JPS5917175A - Detecting element of magnetic field for extremely low temperature - Google Patents

Detecting element of magnetic field for extremely low temperature

Info

Publication number
JPS5917175A
JPS5917175A JP57126017A JP12601782A JPS5917175A JP S5917175 A JPS5917175 A JP S5917175A JP 57126017 A JP57126017 A JP 57126017A JP 12601782 A JP12601782 A JP 12601782A JP S5917175 A JPS5917175 A JP S5917175A
Authority
JP
Japan
Prior art keywords
magnetic field
super conductive
electric resistance
resistance
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57126017A
Other languages
Japanese (ja)
Other versions
JPH0213751B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Shigeki Okamoto
岡本 茂樹
Tetsuo Oka
徹雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP57126017A priority Critical patent/JPS5917175A/en
Publication of JPS5917175A publication Critical patent/JPS5917175A/en
Publication of JPH0213751B2 publication Critical patent/JPH0213751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0352Superconductive magneto-resistances

Abstract

PURPOSE:To make possible a highly accurate and highly reliable measurement of an extrememly low temperature magnetic field, by utilizing magnetic flux current resistance phenomena of an amorphous super conductive alloy. CONSTITUTION:The variation of electric resistance value at the time of applying 0.06-110A/cm<2> electric current value and 0-70KOe magnetic field at 4.26 deg.K by using a sample of an amorphous super conductive alloy consisting of Mo77.5Si10 B12.5 which is manufactured by a liquid quenching method, is shown by the figure. A super conductive transition temperature of the alloy is 7.66 deg.K by a result of measurement and the electric resistance is changed suddenly at about 50KOe in the case where an electric current density JT is small (7, 8 in the figure) shown as the figure and the variation of its electric resistance for the magnetic field is increased nearly linear at about <=40KOe in the case where the JT is 20-50A/cm<2> (2, 3 in the figure) in opposition to the fact that the electric resistance is zero under the super conductive condition below the 50KOe and then, a magnetic flux current resistance is generated. Accordingly, the intensity of the magnetic field is measured by measuring the value of the electric resistance of the amorphous super conductive alloy.

Description

【発明の詳細な説明】[Detailed description of the invention]

不発明は、極低温、主に液体ヘリウム温度にて磁場を検
出する素子に関v Osのでa6す、更に詳述T′11
、は、超電導マグネットなどの極低温にて用いらI、イ
)機械等の極低温の部位に設k L/て、−f (1)
m気抵抗に測ることにより、該素子周囲の磁場の強びを
測定できく)素子(こ関するもので〃・る。 従来、液体ヘリウム温度付近の極低温における数I Q
 KOθ程度の13i磁場の検出あ2)いに測定には、
ポール素子るー・用いた検出器か用いら旧、でいるか、
極低温における数10 KOe程度の強さの融湯を検出
できるホール素子を使用した測定器は、半導体Ga−A
s(ガリウムーヒ素)を用いてとり、熱応力に弱いため
、信頼性に欠け、液体ヘリウム温度と常湿との繰返し使
用では、長期間にわたる使用に耐えないという致命的な
欠点かある。 本発明は、前記従来品の欠点を解決した新規な磁場検出
器に関するもりであり、極低温における高磁場測定に際
して、非晶質超電導合金に顕著に現わnる磁束流抵抗現
象を利用し、装置の機構の簡素化、信頼性の向上、低価
格化を図るものである。 従来、ソフトな超電導体において磁束流抵抗が現わnる
ことが知らγ1.ていた。しかし、この磁束流抵抗変化
は極めて僅かであったが、本発明者は非晶質超電導合金
の研究を行なっている際に、顕著な磁束流抵抗現象か現
わγl、ることを見出し、この現象を利用ynば極低温
用の磁場測定が可能であることを新規に発明した。 次に、この磁束流抵抗についての実験結果f’ R’(
’述する。 ・81図1に非晶質超電導合金とし°て液体急冷法によ
り製作しy:M(177−n 5j10 B+2−5 
よりなる試料(幅1all 、厚み25μm 、長CV
10t′tN)F用イテ4.26’Kにて電流イ1α帆
06〜110A/c′IR2,磁場O〜701(Oθを
力・げた際の電気抵抗値の変化を示−づ。次に、第1表
に第1図中の各々の曲線に対応しり電流密度JT′f:
示す。 第1表 合金の超電尊遷移淘度(コ、測定の結果7 、6ft’
にでI)つた。第1図にみ←パするように、電流音度J
Tが小ごい場合(第1肉の7及び8)は、約5 QKO
eで電気抵抗&4急激な変化を呈し、そn以下では超″
屯導状Jπにあり、電気抵抗は0であφのに対し、Jt
が20〜50 k/ax2(第11Jの2&び8)の場
The non-invention relates to an element that detects a magnetic field at an extremely low temperature, mainly at the temperature of liquid helium.
, is used at extremely low temperatures such as superconducting magnets.
The strength of the magnetic field around the element can be measured by measuring the magnetic resistance. Conventionally, the strength of the magnetic field around the element can be measured.
Detection of 13i magnetic field of about KOθ2) For measurement,
Pole element - Is the detector used old or old?
A measuring instrument using a Hall element that can detect molten metal with a strength of several tens of KOe at extremely low temperatures is a semiconductor Ga-A
It is made using s (gallium-arsenide) and is vulnerable to thermal stress, so it lacks reliability and has a fatal drawback of not being able to withstand long-term use when repeatedly used at liquid helium temperatures and normal humidity. The present invention relates to a novel magnetic field detector that solves the drawbacks of the conventional products, and utilizes the magnetic flux flow resistance phenomenon that appears significantly in amorphous superconducting alloys when measuring high magnetic fields at extremely low temperatures. This aims to simplify the mechanism of the device, improve its reliability, and reduce its cost. Conventionally, it has been known that magnetic flux flow resistance appears in soft superconductors. was. However, although this change in magnetic flux flow resistance was extremely small, the present inventor found that a remarkable magnetic flux flow resistance phenomenon appeared during research on amorphous superconducting alloys, and found that γl. We have newly discovered that it is possible to measure magnetic fields at extremely low temperatures by utilizing this phenomenon. Next, the experimental result f'R' (
'Describe.・81 Figure 1 shows an amorphous superconducting alloy produced by the liquid quenching method.
(width 1all, thickness 25μm, length CV
10t'tN) Ite for F 4. At 26'K, current I1α sail 06~110A/c'IR2, magnetic field O~701 (Oθ) is shown. , Table 1 shows the current density JT'f corresponding to each curve in Figure 1:
show. Table 1 Superelectronic transition resistance of alloys (Measurement results 7, 6ft'
Nide I) Ivy. As shown in Figure 1, the current sound intensity J
If T is small (first meat 7 and 8), approximately 5 QKO
At e, electrical resistance &4 shows a rapid change, and at n and below, it becomes extremely
The electric resistance is 0 and the electric resistance is φ, whereas Jt
is 20 to 50 k/ax2 (11th J-2 & 8)

【4、約40 KOe以下で、その電気抵抗の磁場【
二対する変化は、は!直線に増加し、磁束流抵抗が発生
している。し7こがって、この特性を利用し、非晶質超
電導合金の電気抵抗値を測定することによって、磁場の
強ぎを測定することができる。この場合の特徴は、素子
に流ILる電流が20〜50mAとiめて小さいことで
あり、このことは素子の温度を上昇させることも、冷却
用の液体ヘリウムの蒸発を併重こともない点で極めて有
利である本発明は上記の磁束流抵抗変化を利用したもの
であり、極低温にある磁場の被測定箇所に非晶質超電導
合金よりなる素子を設置し、該素子に設置した四本のリ
ード線のうち電流端子に直流電υ1i′、を定常的に流
し、電圧計に接続して電圧を測定し、両者より求められ
る磁束流抵抗を測定することによって素子近傍の磁場の
強さを簡明に測定することができる。 本発明の素子に用いることができる非晶質超電導合金の
種類の一例を第2表に示す。なお、素子として有効に使
用できる合金の領域は種々I・る○とが実験的に確かめ
らTしており、第2表υつ合金に限るものではない。ま
た、これらの合金群は液体急冷法によって作製されるリ
ボン状の材料でもスパッタリング等の気相析出法によっ
て作製されるガラス又はその他のセラミックス基板上に
形成された薄膜材料でも該素子として使用することがで
きる。 第2表 以上に述べた非晶質超電導合金を用いる極低温用の磁場
検出素子の利点を列記すit、ば、(1)電気抵抗が高
いために、磁束流抵抗の変化■■が大きく、精度の高い
測定が可能である。 (2)高い強度と延性をもつために耐衝撃性など外力に
対し、極めて強い素子であり、また熱IA(F張係数が
小さいために常温から極低温へ移行する際の熱衝撃、熱
応力による性能変化や劣下あるいは破断などの障害がな
く、長期間の使用に対して極めて信頼性の高い素子であ
る。 (3)他の結晶質超電導合金に比べて磁束流抵抗が発生
しやすく、少ない電流で用いン)ことができるため、素
子の湿度上昇はなく、素子周囲の温度上昇による冷却用
の液体ヘリウムの蒸発を押えることができる。 (4)機構が開学であるため、従来のホール素子等の他
の検出素子に比べて安価に製造でざる。 などの利点がある。 以下、実施例について説明する。 第2図に液体急冷法によって製作した素子の−例を示す
。 第2図Gこゴうけ2.1 i11本発明の素子で、2は
その組成かIv1077−5 S inn B12.5
よりな合弁晶質超電導合金で、3a〜3dii蒸石によ
21銀電極で、4は基板よりなる支持体、5はリード線
で、6は低温ハンダ、5a、5bは電流端子、5 b 
* 50c:a %Ik端子、7(J接着剤である。な
お、この場合の非晶質超電導合金の形状は、厚さ10μ
m、[[]41RN、長び44朋である。この素子百・
用いて実+i:すした結果を第3図に示す。 第8図の1は4.26°に、2は8.51°にでの結果
であり、4.26°にでは約40 KOeまで、3.5
1°にでは約50KOθまで、はヌ直線に比抵抗が変化
している。この結果を用いて磁場のil定を行ったとこ
ろ、4.26°にではは’: 60 KOe 、 3.
510K ”i:’は4J: i 70 KOeまでは
磁場の測定が±2 KOeの精度で可能であった。 このように本発明【ゴ、極低温における数l QKDθ
の強い磁場の測定に対し、高精度で極めて信頼性の高い
画期的な磁場検出素子を提供】−るものである。
[4. Below about 40 KOe, the magnetic field of its electrical resistance [
The difference between the two is ha! The magnetic flux flow resistance increases linearly. Therefore, by utilizing this property and measuring the electrical resistance value of the amorphous superconducting alloy, the strength of the magnetic field can be measured. A feature of this case is that the current flowing through the device is as small as 20 to 50 mA, which means that it does not increase the temperature of the device or cause the evaporation of liquid helium for cooling. The present invention, which is extremely advantageous in this respect, utilizes the change in magnetic flux flow resistance described above. An element made of an amorphous superconducting alloy is installed at the location where the magnetic field is to be measured at an extremely low temperature, and four The strength of the magnetic field near the element can be determined by constantly passing a DC current υ1i' through the current terminal of the main lead wire, connecting it to a voltmeter to measure the voltage, and measuring the magnetic flux flow resistance obtained from both. It can be easily measured. Table 2 shows examples of types of amorphous superconducting alloys that can be used in the device of the present invention. The range of alloys that can be effectively used as elements has been experimentally confirmed by various researchers, and is not limited to the alloys shown in Table 2. In addition, these alloys can be used as the element, either in the form of a ribbon made by a liquid quenching method or in the form of a thin film formed on a glass or other ceramic substrate by a vapor deposition method such as sputtering. I can do it. Table 2 Lists the advantages of the magnetic field detection element for extremely low temperatures using the amorphous superconducting alloy described above. (1) Due to the high electrical resistance, the change in magnetic flux flow resistance is large; Highly accurate measurements are possible. (2) Due to its high strength and ductility, it is an extremely strong element against external forces such as impact resistance, and due to its low thermal IA (F tensile coefficient), thermal shock and thermal stress occur when transitioning from room temperature to cryogenic temperature. It is an extremely reliable element that can be used for a long period of time without problems such as performance change, deterioration, or breakage. (3) Magnetic flux flow resistance is more likely to occur than other crystalline superconducting alloys. Since the device can be used with a small amount of current, there is no increase in the humidity of the device, and it is possible to suppress the evaporation of liquid helium used for cooling due to a rise in temperature around the device. (4) Since the mechanism is a newly developed one, it can be manufactured at a lower cost than other detection elements such as conventional Hall elements. There are advantages such as Examples will be described below. FIG. 2 shows an example of a device manufactured by the liquid quenching method. Figure 2 G Kogoke 2.1 i11 Element of the present invention, 2 is its composition Iv1077-5 S inn B12.5
A joint venture crystalline superconducting alloy, 3a to 3dii steam stones, 21 silver electrodes, 4 a support made of a substrate, 5 lead wires, 6 low temperature solder, 5a and 5b current terminals, 5 b
* 50c: a % Ik terminal, 7 (J adhesive. In this case, the shape of the amorphous superconducting alloy is 10μ thick
m, [[]41RN, length 44 ho. This element 100・
Figure 3 shows the results obtained using the following methods. In Figure 8, 1 is the result at 4.26°, 2 is the result at 8.51°, and at 4.26°, up to about 40 KOe, 3.5
At 1°, the resistivity changes in a straight line up to about 50KOθ. When we used this result to determine the magnetic field, we found that at 4.26°: 60 KOe, 3.
510K ``i:'' is 4J: i It was possible to measure the magnetic field with an accuracy of ±2 KOe up to 70 KOe. In this way, the present invention
The present invention provides an innovative magnetic field detection element that is highly accurate and highly reliable for measuring strong magnetic fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理となる磁束流抵抗の電流密度依存
性を表わした図、第2図は本発明しこもとづく素子の1
例であり、(イ)は素子全体の見取り図、(ロ)はAA
′断面の矢視図である。そして、第8図G:↑第2図に
示す実施例の結果で圃場の強ざに対弓゛る磁束流抵抗値
を表わT。 l・・・磁場検出素子、2・・・非晶質超電導合金、3
a〜3d・・・電極、4・・・支持体特許出願人 アイシン精機株式会社 代表者中井令夫 増   本       健
Fig. 1 is a diagram showing the current density dependence of magnetic flux flow resistance, which is the principle of the present invention, and Fig. 2 is a diagram showing one of the elements based on the present invention.
This is an example, (a) is a sketch of the entire device, (b) is an AA
' is a cross-sectional view taken in the direction of arrows. FIG. 8G: ↑The result of the example shown in FIG. 2 shows the magnetic flux flow resistance value as a function of the strength of the field. l...Magnetic field detection element, 2...Amorphous superconducting alloy, 3
a-3d... Electrode, 4... Support Patent applicant Aisin Seiki Co., Ltd. Representative Reio Nakai Masu Ken Moto

Claims (1)

【特許請求の範囲】[Claims] tη体ヘリウム濡温度上絶対温度lO°に以下で超電導
に13移すく)非晶質相からなる5 0 It m以下
の薄板状又は線状の超電導合金を絶縁体よりなる支持体
に固着して極低温における磁場グ〕被測定箇所に設置し
て磁場の強さを測定する極低温用の磁場検出素子。
Transferring to superconductivity at an absolute temperature of 10° above the helium wetting temperature of the tη body and below 13) A thin plate-like or linear superconducting alloy of 50 It m or less consisting of an amorphous phase is fixed to a support made of an insulator. Magnetic field at cryogenic temperatures] A magnetic field detection element for cryogenic temperatures that is installed at the location to be measured to measure the strength of the magnetic field.
JP57126017A 1982-07-20 1982-07-20 Detecting element of magnetic field for extremely low temperature Granted JPS5917175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126017A JPS5917175A (en) 1982-07-20 1982-07-20 Detecting element of magnetic field for extremely low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126017A JPS5917175A (en) 1982-07-20 1982-07-20 Detecting element of magnetic field for extremely low temperature

Publications (2)

Publication Number Publication Date
JPS5917175A true JPS5917175A (en) 1984-01-28
JPH0213751B2 JPH0213751B2 (en) 1990-04-05

Family

ID=14924656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126017A Granted JPS5917175A (en) 1982-07-20 1982-07-20 Detecting element of magnetic field for extremely low temperature

Country Status (1)

Country Link
JP (1) JPS5917175A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432183A (en) * 1987-07-29 1989-02-02 Sharp Kk Superconductive magnetic field detecting element
JPS6438675A (en) * 1987-08-01 1989-02-08 Sharp Kk Digital magnetic field detecting apparatus
JPS6437883A (en) * 1987-08-03 1989-02-08 Sharp Kk X-y potentiometer
JPS6437885A (en) * 1987-08-03 1989-02-08 Sharp Kk Superconducting rheostat and displacement converter
JPS6437884A (en) * 1987-08-03 1989-02-08 Sharp Kk Displacement/electric conversion
JPS6439570A (en) * 1987-08-05 1989-02-09 Sharp Kk Control system for superconductive magnetic characteristic
JPH01138770A (en) * 1987-07-29 1989-05-31 Sharp Corp Superconducting magnetoresistance element system
JPH01145589A (en) * 1987-08-01 1989-06-07 Sharp Corp Drive method of ceramic superconductive magnetic sensor
JPH01161177A (en) * 1987-12-16 1989-06-23 Sharp Corp Characteristic control circuit for superconducting magnetic sensor
JPH01173507A (en) * 1987-12-25 1989-07-10 Sharp Corp Superconductor magnetoresistance element
JPH01173765A (en) * 1987-12-28 1989-07-10 Sharp Corp Superconductor film magnetic sensor
JPH01175781A (en) * 1987-12-29 1989-07-12 Sharp Corp Magnetoresistive device system
JPH01196586A (en) * 1988-02-01 1989-08-08 Sharp Corp Magnetic sensor
JPH01217282A (en) * 1988-02-25 1989-08-30 Tokai Univ Magnetic field detector
JPH01239490A (en) * 1988-03-18 1989-09-25 Sharp Corp Magnetic image detecting device
JPH01239488A (en) * 1988-03-18 1989-09-25 Sharp Corp Driving method of superconducting magneto-resistance element
JPH01254880A (en) * 1988-04-04 1989-10-11 Sharp Corp Magnetic pattern detector
JPH01153659U (en) * 1988-04-04 1989-10-23
JPH01287489A (en) * 1988-05-13 1989-11-20 Sharp Corp Superconducting magnetic sensor
JPH01291180A (en) * 1988-05-17 1989-11-22 Sharp Corp Magnetism detecting device
JPH01291182A (en) * 1988-05-17 1989-11-22 Sharp Corp Magnetism detecting device
JPH01302784A (en) * 1988-02-10 1989-12-06 Sharp Corp Ceramic superconducting device
JPH01302785A (en) * 1988-02-10 1989-12-06 Sharp Corp Ceramic superconducting device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432183A (en) * 1987-07-29 1989-02-02 Sharp Kk Superconductive magnetic field detecting element
JPH01138770A (en) * 1987-07-29 1989-05-31 Sharp Corp Superconducting magnetoresistance element system
JPS6438675A (en) * 1987-08-01 1989-02-08 Sharp Kk Digital magnetic field detecting apparatus
JPH01145589A (en) * 1987-08-01 1989-06-07 Sharp Corp Drive method of ceramic superconductive magnetic sensor
JPS6437883A (en) * 1987-08-03 1989-02-08 Sharp Kk X-y potentiometer
JPS6437885A (en) * 1987-08-03 1989-02-08 Sharp Kk Superconducting rheostat and displacement converter
JPS6437884A (en) * 1987-08-03 1989-02-08 Sharp Kk Displacement/electric conversion
JPS6439570A (en) * 1987-08-05 1989-02-09 Sharp Kk Control system for superconductive magnetic characteristic
JPH01161177A (en) * 1987-12-16 1989-06-23 Sharp Corp Characteristic control circuit for superconducting magnetic sensor
JPH01173507A (en) * 1987-12-25 1989-07-10 Sharp Corp Superconductor magnetoresistance element
JPH01173765A (en) * 1987-12-28 1989-07-10 Sharp Corp Superconductor film magnetic sensor
JPH01175781A (en) * 1987-12-29 1989-07-12 Sharp Corp Magnetoresistive device system
JPH01196586A (en) * 1988-02-01 1989-08-08 Sharp Corp Magnetic sensor
JPH01302784A (en) * 1988-02-10 1989-12-06 Sharp Corp Ceramic superconducting device
JPH01302785A (en) * 1988-02-10 1989-12-06 Sharp Corp Ceramic superconducting device
JPH01217282A (en) * 1988-02-25 1989-08-30 Tokai Univ Magnetic field detector
JPH01239490A (en) * 1988-03-18 1989-09-25 Sharp Corp Magnetic image detecting device
JPH01239488A (en) * 1988-03-18 1989-09-25 Sharp Corp Driving method of superconducting magneto-resistance element
JPH01254880A (en) * 1988-04-04 1989-10-11 Sharp Corp Magnetic pattern detector
JPH01153659U (en) * 1988-04-04 1989-10-23
JPH01287489A (en) * 1988-05-13 1989-11-20 Sharp Corp Superconducting magnetic sensor
JPH01291180A (en) * 1988-05-17 1989-11-22 Sharp Corp Magnetism detecting device
JPH01291182A (en) * 1988-05-17 1989-11-22 Sharp Corp Magnetism detecting device

Also Published As

Publication number Publication date
JPH0213751B2 (en) 1990-04-05

Similar Documents

Publication Publication Date Title
JPS5917175A (en) Detecting element of magnetic field for extremely low temperature
Polak et al. Voltage-current characteristics of NbTi and Nb3Sn superconductors in the flux creep region
Fleiter et al. In-field electrical resistance at 4.2 K of REBCO splices
JP4223744B2 (en) Critical current measurement method for high temperature superconducting wire
Chang et al. An experimental study on the joint methods between double pancake coils using YBCO coated conductors
Possin Superconductivity in nearly one-dimensional tin wires
JPH01152260A (en) Room temperature superconductor
CN105784183A (en) SMD temperature sensor and preparation technology therefor
McWane et al. Ultrasensitive potentiometer for use at liquid helium temperatures
CN205642668U (en) SMD temperature sensor
Benz Mechanical and Electrical Properties of Diffusion‐Processed Nb3Sn‐Copper‐Stainless Steel Composite Conductors
Chen et al. Upper critical magnetic field of the superconducting heavy fermion system (U1− x Th x) Be13
US4566323A (en) Liquid helium level indicating gauge
Hudson et al. The critical current density of filamentary Nb 3 Sn as a function of temperature and magnetic field
CN1464292A (en) Temperature measurement node point suspension thin film electric thermocouple
FI102695B (en) CB-based tunneling thermometer
Fujii et al. Effect of thermal contraction of sample-holder material on critical current
JPH06100487B2 (en) Liquid helium level gauge for high pressure and high magnetic field
Akhmetov et al. Current voltage characteristics of composite superconductors with high contact resistance
Fukumoto et al. Study of Strain Effects on Critical Current and Mechanical Property in “In Situ” Nb3Sn Conductor
JPH01148928A (en) Stress sensor
JPS58189528A (en) Thermometer for cryogenic temperature
Teutsch et al. Hall Effect and Resistance of Dilute Gold-Chromium Alloys at Low Temperatures
Plackowski et al. Magneto-thermopower of single-crystal MgB 2: Evidence for strong electron-phonon coupling anisotropy
YAGI et al. Liquid Level Indicator for Metal Dewar