG. The results are shown in FIG. It had a slight resistance in the absence of a magnetic field, but showed a rapid increase in resistance by applying a magnetic field. The change in resistance to the magnetic field does not follow a square curve like the change in resistance to the magnetic field of conventional magnetoresistive sensors made of semiconductors or magnetic materials, as shown in Figure 6, but shows a completely different, steep characteristic. It was found that the magnetic field has extremely high sensitivity to magnetic fields. The present applicant has already proposed a high-performance magnetic sensor using superconductivity in Japanese Patent Application No. 62-233365, but the present invention uses the fact that a layer with a high critical temperature (Tc) is partially included. This makes it possible to use a high-performance magnetic sensor by integrating it with a current electronic cooling element without requiring a cooling medium such as liquid nitrogen.
なお、第5図に示す電子冷却装置はペルチェ効果冷却素
子を二段カスケード構造に配置したもので、同図におい
て11は放熱金属板、12は冷却金属板、13は絶縁物
、14aはp型半導体((Bi@5b)2Te3)、
14 bはn型半導体(B12(Te−5e)3)
、 15は放熱基板、16は基板15上に設けられた本
発明素子システムであり、このような構造にすることに
より例えば300にの周囲温度を225にの低温に冷却
することが出来る。The electronic cooling device shown in Fig. 5 has Peltier effect cooling elements arranged in a two-stage cascade structure. Semiconductor ((Bi@5b)2Te3),
14 b is an n-type semiconductor (B12(Te-5e)3)
, 15 is a heat dissipation substrate, and 16 is an element system of the present invention provided on the substrate 15. With such a structure, an ambient temperature of, for example, 300°C can be cooled down to a low temperature of 225°C.
本発明の動作原理は、セラミックス層中に、部分的に臨
界温度(Tc)の高い層を含む以外、既に本出願人の提
案した発明と同じと考えてよい。The operating principle of the present invention can be considered to be the same as the invention already proposed by the present applicant, except that the ceramic layer includes a layer with a high critical temperature (Tc).
現状では、一般的なセラはツク高温超電導体はY二Ba
:Cu=に2:3であり、90に付近で急激に抵抗が減
少し完全に0となるが、組成をずらすことにより240
に付近で抵抗の急激な変化がおこる例はいくつか報告さ
れている。(例えば、JAPANESE JOURN
AL OF APPLIED PHYsrcs V
oL、 26゜No、5.May 、 1987. p
p、 LaO2−L808 Y、 ODA eL at
)しかし、この抵抗異常を磁気抵抗素子に用いたのは
本発明者等が初めてである。At present, general ceramics are made of Y2Ba high-temperature superconductors.
:Cu = 2:3, and the resistance decreases rapidly near 90 and becomes completely 0, but by shifting the composition, the resistance decreases to 240.
Several cases have been reported in which rapid changes in resistance occur near . (For example, JAPANESE JOURN
AL OF APPLIED PHYsrcs V
oL, 26°No, 5. May, 1987. p
p, LaO2-L808 Y, ODA eL at
) However, the present inventors are the first to use this resistance anomaly in a magnetoresistive element.
なお、本発明はもちろん上記実施例に限られるものでな
く部分的に臨界温度の高い層が含まれていればよい。It should be noted that the present invention is of course not limited to the above-mentioned embodiments, but may include a layer having a partially high critical temperature.
次に他の実施例を示す。Next, another example will be shown.
他の実施例
(1) セラミックス層としてEu−Ba−Cu−0
を用いた場合。Other Examples (1) Eu-Ba-Cu-0 as ceramic layer
When using.
原料としてEu2O3、BaCO3、CuOを用い、所
定量秤量分散しBa:Eu:Cu=2:1:3となるよ
うにしてセラミックス層を作製した。Using Eu2O3, BaCO3, and CuO as raw materials, predetermined amounts were weighed and dispersed to form a ceramic layer such that Ba:Eu:Cu=2:1:3.
この結果、230にで抵抗の急減な変化が観測され、上
記実施例と同様の磁界に対する抵抗変化を示した。As a result, a sudden change in resistance was observed at 230, indicating a resistance change in response to a magnetic field similar to that in the above example.
(2) セラミックス層としてY−Ba−8r−Cu
−0を用いた場合。(2) Y-Ba-8r-Cu as ceramic layer
When using -0.
(1)原料としてY203 、 BaCO3、S rc
O3、CuOを用い、所定量秤量分散し、Ba :Y:
Sr :Cu=1:2:に3になるようにしてセラミッ
クス層を作製した。この結果、230にで抵抗の急激な
変化が観測され、上記実施例と同様の磁界に対する抵抗
変化を示した。(1) Y203, BaCO3, Src as raw materials
Using O3 and CuO, predetermined amounts were weighed and dispersed, and Ba:Y:
A ceramic layer was prepared in a ratio of Sr:Cu=1:2:3. As a result, a rapid change in resistance was observed at 230, indicating a resistance change in response to a magnetic field similar to that in the above example.
(11)同様の原料を用い、Ba:Y:Sr:Cu=1
:1:1:3になるようにセラミックス層を作製した
。この結果、338にで抵抗の異常が見られ、上記実施
例と同様の磁界に対する抵抗変化を示した。(11) Using the same raw materials, Ba:Y:Sr:Cu=1
: A ceramic layer was prepared so that the ratio was 1:1:3. As a result, an abnormality in resistance was observed in No. 338, which showed a resistance change in response to a magnetic field similar to that in the above example.
〈発明の効果〉
以上のように、本発明の磁気抵抗素子システムによれば
、液体窒素等の冷却媒体を用いることなく、従来の半導
体や磁性体を用いた磁気抵抗素子の磁気検出特性とは全
く異なる高感度の磁気検出特性を得ることができる。<Effects of the Invention> As described above, according to the magnetoresistive element system of the present invention, the magnetic detection characteristics of conventional magnetoresistive elements using semiconductors or magnetic materials can be improved without using a cooling medium such as liquid nitrogen. Completely different and highly sensitive magnetic detection characteristics can be obtained.
第4図は本発明において用いられる磁気抵抗素子の特性
を示す概念図、第2図は本発明の磁気抵抗素子システム
の一実施例の構造を示す図、第3図は本発明の磁気抵抗
素子システムに使用したセラミックスの抵抗の温度依存
性を示す特性図、第4図は本発明の磁気抵抗素子システ
ムの一実施例の磁気検出特性を示す特性図、第5図は本
発明の磁気抵抗素子システムと電子冷却素子(ペルチェ
素子)を一体化した構造を示す図、第6図は従来の半導
体や磁性体を用いた磁気抵抗素子の特性を示す図である
。
1・・・超電導を示す物質を部分的に含むセラミックス
からなる素子、2・・・電流電極、3・・・電圧電極。
代理人 弁理士 杉 山 毅 至(他1名)ReSis
tmtX
番 1 図
第 2図
第5図Fig. 4 is a conceptual diagram showing the characteristics of the magnetoresistive element used in the present invention, Fig. 2 is a diagram showing the structure of an embodiment of the magnetoresistive element system of the invention, and Fig. 3 is a diagram showing the structure of the magnetoresistive element system of the invention. A characteristic diagram showing the temperature dependence of the resistance of the ceramics used in the system, FIG. 4 is a characteristic diagram showing the magnetic detection characteristics of an embodiment of the magnetoresistive element system of the present invention, and FIG. FIG. 6 is a diagram showing a structure in which a system and a thermoelectric cooling element (Peltier element) are integrated, and FIG. 6 is a diagram showing characteristics of a conventional magnetoresistive element using a semiconductor or a magnetic material. 1... Element made of ceramics partially containing a substance exhibiting superconductivity, 2... Current electrode, 3... Voltage electrode. Agent Patent Attorney Takeshi Sugiyama (and 1 other person) ReSis
tmtX No. 1 Figure 2 Figure 5
Claims (1)
ラミックスからなる素子と、 該素子に磁界を印加する手段と、 上記素子に磁界を印加したときに生ずる電気抵抗の変化
を検出する手段と を備えてなることを特徴とする磁気抵抗素子システム。 2、前記素子は、前記セラミックス中の超電導物質の超
電導状態を実現する温度に保持されてなることを特徴と
する特許請求の範囲第1項記載の磁気抵抗素子システム
。[Scope of Claims] 1. An element made of ceramics that partially contains a substance exhibiting superconductivity in a normal conductor, means for applying a magnetic field to the element, and electricity generated when a magnetic field is applied to the element. 1. A magnetoresistive element system comprising: means for detecting a change in resistance. 2. The magnetoresistive element system according to claim 1, wherein the element is maintained at a temperature that realizes a superconducting state of a superconducting substance in the ceramic.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62333970A JPH01175781A (en) | 1987-12-29 | 1987-12-29 | Magnetoresistive device system |
EP88312296A EP0323187B1 (en) | 1987-12-25 | 1988-12-23 | Superconductive magneto-resistive device |
US07/289,312 US5126667A (en) | 1987-12-25 | 1988-12-23 | Superconductive magneto-resistive device for sensing an external magnetic field |
DE3888659T DE3888659T2 (en) | 1987-12-25 | 1988-12-23 | Superconducting magnetoresistive device. |
US07/593,898 US5227721A (en) | 1987-12-25 | 1990-10-05 | Superconductive magnetic sensor having self induced magnetic biasing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62333970A JPH01175781A (en) | 1987-12-29 | 1987-12-29 | Magnetoresistive device system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01175781A true JPH01175781A (en) | 1989-07-12 |
Family
ID=18272027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62333970A Pending JPH01175781A (en) | 1987-12-25 | 1987-12-29 | Magnetoresistive device system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01175781A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413436B1 (en) * | 2001-04-17 | 2003-12-31 | 엘지전자 주식회사 | Pulsator for washing machine having drying function |
JP2010233756A (en) * | 2009-03-31 | 2010-10-21 | Hitachi Appliances Inc | Washing and drying machine and washing machine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828598A (en) * | 1971-08-16 | 1973-04-16 | ||
JPS5917175A (en) * | 1982-07-20 | 1984-01-28 | Aisin Seiki Co Ltd | Detecting element of magnetic field for extremely low temperature |
JPS60224253A (en) * | 1984-04-20 | 1985-11-08 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
-
1987
- 1987-12-29 JP JP62333970A patent/JPH01175781A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828598A (en) * | 1971-08-16 | 1973-04-16 | ||
JPS5917175A (en) * | 1982-07-20 | 1984-01-28 | Aisin Seiki Co Ltd | Detecting element of magnetic field for extremely low temperature |
JPS60224253A (en) * | 1984-04-20 | 1985-11-08 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413436B1 (en) * | 2001-04-17 | 2003-12-31 | 엘지전자 주식회사 | Pulsator for washing machine having drying function |
JP2010233756A (en) * | 2009-03-31 | 2010-10-21 | Hitachi Appliances Inc | Washing and drying machine and washing machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chaikin et al. | Thermoelectric power of tetrathiofulvalinium tetracyanoquinodimethane | |
US10734571B2 (en) | Magnetic field sensor based on topological insulator and insulating coupler materials | |
Fisher et al. | Hopping conductivity in fully oxygenated PrBa 2 Cu 3 O y, YBa 2 Cu 2 CoO y, and PrBa 2 Cu 2 CoO y | |
JPH01175781A (en) | Magnetoresistive device system | |
Iguchi et al. | An investigation of the characteristics of oxygen sensors using a Nd1+ xBa2− xCu3Oy-based ceramics rod | |
JP2585561B2 (en) | Oxide superconducting material | |
Dorbolo et al. | Effect of synthesis process and substrate on electrical and thermal transport properties of Bi-2212 | |
Yanson et al. | Point-contact studies of high-temperature superconductor $\rm YBa_2Cu_3O_ {7-\delta} $ | |
Iguchi et al. | Power-saving effect and sensor characteristics of sandwich structure on oxygen sensors using hot spot | |
Torsoni et al. | IV characteristic behavior of BSCCO-2223 superconductor under low intensity DC magnetic fields a Home-Made Experiment | |
Bala et al. | Determination of YBCO superconductor critical temperature and its voltage-current characteristics using four-point probe method | |
Abliz et al. | Superconductivity of Cd2Re2O7 under pressure | |
JP3379533B2 (en) | Method for manufacturing superconducting device | |
JP2798370B2 (en) | Copper oxide superconducting material | |
Paterno et al. | DC critical currents in superconducting ceramic samples of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7 | |
Allen et al. | Critical current density measurements of thin films of YBaCuO | |
JP2705306B2 (en) | Superconducting element | |
JPH0671101B2 (en) | Superconductor Magnetoresistive element | |
Kim et al. | Anomalous Reentrant Resistance Phenomena in Superconducting Sr1− xKxBiO3: Recovery of Superconductivity with Electric or Magnetic Field | |
JPH0799385B2 (en) | Superconducting magnetic field detector | |
Chen et al. | Humidity Effect on the High‐Tc (Pb, Bi) SrCaCuO Superconductor | |
JPH02114575A (en) | Magnetoresistance element of superconducting laminated film | |
JPH01173765A (en) | Superconductor film magnetic sensor | |
Winton et al. | Magnetoresistive effects in Bi-2212 melt textured bulk with MgO additions | |
JPH0282178A (en) | Superconducting magnetic sensor |