JPH01173765A - Superconductor film magnetic sensor - Google Patents

Superconductor film magnetic sensor

Info

Publication number
JPH01173765A
JPH01173765A JP62333592A JP33359287A JPH01173765A JP H01173765 A JPH01173765 A JP H01173765A JP 62333592 A JP62333592 A JP 62333592A JP 33359287 A JP33359287 A JP 33359287A JP H01173765 A JPH01173765 A JP H01173765A
Authority
JP
Japan
Prior art keywords
magnetic sensor
film
superconductor film
magnetic field
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62333592A
Other languages
Japanese (ja)
Inventor
Masaya Osada
昌也 長田
Terue Kataoka
片岡 照栄
Shuhei Tsuchimoto
修平 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62333592A priority Critical patent/JPH01173765A/en
Priority to AT88307044T priority patent/ATE95316T1/en
Priority to DE88307044T priority patent/DE3884514T2/en
Priority to US07/226,067 priority patent/US5011818A/en
Priority to EP88307044A priority patent/EP0301902B1/en
Publication of JPH01173765A publication Critical patent/JPH01173765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a magnetic sensor, which has a superior sensitivity characteristic to a weak magnetic field is well and whose consumption power is remarkedly little, by a method wherein a superconductor film of a thickness within a specified range is formed by a spray pyrolysis method. CONSTITUTION:A magnetic sensor is formed to form a superconductor film to generate a voltage, which corresponds to an applying magnetic field intensity and a measuring current intensity, by a spray pyrolysis method and the thickness of the film is formed within a range of 0.2-50mum. By this method, the thin superconductor film of a thickness within a prescribed range is used as a superconductor film magnetic sensor, which is uniformized the composition ratio of elements, is made small the particle diameters of its constituent particles, has a high density and an improved crystalline orientation property, is remarkably low in consumption power and has a superior sensitivity characteristic to a weak magnetic field as well.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、微弱な磁界1で測定できるセラミック超電導
体膜からなる磁気センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a magnetic sensor made of a ceramic superconductor film that can perform measurements with a weak magnetic field 1.

〈従来の技術〉 従来、磁界の測定を、一般的には半導体、又は、磁性体
の磁気抵抗効果による磁気センサが使われていた。半導
体は、1nSb、InAs等の形状効果、磁性体trl
Fe−Niパーマロイ、CoNiの配回効果を用いた磁
気センサが実用化されている。又、特に高感度の磁気セ
ンサが必要なときは5QUID(i[1[4量子干渉素
子)が使用されていた。また、最近、従来と異なるセラ
ミック超電導体膜粒界を利用する磁気センサが提案され
ている。
<Prior Art> Conventionally, a magnetic sensor based on the magnetoresistive effect of a semiconductor or a magnetic material has generally been used to measure a magnetic field. Semiconductors include shape effects such as 1nSb and InAs, and magnetic materials trl.
Magnetic sensors using the distribution effect of Fe-Ni permalloy and CoNi have been put into practical use. Furthermore, when a particularly highly sensitive magnetic sensor is required, a 5QUID (i[1[4 quantum interference device)] has been used. Furthermore, recently, magnetic sensors that utilize ceramic superconductor film grain boundaries, which are different from conventional ones, have been proposed.

〈発明が解決しょうとする問題点〉 従来の磁気抵抗効果を用いた磁気センサは磁界に対する
、その抵抗の変化が第4図の工うに、2次曲線に沿う特
性であった。従って、測定する磁界が弱いときは、抵抗
の変化が小さいため、弱い磁界の測定が難しかまた。一
方、5QUIDは、極めて高い感度をもち、10 カラ
スの弱磁界の測定もできるが、超電導体の間に極く薄い
絶縁膜を形成したジョセフソン素子を組み合せて作製す
るため、作製に高度な技術を要し、使用も簡便ではなか
った。
<Problems to be Solved by the Invention> A conventional magnetic sensor using a magnetoresistive effect has a characteristic in which the change in resistance with respect to a magnetic field follows a quadratic curve, as shown in FIG. Therefore, when the magnetic field to be measured is weak, the change in resistance is small, making it difficult to measure weak magnetic fields. On the other hand, 5QUID has extremely high sensitivity and can measure magnetic fields as weak as 10 crows, but it requires advanced technology to fabricate because it is fabricated by combining a Josephson element with an extremely thin insulating film formed between superconductors. It was not easy to use.

セラミック超電導体の粒界を利用する磁気センサは、超
電導体粒子の粒界に極く薄い絶縁膜全介在させるか、粒
子間がポイント状の弱結合などで、結合せれた粒子の集
合体からなるものである。このセラミック超電導体の結
合部は、弱い磁界を印加しても超電導状態が壊れ、常電
導状態になって、電気抵抗をもつようになる。
A magnetic sensor that utilizes the grain boundaries of a ceramic superconductor consists of an aggregate of particles that are bonded together, either through an extremely thin insulating film entirely interposed at the grain boundaries of the superconductor particles, or through point-like weak bonds between the particles. It is something. Even when a weak magnetic field is applied to the bonded portion of this ceramic superconductor, the superconducting state is broken and it becomes a normal conductive state and has electrical resistance.

セラミック超電導体磁気センサを、従来の粉末焼結法で
作製し、特性全示したのが、第5図である。この図に示
したように弱い磁界で、その粒界の超電導状態が壊れだ
すと、磁界の強さに従って素子の抵抗が急速に大きくな
っている。これは、このセンサか弱い磁界でも感度が高
いことを示すものである。
A ceramic superconductor magnetic sensor was manufactured using a conventional powder sintering method, and all of its characteristics are shown in FIG. As shown in this figure, when the superconducting state of the grain boundaries begins to break down in a weak magnetic field, the resistance of the element increases rapidly as the strength of the magnetic field increases. This shows that this sensor has high sensitivity even in weak magnetic fields.

このセラミック超電導体磁気センサの感度は粒界に発生
する抵抗で決普るのでその粒界の数によって高くできる
。従って、その粒径を小さくし、粒界を増加することで
、磁気センサを高感度にすることができる。
The sensitivity of this ceramic superconductor magnetic sensor is determined by the resistance generated at grain boundaries, so it can be increased by changing the number of grain boundaries. Therefore, by reducing the grain size and increasing the number of grain boundaries, a magnetic sensor can be made highly sensitive.

従来の、一般的なセラミック超電導体は、その原料粉末
を所定の比になるよう秤量・混合し、空気中などの酸化
雰囲気で900〜1000℃に加熱して酸化化合物にし
た後、再度、粉砕−加圧成形−焼成の工程で超電導体を
均一な組成になるようにしたが、機械的な方法ではその
粒径を小さくするのにも限度があり、又、その充填率〔
密度〕を高くするのも難しかった0従って、超電導体の
粒径もあまり小さくならず、(1μm−程度迄)粒界の
数も限られていたので、粒界に二って抵抗を発生するセ
ラミック超電導体の感度の同上も上記の理由に二って制
約を受けていた。
Conventional, common ceramic superconductors are made by weighing and mixing raw material powders to a predetermined ratio, heating them to 900 to 1000°C in an oxidizing atmosphere such as air to form an oxide compound, and then crushing them again. - Although the superconductor was made to have a uniform composition through the pressure forming and firing process, there is a limit to how small the particle size can be reduced using mechanical methods, and the filling rate [
Therefore, the grain size of the superconductor was not very small, and the number of grain boundaries was limited (up to about 1 μm), so the grain boundaries generated resistance. The sensitivity of ceramic superconductors was also limited by the above two reasons.

又、粉末焼結法で作製する超電導体はバルクになり、磁
気抵抗素子にするためには、これを薄く又、細くするた
めの加工をしているが、一定収下の卑さにすることは、
材料の密度が高くないこともあって、難しかった。従っ
て、センサに流す測定電流もかなり大きくなっていた。
In addition, superconductors produced by the powder sintering method are bulk, and in order to make magnetoresistive elements, they are processed to make them thinner and thinner, but it is necessary to make them as thin as possible within a certain yield. teeth,
This was difficult, partly because the density of the material was not high. Therefore, the measurement current flowing through the sensor has also become considerably large.

本発明の超電導体磁気センサは、上記の問題点を解決す
るもので、その特性の良いセンサーの構成が、容易な工
程で得られるものである。
The superconducting magnetic sensor of the present invention solves the above-mentioned problems, and the structure of the sensor with good characteristics can be obtained through a simple process.

く問題点を解決するための手段〉 本発明は、セラミックを簡単に作製するスプレーパイロ
リシス法に二り、セラミック超電導体膜を作製するもの
である0 超電導体全構成する元素は、水溶性の化合物(塩基など
)で準備し、所定の量を秤量し、充分溶解できる量の純
水に溶かしておくoこの水溶液を噴射する水溶液の粒子
が非常に小さくなるノズルで、加熱した基板に、低い膜
成長になる二う噴きつけるスプレーパイロリシス法で、
セラミック超電導体膜を作成した。作製するときの、ス
プレーの噴射速度、その膜の成長速度、膜形成後の焼成
温度などに工り、結晶粒子が小さく、粒界の制御性が二
い、磁気センサとして高感度になる超電導体膜にできる
ことが分った。
Means for Solving Problems〉 The present invention uses a spray pyrolysis method for easily manufacturing ceramics, and manufactures a ceramic superconductor film.The elements constituting all the superconductors are water-soluble. Prepare a compound (such as a base), weigh a predetermined amount, and dissolve it in a sufficient amount of pure water. The spray pyrolysis method uses two sprays to form a film.
A ceramic superconductor film was created. Superconductors with small crystal grains, good controllability of grain boundaries, and high sensitivity as magnetic sensors by adjusting the spray speed, the growth rate of the film, and the firing temperature after film formation. It turns out that this can be done on membranes.

又、このスプレーパイロリシス法で、セラミック超電導
体膜を作製すると、その結晶軸が配回し、かつ、密度も
従来の粉末焼成法によるより#j高くなっていることが
分った。
It was also found that when a ceramic superconductor film is produced using this spray pyrolysis method, its crystal axes are aligned and the density is #j higher than that obtained using the conventional powder firing method.

く作用〉 本発明は、従来の機械的な加工精度に工って決する粒径
と異なジ、極く小さい粒径にできへ又、セラミックス超
電導体の元素の化合物を水溶液にし、原子単位で均一に
でき?、水溶液を攪拌しながら、スプレーを遅く、又は
、間欠的にしたスプレーパイロリシス法で、超電導体の
磁気抵抗センサを作製するものである。この方法によれ
ばセラミックス超電導体の作製は、成長速度や温度条件
に=っで、粒子の大きさの制御が可能になり、雰囲気と
温度制御で、その粒子の粒界k ?tilJ御すること
ができる、又、基板と、その膜の成長速度などの選択に
よって、作製する膜の結晶の配向性も制御することがで
きる。この、スプレーパイロリシス法は、その超電導体
膜炸裂の条件の選定によって、極めて薄く、かつ構成す
る粒子の粒径が小さてき、更に、その粒子の粒界の状態
も制御することができ、従来の粉末焼結法によるものニ
ジ数桁も小さい、測定のために素子に流す測定電流に工
り、微小な磁場を測定するセラミック超電導体磁気抵抗
素子センサを得ることができるO〈実施例〉 本発明の実施例上図面を参照して説明する。
Effects> The present invention is capable of producing extremely small particle sizes, which are different from those determined by conventional mechanical processing precision, and by making a compound of the elements of a ceramic superconductor into an aqueous solution, it can be made uniform on an atomic basis. Can you do it? , a superconductor magnetoresistive sensor is fabricated using a spray pyrolysis method in which spraying is performed slowly or intermittently while stirring an aqueous solution. According to this method, when producing a ceramic superconductor, it is possible to control the particle size by controlling the growth rate and temperature conditions, and by controlling the atmosphere and temperature, the grain boundaries of the particles k? Furthermore, by selecting the substrate, the growth rate of the film, etc., the crystal orientation of the film to be produced can also be controlled. This spray pyrolysis method makes it possible to make the superconductor film extremely thin and have a small particle size by selecting the conditions for bursting the superconductor film, and also to control the state of the grain boundaries of the particles. By using the powder sintering method, it is possible to obtain a ceramic superconductor magnetoresistive element sensor that measures minute magnetic fields by modifying the measurement current that flows through the element for measurement, which is several orders of magnitude smaller. Embodiments of the invention will be described with reference to the drawings.

実施例1 第1図は、本発明のスプレーパイロリシス法に二って作
製した、微小なセラミック粒子の極く薄い絶縁膜、又は
ポイント状の弱接合をもつ超電導体磁気抵抗素子の一笑
施例を示した図であるOこV の素子はY−Ba−CuO系の組成であり、使用した原
料は、Y(NO3)3拳6H20りBa(NO3)2 
及びCu(NO3)2・3H20である0これを所定の
組成比(Y B a 2 Cu a )になるよう秤量
し、各成分が充分溶解する量の純水で溶解した上、第2
図に示した図の方法で、本発明の磁気センサーを作製し
たO上記のようにして作つ之Y、Ba及びCuの硝酸塩
を純水に溶解した液6をスプレー装置の容器5に入れ充
分に攪拌しながら、極く小量ずつ、スプレーガン4から
圧縮空気8によって非常に水溶液6の粒子の小さい霧7
にして、約600℃にヒーター3で加熱した、安定化ジ
ルコニアの結晶基板1に噴き付けた。
Example 1 Figure 1 shows a simple example of a superconducting magnetoresistive element having an extremely thin insulating film of minute ceramic particles or a point-like weak junction, which was fabricated using the spray pyrolysis method of the present invention. The element shown in the figure shows the composition of Y-Ba-CuO, and the raw materials used are Y(NO3)3x6H20 and Ba(NO3)2
and Cu(NO3)2.3H20 were weighed so as to have a predetermined composition ratio (Y Ba 2 Cu a ), dissolved in an amount of pure water that would sufficiently dissolve each component, and then
The magnetic sensor of the present invention was manufactured by the method shown in the figure.The solution 6 in which the nitrates of Y, Ba, and Cu dissolved in pure water was poured into the container 5 of the spray device and was thoroughly heated. While stirring, a spray gun 4 sprays compressed air 8 into a very small mist 7 of an aqueous solution 6.
The liquid was then sprayed onto a stabilized zirconia crystal substrate 1 that had been heated to about 600° C. with a heater 3.

このスプレーの噴き付けは、噴き付は速度を早くしない
こと、及び、基板1の温度を下げないため、小量ずつ約
百回の繰り返し噴き付けることに工り厚さが約10μm
の膜を作製した。この方法でのスプレーは、スプレーガ
ンの圧縮空気でなく、窒素(N2)又は、酸素(02)
ガスを用いても、同じ工うに作製することができた。又
、作製する膜厚は0.5μmから50μm迄良好な膜を
作製することができたが、磁気センサーとして特性の良
かったのは1μmから10μm程度の厚さの膜であった
Oスプレーするときの基板1の温度は、300℃から6
00℃の間で、変えることが可能であつtc。
In order to avoid increasing the speed of spraying and not lowering the temperature of the substrate 1, this spraying is repeated in small amounts approximately 100 times until the thickness is approximately 10 μm.
A film was prepared. This method uses nitrogen (N2) or oxygen (02) instead of compressed air from a spray gun.
The same process could be made using gas. In addition, we were able to fabricate a good film with a thickness of 0.5 μm to 50 μm, but the film with a thickness of about 1 μm to 10 μm had good characteristics as a magnetic sensor. The temperature of the substrate 1 is 300°C to 6°C.
It is possible to vary between 00°C and tc.

スプレーパイロリシス法で作った膜は、空気中950℃
で約30分加熱し、徐冷する焼成にニジ、セラミック超
電導体膜にした。この焼成温度は900℃から1000
℃の間で変えても工く、又、膜厚などに工っては、焼成
時間を1分から60分位の範囲で変えてもよかった。
Membranes made using the spray pyrolysis method can be heated to 950°C in air.
After heating for about 30 minutes and slowly cooling, a ceramic superconductor film was obtained. This firing temperature ranges from 900℃ to 1000℃.
The firing time could be changed between 1 and 60 minutes depending on the film thickness, etc.

なお、作製する超電導体の膜厚が02μm以下になると
充てん率や均一性が悪くなり、又、この膜厚が50μm
程度以上になると、基板1との密着性が悪くなったり、
測定するときの磁気センサに流す測定電流を大きくしな
ければ所定の感度にならない、という特性不利になる点
もあった0以上の工うにして作製した超篭尋体膜9は第
1図の二うに、電流電極10と電圧電極11t1その膜
9との密着性の工いチタン(Ti)’!r蒸着して作り
、そこに銀ペーストでリードi%Mk接続して、それぞ
れの電極を、定電流源12及び出力電圧測定器13と接
続した。
Note that if the film thickness of the superconductor to be produced is less than 0.2 μm, the filling rate and uniformity will deteriorate;
If it exceeds this level, the adhesion with the substrate 1 may deteriorate,
There was also a characteristic disadvantage in that the measurement current applied to the magnetic sensor during measurement had to be increased to reach the desired sensitivity. Second, the adhesion between the current electrode 10 and the voltage electrode 11t1 and the film 9 is made of titanium (Ti)! The electrodes were made by evaporating R, and a lead i%Mk was connected thereto using silver paste, and each electrode was connected to a constant current source 12 and an output voltage measuring device 13.

以上の工うに測定用の接続をした超電導体磁気センサを
、液体窒素(77K)に入れて、測定した結果を示した
のが第3図である。
The superconducting magnetic sensor connected for measurement in the manner described above was immersed in liquid nitrogen (77K), and the results of measurements were shown in FIG. 3.

第3図は、膜厚が10μmの磁気センサーに、1mAの
測定電流を流したときである0この図のように磁界がな
いときは、磁気センサの抵抗は零であるが、少しでも磁
界14を印加すると抵抗が発生じ、印加する磁界I4の
強さとともに抵抗は急激に増加した。これは、従来の、
半導体や磁性体を用いた磁気抵抗素子がもつ第4図の2
次曲線の特性と全く異った弱い磁場で高感度な特性を示
している。
Figure 3 shows the result when a measurement current of 1 mA is passed through a magnetic sensor with a film thickness of 10 μm.As shown in this figure, when there is no magnetic field, the resistance of the magnetic sensor is zero, but even a small amount of magnetic field 14 When I4 was applied, resistance was generated, and the resistance increased rapidly with the strength of the applied magnetic field I4. This is the traditional
2 in Figure 4 of a magnetoresistive element using a semiconductor or magnetic material
It exhibits highly sensitive characteristics in weak magnetic fields, which are completely different from the characteristics of the following curve.

第5図は、粉末焼成法に工っで作製した本発明と同じ組
成の超電導体を用いて作製した、厚さ1mの磁気センサ
を本発明の磁気センサと同じ方法で測定したときの特性
を示したグラフである0なお、この磁気センサは、流す
電流Ik大きくすると、磁場に対する感度がよくなるこ
とを確認している。
Figure 5 shows the characteristics of a 1 m thick magnetic sensor fabricated using a superconductor with the same composition as the present invention fabricated using the powder sintering method using the same method as the magnetic sensor of the present invention. The graph shown is 0. It has been confirmed that this magnetic sensor becomes more sensitive to the magnetic field when the flowing current Ik is increased.

第3図と第5図を比較すると分るように、印加した磁界
が100エルステツドのとき、本発明の磁気センサは測
定電流Iが1mAで検出電圧が1.4mVになり、その
抵抗値は、1400mAであった。これに対し粉末焼成
法による磁気センサ(第5図)は、電流Iが100mA
で、出力電圧は0.27mVになり、発生した電圧は2
.7mΩになる。
As can be seen by comparing Figures 3 and 5, when the applied magnetic field is 100 oersted, the magnetic sensor of the present invention has a detection voltage of 1.4 mV at a measurement current I of 1 mA, and its resistance value is: It was 1400mA. On the other hand, in a magnetic sensor using the powder firing method (Fig. 5), the current I is 100 mA.
Then, the output voltage becomes 0.27mV, and the generated voltage is 2
.. It becomes 7mΩ.

このように本発明による磁気センサは、磁界が零の近く
で立上り、磁界の強度の増加に対する出力感度も、粉末
焼成法の磁気センサニジ非常に良好で、しかも低消費電
力化と高感度化が図れたことを示している。
As described above, the magnetic sensor according to the present invention has a magnetic field that rises near zero, and output sensitivity to increases in magnetic field strength that is much better than that of the magnetic sensor using the powder firing method.Moreover, it can achieve lower power consumption and higher sensitivity. It shows that

実施例2 実施例1と同じ工うに、Y、Ba及びCu の硝酸塩水
溶液によるスプレーパイロリシス法で作製したが、噴き
付けて1〜3μm膜を作製するたびに、750℃〜85
0℃に空気中での仮焼成をくり返した。
Example 2 In the same manner as in Example 1, a film was prepared using a spray pyrolysis method using an aqueous nitrate solution of Y, Ba and Cu, but each time a film of 1 to 3 μm was sprayed, the temperature was 750°C to 85°C.
Temporary firing in air at 0°C was repeated.

この仮焼成を行なう他は、実施例1と同じ工程によって
磁気センサを作製した。この磁気センサを実施例1と同
じ工うに、100エルステツドの磁界で、ImAの測定
電流を流し、約1500mΩの発生抵抗を測定した。
A magnetic sensor was manufactured using the same steps as in Example 1 except for performing this temporary firing. This magnetic sensor was constructed in the same manner as in Example 1, with a magnetic field of 100 oersted, a measurement current of ImA flowing through it, and a generated resistance of about 1500 mΩ being measured.

実施例3 他は、実施例1と同じにした、スプレーパイロリシス法
で作製した膜を750℃〜850℃で約5〜10分の仮
焼Fi5.全5.ヲて行った。これも実施例1と貝じ測
定条件で1500mΩの抵抗が発生しているのを測定し
た。
Example 3 The other conditions were the same as in Example 1. A film produced by the spray pyrolysis method was calcined at 750° C. to 850° C. for about 5 to 10 minutes at Fi5. All 5. I went there. It was also measured that a resistance of 1500 mΩ was generated under the same measurement conditions as in Example 1.

以上の実施例では基板lに安定化したジルコニアの結晶
基板を用いたが、この基板でなく、他に欠陥の少ないチ
タン酸ストロンチウム(SrTiO3)を基板に用いて
も、超電導体が、理論密度の90%以上になる膜密度に
なることが確認された。
In the above embodiments, a stabilized zirconia crystal substrate was used as the substrate l, but even if strontium titanate (SrTiO3), which has fewer defects, is used as the substrate, the superconductor will still have a theoretical density. It was confirmed that the film density was 90% or more.

以上の他、基板に、サファイア、アルミナ酸化マグネシ
ウムなどの酸化物、及びガリウム砒素、シリコンなどの
半導体、又はこの基板に銀、白金、イツトリウム、バリ
ウム、又は、酸化銅のバッファ層を設けたものでも良好
な膜を作製することができた。
In addition to the above, the substrate may be made of an oxide such as sapphire, alumina magnesium oxide, or a semiconductor such as gallium arsenide or silicon, or the substrate may be provided with a buffer layer of silver, platinum, yttrium, barium, or copper oxide. A good film could be produced.

このようにスプレーパイロリシスによるこの超電導体膜
は、基板上に、C軸方向に生長した結晶軸の配向をして
いることが分つ?Co  1例としてsrA  基板上
に成膜したサンプルのX線回折グラフ上*したのが第6
図であジ、C軸の指数の回折角にのみ回折信号が出てい
る。作製した膜の臨界電流は、7000A/c−と高く
、超電導体としての特性も工かった。
Did you know that this superconductor film produced by spray pyrolysis has crystal axes grown in the C-axis direction on the substrate? Co As an example, the X-ray diffraction graph of a sample formed on a srA substrate * is the 6th one.
In the figure, a diffraction signal appears only at the index diffraction angle of the C axis. The produced film had a high critical current of 7000 A/c-, and had excellent properties as a superconductor.

更に、作製した本発明による超電導体膜は、ホトレジス
トを塗布し、ホトリソ工程で精密なレジストハターンを
作って、リン酸系のエッチャントによるエツチング工程
に工υ、第7図の工う々複雑なパターンの超電導体膜2
1を作製できる。この図のエリに磁界の検出部が細く、
かつ、ジグザグの素子形状にすれば、磁界に工って発生
する抵抗値を大きくできるので、磁気センサーとしての
高感度化を図ることができる。
Furthermore, the fabricated superconductor film according to the present invention was coated with a photoresist, a precise resist pattern was created by a photolithography process, and an etching process using a phosphoric acid-based etchant was performed to form a complex pattern as shown in Fig. 7. superconductor film 2
1 can be made. The magnetic field detection part is thin in the area of this figure.
In addition, by forming the element in a zigzag shape, the resistance generated by the magnetic field can be increased, so that the sensitivity of the magnetic sensor can be increased.

この第7図に於ても、ilの実施例と同じ方法にニジ電
流用電極lOと、電圧電極11を作製し、それぞれtリ
ード巌によって定電流回路12と、出力電圧測定器13
に接続した。この磁気センサーの出力は、その幾何学的
形状から計算した値とほぼ同じの、高い出力電圧が得ら
れた。
In this FIG. 7, a rainbow current electrode 10 and a voltage electrode 11 are made in the same manner as in the embodiment of il, and a constant current circuit 12 and an output voltage measuring device 13 are connected to each other by means of a t-lead.
connected to. The output of this magnetic sensor was a high output voltage that was almost the same as the value calculated from its geometric shape.

以上は、Y−Ba−Cu−0系のセラミックスによる超
電導体の磁気センサについて説明したが、これはY−B
a−Cu−0系に限られるものでなく、セラミックス超
電導体であれば、この本発明を適用することができる。
The above describes a superconductor magnetic sensor made of Y-Ba-Cu-0 ceramics;
The present invention is applicable to any ceramic superconductor, not limited to the a-Cu-0 type.

り 本発明久、従来の粉末焼結法によるものと異なジ、組成
の均一な構成の粒子の微細化、その粒界を膜の成長速度
や焼成条件に↓る改良、及び、基板や膜の成長条件で特
性の良い結晶軸への配向などにエリ、高感度のセラミッ
ク超電導体膜の磁気抵抗素子を、スプレーパイロリシス
法に工っで作製する実施例について説明したが、この工
うな特性をもつ超電導体は、スプレーパイロリシス法の
他にも、スパッタリング法やCVD法などに工っでも得
られる。
The present invention has long been developed, which differs from the conventional powder sintering method, by making fine grains with a uniform composition, improving the grain boundaries by adjusting the film growth rate and firing conditions, and improving the structure of substrates and films. We have described an example of fabricating a magnetoresistive element using a highly sensitive ceramic superconductor film using the spray pyrolysis method, which requires orientation to a crystal axis with good characteristics under the growth conditions. In addition to spray pyrolysis, superconductors can be obtained by sputtering, CVD, and other methods.

なお、本発明はスプレーパイロリシス法で、粒界を制御
した微粒子のセラミック超電導体磁気抵抗素子を作製す
る実施例の説明であったが、この簡単な方法の焼成条件
である加島温度、冷却速度、及び、その雰囲気を調整し
て、特性のよいセラミック超電導体膜を作製して、配線
、コイル、磁気シールド及びその他の超電導体デバイス
に使用することもできる。
The present invention has been described as an example of manufacturing a fine-grained ceramic superconductor magnetoresistive element with controlled grain boundaries using the spray pyrolysis method, but the firing conditions of this simple method, such as Kashima temperature and cooling rate, are By adjusting the atmosphere, a ceramic superconductor film with good characteristics can be produced and used for wiring, coils, magnetic shields, and other superconductor devices.

〈発明の効果〉 本発明は、高感度のセラミック超電導体の磁気抵抗素子
による磁気センサにするため、元素の組酸比を均一にし
、構成する粒子の粒径を小さくし、超電導体磁気抵抗素
子として、抵抗を発生する粒界の制御をしている。更に
、本発明の超電導体膜の作製で説明したスプレーパイロ
リシス法を用いれば、その膜は、密度も高く、結晶の配
向性も工くなる。従って、ホトリソグラフ法などと、エ
ツチング技術などにニジ、精密なパターンの磁気抵抗素
子によるセンサーを作製することができる。
<Effects of the Invention> In order to create a magnetic sensor using a highly sensitive ceramic superconductor magnetoresistive element, the present invention makes the composition ratio of elements uniform, reduces the particle size of the constituent particles, and produces a superconductor magnetoresistive element. As a result, grain boundaries that generate resistance are controlled. Furthermore, if the spray pyrolysis method described in the preparation of the superconductor film of the present invention is used, the film will have a high density and an improved crystal orientation. Therefore, it is possible to fabricate a sensor using a magnetoresistive element with a precise pattern using photolithography and etching techniques.

以上から、本発明によるセラミック超電導体の磁気抵抗
素子にエフ弱い磁界に対しても優れた感度特性を有し、
かつ、極めて消費電力を低くできる磁気センサを得るこ
とができる。
From the above, the ceramic superconductor magnetoresistive element according to the present invention has excellent sensitivity characteristics even to weak magnetic fields.
Moreover, a magnetic sensor with extremely low power consumption can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導体磁気センサーの一実施例を示
した斜視図、第2図はスプレーパイロリシスによる成膜
装置の概要構成図、第3図は本発明の超電導体磁気セン
サの磁気検出特性の一例金示した図、第4図は半導体、
磁性体の磁気センサの磁気検出特性を示した概要図、第
5図は粉末焼成法による超電導体磁気センサの磁気検出
特性の一例を示した図、第6図はS r T io 3
基板上にスプレーパイロリシス法で作製した超電導体膜
を熱処理した後のX線回折グラフ、第7図は超電導体膜
をジグザグ形状に加工した磁気センサのパターンを示し
た図である。 lは基板、2は基板ホルダー、3はヒーター、4はスプ
レーガン、5は容器、6は原料の水溶液、7は水溶液の
噴霧、8は圧縮空気のホース、9は超電導体膜、10は
電流電極、11は電圧電極、12は定電流源、13は出
力電圧測定器、14は測定する磁界である。 代理人 弁理士 杉 山 毅 至 (他1名)y、 2
 図 10a 第3m
Fig. 1 is a perspective view showing an embodiment of the superconducting magnetic sensor of the present invention, Fig. 2 is a schematic configuration diagram of a film forming apparatus using spray pyrolysis, and Fig. 3 is a magnetic field diagram of the superconducting magnetic sensor of the present invention. An example of the detection characteristics is a diagram showing gold, and Figure 4 is a semiconductor.
A schematic diagram showing the magnetic detection characteristics of a magnetic sensor made of a magnetic material, FIG. 5 is a diagram showing an example of the magnetic detection characteristics of a superconducting magnetic sensor using a powder firing method, and FIG.
FIG. 7 is an X-ray diffraction graph after heat-treating a superconductor film fabricated on a substrate by spray pyrolysis. 1 is a substrate, 2 is a substrate holder, 3 is a heater, 4 is a spray gun, 5 is a container, 6 is an aqueous solution of raw materials, 7 is a spray of an aqueous solution, 8 is a compressed air hose, 9 is a superconductor film, 10 is an electric current 11 is a voltage electrode, 12 is a constant current source, 13 is an output voltage measuring device, and 14 is a magnetic field to be measured. Agent Patent attorney Takeshi Sugiyama (and 1 other person) y, 2
Figure 10a 3rd m

Claims (1)

【特許請求の範囲】 1、印加した磁界の強さと、測定電流の強さに対応した
電圧を発生させるセラミック超電導体膜の前記電圧から
磁界の測定をする磁気センサにおいて、前記セラミック
超電導体膜の厚さを0.2μmから50μmの範囲内に
したことを特徴とする超電導体膜磁気センサ。 2、前記セラミック超電導体膜をスプレーパイロリシス
法により作製したことを特徴とする特許請求の範囲第1
項記載の超電導体膜磁気センサ。 3、前記セラミック超電導体膜細線状、又はジグザグ状
に形成したことを特徴とする特許請求の範囲第1項、又
は、第2項記載の超電導体膜磁気センサ。
[Claims] 1. In a magnetic sensor that measures a magnetic field from the voltage of a ceramic superconductor film that generates a voltage corresponding to the strength of an applied magnetic field and the strength of a measurement current, A superconductor film magnetic sensor characterized in that the thickness is within the range of 0.2 μm to 50 μm. 2. Claim 1, characterized in that the ceramic superconductor film is produced by a spray pyrolysis method.
A superconductor film magnetic sensor as described in . 3. The superconductor film magnetic sensor according to claim 1 or 2, wherein the ceramic superconductor film is formed in a thin line shape or a zigzag shape.
JP62333592A 1987-07-29 1987-12-28 Superconductor film magnetic sensor Pending JPH01173765A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62333592A JPH01173765A (en) 1987-12-28 1987-12-28 Superconductor film magnetic sensor
AT88307044T ATE95316T1 (en) 1987-07-29 1988-07-29 METHOD AND ARRANGEMENT FOR DETECTING A MAGNETIC FIELD BY MEANS OF MAGNETORESISTANCE PROPERTIES OF A SUPERCONDUCTING MATERIAL.
DE88307044T DE3884514T2 (en) 1987-07-29 1988-07-29 Method and arrangement for detecting a magnetic field using the magnetoresistance properties of a superconducting material.
US07/226,067 US5011818A (en) 1987-07-29 1988-07-29 Sensing a magnetic field with a super conductive material that exhibits magneto resistive properties
EP88307044A EP0301902B1 (en) 1987-07-29 1988-07-29 Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333592A JPH01173765A (en) 1987-12-28 1987-12-28 Superconductor film magnetic sensor

Publications (1)

Publication Number Publication Date
JPH01173765A true JPH01173765A (en) 1989-07-10

Family

ID=18267762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333592A Pending JPH01173765A (en) 1987-07-29 1987-12-28 Superconductor film magnetic sensor

Country Status (1)

Country Link
JP (1) JPH01173765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442851A (en) * 1990-06-07 1992-02-13 Tech Res & Dev Inst Of Japan Def Agency Production of lead germanate thin film
US6097914A (en) * 1997-01-17 2000-08-01 Ricoh Company, Ltd. Image bearing member and method of manufacturing the member and image forming apparatus using the member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828598A (en) * 1971-08-16 1973-04-16
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828598A (en) * 1971-08-16 1973-04-16
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442851A (en) * 1990-06-07 1992-02-13 Tech Res & Dev Inst Of Japan Def Agency Production of lead germanate thin film
US6097914A (en) * 1997-01-17 2000-08-01 Ricoh Company, Ltd. Image bearing member and method of manufacturing the member and image forming apparatus using the member

Similar Documents

Publication Publication Date Title
JPH01173765A (en) Superconductor film magnetic sensor
US5126668A (en) Method of eliminating the effect of hysteresis in a superconductive magneto-resistive device
US5262026A (en) Method of manufacturing a device having a superconducting film
JPH0216475A (en) Superconducting magnetism measuring instrument
Albiss Thick films of superconducting YBCO as magnetic sensors
JP3569885B2 (en) Manufacturing method of oxide superconductor
JPH07113663B2 (en) Characteristic control circuit for superconducting magnetic sensor
JPH02114575A (en) Magnetoresistance element of superconducting laminated film
JP3219563B2 (en) Metal oxide and method for producing the same
Dou et al. Diffusion grown superconducting thick films of Bi-(Pb)-Sr-Ca-Cu-O with zero resistance at 103 K
JPH01302752A (en) Integrated circuit package
JP2936125B2 (en) Magnetic bearing detection method
JP2529746B2 (en) Method for manufacturing superconducting film
JPH0443976A (en) Superconducting magnetic sensor
JPH01138770A (en) Superconducting magnetoresistance element system
JP3005628B2 (en) Magnetic field strength measurement method
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
Tzeng High-Temperature Oxide Superconductor Thick Films
JPH01175781A (en) Magnetoresistive device system
Paterno et al. DC critical currents in superconducting ceramic samples of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7
JPH01243484A (en) Superconducting element
JPH01302845A (en) Package of integrated circuit
JPH05183208A (en) Superconducting element and manufacture thereof
JPH0671101B2 (en) Superconductor Magnetoresistive element
JPH0194681A (en) Superconductive coupling device