JPH0799385B2 - Superconducting magnetic field detector - Google Patents

Superconducting magnetic field detector

Info

Publication number
JPH0799385B2
JPH0799385B2 JP62189346A JP18934687A JPH0799385B2 JP H0799385 B2 JPH0799385 B2 JP H0799385B2 JP 62189346 A JP62189346 A JP 62189346A JP 18934687 A JP18934687 A JP 18934687A JP H0799385 B2 JPH0799385 B2 JP H0799385B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
ceramic layer
superconductor
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62189346A
Other languages
Japanese (ja)
Other versions
JPS6432183A (en
Inventor
修平 土本
秀雄 野島
照栄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62189346A priority Critical patent/JPH0799385B2/en
Priority to EP88307044A priority patent/EP0301902B1/en
Priority to AT88307044T priority patent/ATE95316T1/en
Priority to US07/226,067 priority patent/US5011818A/en
Priority to DE88307044T priority patent/DE3884514T2/en
Publication of JPS6432183A publication Critical patent/JPS6432183A/en
Publication of JPH0799385B2 publication Critical patent/JPH0799385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は微弱な磁界を高感度に検出する超電導磁界検出
素子に関するものである。
The present invention relates to a superconducting magnetic field detecting element for detecting a weak magnetic field with high sensitivity.

<従来の技術> 従来より磁気を検出する方法として、例えば半導体や磁
性材料を用いた磁気抵抗効果素子が広く利用されてお
り、特に高電子移動度の半導体InSb,InAs等の形状効果
と強磁性体金属Fe−Ni(パーマロイ),Co−Ni等の配向
効果を用いた素子が実用化されている。
<Prior Art> Conventionally, as a method of detecting magnetism, for example, a magnetoresistive effect element using a semiconductor or a magnetic material has been widely used. Particularly, a shape effect and a ferromagnetism of a semiconductor InSb, InAs or the like having a high electron mobility are used. Devices using orientation effects of body metals Fe-Ni (permalloy), Co-Ni, etc. have been put to practical use.

上記した半導体InSb,InAsを用いた磁気抵抗効果素子の
磁界に対する抵抗変化率は第6図に示すように二乗曲線
に沿う特性であり、また強磁性体金属Fe−Niからなる磁
気抵抗効果素子の磁界に対する抵抗変化率を第7図に示
している。
The rate of change in resistance to the magnetic field of the magnetoresistive effect element using the semiconductor InSb, InAs described above has a characteristic along a square curve as shown in FIG. 6, and the magnetoresistive effect element made of the ferromagnetic metal Fe--Ni The rate of change in resistance with respect to the magnetic field is shown in FIG.

<発明が解決しようとする問題点> しかし、上記した従来の磁気抵抗効果素子は、例えば第
6図に示すように、普通磁界が弱いときには抵抗の変化
が小さく、そのため第7図に示すように予め永久磁石等
によって磁気バイアスをかけて、感度を向上させるよう
にしているが、いずれにしても従来の磁気抵抗効果素子
は弱い磁界の検出感度が極めて少なく微弱信号磁界に対
して高感度に動作する検出素子の開発が望まれていた。
<Problems to be Solved by the Invention> However, in the conventional magnetoresistive effect element described above, for example, as shown in FIG. 6, when the magnetic field is weak, the resistance change is small, and therefore, as shown in FIG. Although a magnetic bias is applied in advance by a permanent magnet etc. to improve the sensitivity, in any case, the conventional magnetoresistive effect element has extremely low sensitivity for detecting a weak magnetic field and operates with high sensitivity to a weak signal magnetic field. There has been a demand for the development of a detection element that does.

本発明は上記の点に鑑みて創案されたものであり、微弱
信号磁界を高感度に検出する、従来の検出素子とは異な
る新規な現象にもとずく作用をなす優れた高感度特性を
有する超電導磁界検出素子を提供することを目的として
いる。
The present invention was devised in view of the above points, and has excellent high-sensitivity characteristics of detecting weak signal magnetic fields with high sensitivity and acting based on a novel phenomenon different from conventional detection elements. It is intended to provide a superconducting magnetic field detecting element.

<問題点を解決するための手段及び作用> 上記の目的を達成するため、本発明の超電導磁界検出素
子は、超電導体粒子から成り、粒界あるは粒子の一部に
常電導物質、絶縁体あるいは磁界によって常電導となる
超電導物質を含んだ超電導体セラミックス層と、この超
電導体セラミックス層に電流を流すための一対の第1の
電極と、電圧を検出するための一対の第2の電極とを備
え、低磁界によって超電導を示す波動領域を表したコヒ
ーレント長が短くなりトンネル効果を示さなくなること
によって急峻な抵抗変化を呈するように構成している。
<Means and Actions for Solving Problems> In order to achieve the above object, the superconducting magnetic field detecting element of the present invention is composed of superconducting particles, and a grain boundary or a part of the particles is a normal conducting material or an insulator. Alternatively, a superconducting ceramic layer containing a superconducting substance that becomes a normal conductor by a magnetic field, a pair of first electrodes for passing a current through the superconducting ceramic layer, and a pair of second electrodes for detecting a voltage. The coherent length, which represents the wave region exhibiting superconductivity due to the low magnetic field, is shortened and the tunnel effect is not exhibited, so that a sharp resistance change is exhibited.

超電導体は理想的な超電導状態では、電気抵抗が零であ
り、マイナス−効果を示すため、臨界磁場以内では、超
電導体内部磁界は入らず、抵抗変化を示すことはありえ
ない。しかし、超電導体の中に一部常電導物質,絶縁体
あるいは磁界によって常電導体になる物質を含むように
構成すれば、磁界中において、超電導体の表面に電流が
流れ、コヒーレント長が短くなり、トンネル効果がなく
なるため、抵抗零の状態がくずれて抵抗増加を示し、磁
界が高感度に検出されることになる。
In an ideal superconducting state, the superconductor has zero electric resistance and exhibits a minus effect. Therefore, within the critical magnetic field, the internal magnetic field of the superconductor does not enter, and resistance change cannot occur. However, if the superconductor is configured so as to include a part of the normal conductor material, an insulator, or a substance that becomes a normal conductor due to a magnetic field, current will flow on the surface of the superconductor in the magnetic field, and the coherent length will be shortened. Since the tunnel effect disappears, the state of zero resistance collapses and the resistance increases, and the magnetic field is detected with high sensitivity.

本発明の超電導磁界検出素子は、高温超電導体セラミッ
クス層の作製に際して粒界や気泡、組成を制御し、磁界
零付近の検出感度が、従来の半導体や磁性材料からなる
磁気抵抗効果素子と全く異なる原理にもとづく高感度磁
気検出を具現化したものである。即ち、本発明の超電導
磁界検出素子は、超電導体の一部に常電導物質,絶縁体
あるいは磁界で常電導体となる物質を含み、磁界により
コヒーレント長(超電導を示す波動領域)が短くなっ
て、トンネル効果が無くなることにより、磁界を高感度
に検出するものであり、感度特性は従来の磁気抵抗効果
素子とは異なり、微弱磁界に対して急峻な抵抗変化を示
す。
The superconducting magnetic field detecting element of the present invention controls grain boundaries, bubbles, and composition in the production of a high-temperature superconductor ceramic layer, and the detection sensitivity near the magnetic field zero is completely different from that of a conventional magnetoresistive element made of a semiconductor or a magnetic material. It embodies high-sensitivity magnetic detection based on the principle. That is, in the superconducting magnetic field detecting element of the present invention, a part of the superconductor contains a normal conducting material, an insulator, or a substance which becomes a normal conducting body in the magnetic field, and the magnetic field shortens the coherent length (wave region indicating superconductivity). Since the tunnel effect is eliminated, the magnetic field is detected with high sensitivity, and the sensitivity characteristic shows a sharp resistance change with respect to a weak magnetic field, unlike the conventional magnetoresistive effect element.

<実施例> 以下、本発明を実施例を挙げて詳細に説明する。<Examples> Hereinafter, the present invention will be described in detail with reference to Examples.

まず、本発明の一実施例において用いる超電導体セラミ
ックス層、即ち粒界あるいは粒子の一部に常電導物質,
絶縁物及びまたは磁界によって常電導となる超電導物質
を含んだ超電導体セラミックス層を得るために、次の工
程によりセラミックス層を形成した。
First, a superconducting ceramic layer used in one embodiment of the present invention, that is, a normal conductive material at a grain boundary or a part of a particle,
In order to obtain a superconducting ceramics layer containing a superconducting substance which becomes an ordinary conductor by an insulator and / or a magnetic field, a ceramics layer was formed by the following steps.

まず、最近高温超電導体として発表されたBa2Y1Cu3Ox系
の超電導体を得るために、BaCO3,Y2O3,CuOを所定量秤量
し、充分に分散混合した微粒子を900℃5時間空気中で
仮焼成行った。次に、再び粉砕,分散させ均一な微粒子
(1μmφ以下)からなる粉体を作り、加圧力1ton/cm2
にて円状のペレットを作製した。加圧成形には、ゴム状
のホルダーに粉体を入れ静水圧下でペレットを作製して
もよい。次に本焼成を充分な酸素中で1000℃3時間保持
し、200℃まで5時間で降温させ、ペレット状の本発明
の実施例で用いるサンプルAを作った。又同一の仮焼成
のサンプルを従来公知の一般的な条件である空気中で95
0℃200時間保持し、200℃までゆっくり降温(3℃/
分)させたペレット状の比較サンプルBを作製した。X
線回折による巨視的な材料評価では、サンプルA.Bとも
斜方晶の単一相であった。
First, in order to obtain a Ba 2 Y 1 Cu 3 Ox-based superconductor, which was recently announced as a high-temperature superconductor, a predetermined amount of BaCO 3 , Y 2 O 3 and CuO was weighed and finely dispersed and mixed at 900 ° C. Calcination was performed in air for 5 hours. Next, pulverize and disperse again to make a powder consisting of uniform fine particles (1 μmφ or less), and apply a pressure of 1 ton / cm 2
Then, circular pellets were prepared. For pressure molding, the powder may be placed in a rubber-like holder to produce pellets under hydrostatic pressure. Next, the main calcination was held in sufficient oxygen for 3 hours at 1000 ° C., and the temperature was lowered to 200 ° C. for 5 hours to prepare a sample A in the form of pellets used in the examples of the present invention. In addition, the same pre-baked sample is used in the air, which is a conventionally known general condition.
Hold at 0 ℃ for 200 hours and slowly cool down to 200 ℃ (3 ℃ /
Comparative sample B in the form of pellets was prepared. X
In macroscopic material evaluation by line diffraction, sample AB was also an orthorhombic single phase.

次に、第1図に示すようにサンプルAの超電導体セラミ
ックス層1の表面に電流を流すための1対の第1の電極
2,2及び電圧を検出するための1対の第2の電極3,3とし
て、密着性の良いTi電極を蒸着して付設し、更にそれら
の電極に銀ペースト4,4,5,5にてリード線を固定して超
電導磁界検出素子を作製し、各リード線を定電流回路6
及び検出出力回路部7に接続した。また同様に比較サン
プルBについても密着性の良いTi電極を蒸着し、その上
に銀ペーストにてリード線を固定した。
Next, as shown in FIG. 1, a pair of first electrodes for applying an electric current to the surface of the superconducting ceramic layer 1 of Sample A.
2,2 and a pair of second electrodes 3,3 for detecting voltage, Ti electrodes with good adhesion are vapor-deposited and attached, and silver pastes 4,4,5,5 are further attached to those electrodes. To fix the lead wires to produce a superconducting magnetic field detection element, and connect each lead wire to the constant current circuit 6
And the detection output circuit section 7. Similarly, for Comparative Sample B, a Ti electrode having good adhesion was vapor-deposited, and a lead wire was fixed on the Ti electrode with silver paste.

電子顕微鏡による微視的な観察では、比較サンプルBは
比較的丸味(3〜5μmφ)を持つ粒子からなるセラミ
ックスであるが、本発明に係るサンプルAは第2図に示
すように丸味を持つ粒子11以外に矩形(3×3×10μ
m)の粒子12も一部含まれており、矩形粒子12は、均一
な組成をもつ粒子11(Y1Ba2Cu3Ox)に比べて、Cu組成が
多く、Ba,Yの組成は少ない常電導体あるいは絶縁体また
は磁界により常電導となる超電導体物質よりなる粒子で
あり、また粒子11,12の間には不純物を含んだ粒界もし
くは粒間13が存在し、更に気泡14が存在した状態となっ
ていた。
In microscopic observation with an electron microscope, the comparative sample B is a ceramic consisting of particles having a relatively roundness (3 to 5 μmφ), but the sample A according to the present invention has a roundness particle as shown in FIG. Rectangle other than 11 (3 × 3 × 10μ
The particles 12 of m) are also partially included, and the rectangular particles 12 have a larger Cu composition and a smaller composition of Ba and Y than the particles 11 (Y 1 Ba 2 Cu 3 Ox) having a uniform composition. Particles made of a normal conductor or an insulator or a superconductor material that becomes a normal conductor by a magnetic field.Grain boundaries or intergranule 13 containing impurities exist between particles 11 and 12, and bubbles 14 also exist. It was in a state of doing.

次に、液体窒素(77K)中にサンプルA及び比較サンプ
ルBを入れ、四端子法で電気抵抗の測定を行った。磁界
のない場合は、サンプルA及び比較サンプルBとも抵抗
は零である。又、比較サンプルBは0.5Kガウスまで磁界
を印加しても抵抗は零を示していた。しかし、本発明に
係るサンプルAは数十ガウスの磁界に対して抵抗の変化
が高感度に現われ、その磁界に対する変化は、従来の半
導体や磁性体などの磁気抵抗型センサの磁界に対する抵
抗変化(第6図,第7図)の様に二乗曲線に沿った特性
ではなく、第4図に示すごとく全く異った急峻な特性を
示し、したがって、第7図の様に磁気バイアスを加える
ことなく、零磁界近傍の抵抗変化は急峻であり、極めて
大きなものであった。また、これらの特性は、同一組
成,同一熱処理条件で作製したサンプルについて再現性
があった。
Next, the sample A and the comparative sample B were put into liquid nitrogen (77K), and the electrical resistance was measured by the four-terminal method. When there is no magnetic field, the resistance is zero in both sample A and comparative sample B. Further, the comparative sample B showed zero resistance even when a magnetic field was applied up to 0.5 K gauss. However, in the sample A according to the present invention, the change in resistance appears with high sensitivity to a magnetic field of several tens of gausses, and the change with respect to the magnetic field is the change in resistance with respect to the magnetic field of the conventional magnetoresistive sensor such as a semiconductor or a magnetic material ( 6 and 7), the characteristics are not along the square curve as shown in FIG. 6, but the characteristics are quite different and steep as shown in FIG. 4. Therefore, as shown in FIG. The resistance change in the vicinity of the zero magnetic field was steep and extremely large. Further, these characteristics were reproducible for the samples prepared under the same composition and the same heat treatment condition.

上記の実施例の検出素子によれば、急峻な抵抗変化特性
が得られるが、この動作は本発明の超電導体セラミック
ス層の構造にもとづいて次のように説明することが出来
る。即ち、丸味を帯びた粒子11は超電導体であるが、粒
界13や矩形状粒子12は粒子11と同様の超電導体ではなく
(常電導物質,絶縁体,微弱磁界によって常電導となる
超電導物質等)、外部磁界のないときは、トンネル効果
のため、粒界13や矩形状粒子12を電流が通過し、セラミ
ックス全体は超電導状態を示すが、外部磁界が印加され
ると第3図に示すようにコヒーレント長(超電導を示す
波動領域)が短くなり、その結果粒界13や矩形状粒子12
を電流が通過しなくなり、抵抗が現われ、磁界感度を示
すことになる。なお、第3図において、実線aは磁界零
のときのコヒーレント長、破線bは磁界印加時のコヒー
レント長をそれぞれ示している。
According to the detecting element of the above embodiment, a steep resistance change characteristic can be obtained, and this operation can be explained as follows based on the structure of the superconductor ceramic layer of the present invention. That is, the rounded particles 11 are superconductors, but the grain boundaries 13 and the rectangular particles 12 are not the same superconductors as the particles 11 (normal conducting materials, insulators, superconducting materials that become normal conducting due to weak magnetic fields). Etc.), when there is no external magnetic field, the current passes through the grain boundaries 13 and the rectangular particles 12 due to the tunnel effect, and the entire ceramic body is in a superconducting state, but when an external magnetic field is applied, it is shown in FIG. The coherent length (wave region indicating superconductivity) becomes shorter as a result, resulting in grain boundaries 13 and rectangular particles 12
The current no longer passes through, a resistance appears, and the magnetic field sensitivity is exhibited. In FIG. 3, the solid line a shows the coherent length when the magnetic field is zero, and the broken line b shows the coherent length when the magnetic field is applied.

また、上記実施例において、加圧力を0.5ton/cm2に代え
て円状のペレットを作製した以外は同様の条件で作製し
て超電導セラミックスの充てん率を90%以下にし、表面
粗度を1μm以上にすると、磁界に対する感度が向上す
ることが分った。更に充てん率を85%以下にし、連続気
泡14(第2図参照)を増すか、レーザーで微細な穴を開
けることによっても磁界に対する感度が向上することを
見い出した。
In addition, in the above-mentioned example, the superconducting ceramics were filled under 90% or less and the surface roughness was 1 μm under the same conditions except that the pressure was changed to 0.5 ton / cm 2 to form circular pellets. It has been found that the sensitivity is improved with respect to the magnetic field. Further, it has been found that the sensitivity to the magnetic field is improved by setting the filling rate to 85% or less, increasing the number of open cells 14 (see FIG. 2), or by making fine holes with a laser.

更に、第5図に示す如くサンプルAをダイシングで接断
し、1×2mm角の小さな素子21に加工しても同一特性を
示し、量産プロセスに対応することも可能であり、冷却
媒体26と定電流回路24、アンプ25を含む回路基板28と本
素子21をリード線27で結んだ小型の超電導磁気検出素子
を試作し、本発明の動作を確認した。
Further, as shown in FIG. 5, even if the sample A is cut by dicing and processed into a small element 21 of 1 × 2 mm square, the same characteristics are exhibited, and it is possible to cope with a mass production process. A small-sized superconducting magnetic detection element in which a circuit board 28 including a constant current circuit 24 and an amplifier 25 and the present element 21 were connected by a lead wire 27 was prototyped and the operation of the present invention was confirmed.

なお、上記実施例においては、超電導セラミックスとし
てY−Ba−Cu−O系を例にして説明したが、本発明はこ
れに限定されることなく、例えばLa−Ba−Cu−O系,Y−
Sr−Ba−Cu−O系等のIII a族元素,II a族元素,銅(C
u)元素及び酸素(O)元素を構成元素とした超電導セ
ラミックスを用いても同様に実施することが出来ること
は言うまでもない。
In the above embodiments, the Y-Ba-Cu-O system was described as an example of the superconducting ceramics, but the present invention is not limited to this, and for example, La-Ba-Cu-O system, Y- system.
Group IIIa elements such as Sr-Ba-Cu-O system, IIa group elements, copper (C
It goes without saying that the same can be done by using superconducting ceramics containing u) element and oxygen (O) element as constituent elements.

<発明の効果> 以上のように、本発明の超電導磁界検出素子は従来の素
子特性と全く異なり、微小磁界に対して高感度に磁界検
出を行なうことが出来、磁界の極性に関係なく高速に応
答するものである。
<Effects of the Invention> As described above, the superconducting magnetic field detecting element of the present invention is completely different from the conventional element characteristics in that it can detect a magnetic field with a high sensitivity to a minute magnetic field, and it can operate at high speed regardless of the polarity of the magnetic field. To respond.

今後高温超電導体の臨界温度の進展に伴って、本発明の
高感度磁界検出素子は、信頼性,安定性,高感度を要求
される計測用,医療用,産業用など幅広い分野に応用さ
れる。
With the progress of the critical temperature of high-temperature superconductors in the future, the high-sensitivity magnetic field detection element of the present invention will be applied to a wide range of fields such as measurement, medical, and industrial fields that require reliability, stability, and high sensitivity. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例素子の基本構成を示す斜視
図、第2図は本発明の一実施例において用いられる超電
導体セラミック層の微視的構造を模式的に示す図、第3
図は本発明素子の動作説明に供する図、第4図は本発明
の一実施例素子の磁界に対する抵抗変化を示す特性図、
第5図は本発明の他の実施例としての素子をチップ化
し、冷却装置及び回路装置部と一体化した構造の超電導
磁界検出素子を示す斜視図、第6図は磁性体からなる磁
気抵抗効果素子の磁界に対する抵抗変化率を示す特性
図、第7図は半導体からなる磁気抵抗効果素子の磁界に
対する抵抗変化率を示す特性図である。 1……超電導体セラミックス、2,2……第1の電極、3,3
……第2の電極、4,4,5,5……銀ペースト、6……定電
流回路、7……検出出力回路部。
FIG. 1 is a perspective view showing a basic structure of an element of an embodiment of the present invention, FIG. 2 is a view schematically showing a microscopic structure of a superconductor ceramic layer used in an embodiment of the present invention, and FIG.
FIG. 4 is a diagram for explaining the operation of the element of the present invention, and FIG. 4 is a characteristic diagram showing the resistance change with respect to the magnetic field of the element of one embodiment of the present invention,
FIG. 5 is a perspective view showing a superconducting magnetic field detecting element having a structure in which an element as another embodiment of the present invention is made into a chip and integrated with a cooling device and a circuit device part, and FIG. 6 is a magnetoresistive effect made of a magnetic material. FIG. 7 is a characteristic diagram showing the resistance change rate of the element with respect to the magnetic field, and FIG. 7 is a characteristic diagram showing the resistance change rate of the magnetoresistive element made of a semiconductor with respect to the magnetic field. 1 ... Superconductor ceramics, 2,2 ... First electrode, 3,3
...... Second electrode, 4,4,5,5 ...... Silver paste, 6 ...... Constant current circuit, 7 ...... Detection output circuit section.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−17175(JP,A) C.W.Chu,et al.:Phy s.Rev.Lett.Vol.58 N o.4,26 January 1987 P P.405−407 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-17175 (JP, A) C.I. W. Chu, et al. : Phy s. Rev. Lett. Vol. 58 No. 4,26 January 1987 P.P. 405-407

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超電導体粒子から成り、粒界あるは粒子の
一部に常電導物質、絶縁体あるいは磁界によって常電導
となる超電導物質を含んだ超電導体セラミックス層と、 該超電導体セラミックス層に電流を流すための一対の第
1の電極と 前記超電導体セラミックス層の電圧を検出するための一
対の第2の電極とを備え、 低磁界によって超電導を示す波動領域を表したコヒーレ
ント長が短くなりトンネル効果を示さなくなることによ
って急峻な抵抗変化を呈することを特徴とする超電動磁
界検出素子。
1. A superconducting ceramic layer comprising superconducting particles, wherein a grain boundary or a part of the grain contains a superconducting substance, an insulator, or a superconducting substance which becomes a normal conducting state by a magnetic field, and the superconducting ceramic layer. It is provided with a pair of first electrodes for passing an electric current and a pair of second electrodes for detecting the voltage of the superconductor ceramic layer, and the coherent length representing the wave region indicating superconductivity is shortened by a low magnetic field. A super-electric magnetic field detecting element characterized by exhibiting a sharp resistance change by not exhibiting the tunnel effect.
【請求項2】前記超電導体セラミック層の表面粗度を1
μm以上となしたことを特徴とする特許請求の範囲第1
項記載の超電導磁界検出素子。
2. The surface roughness of the superconductor ceramic layer is 1
The first aspect of the present invention is characterized in that the thickness is at least μm.
A superconducting magnetic field detecting element described in the paragraph.
【請求項3】前記超電導体セラミック層はその内部に微
細な連続気泡を含んでなることを特徴とする特許請求の
範囲第1項記載の超電導磁界検出素子。
3. The superconducting magnetic field detecting element according to claim 1, wherein the superconducting ceramic layer contains fine open cells therein.
JP62189346A 1987-07-29 1987-07-29 Superconducting magnetic field detector Expired - Lifetime JPH0799385B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62189346A JPH0799385B2 (en) 1987-07-29 1987-07-29 Superconducting magnetic field detector
EP88307044A EP0301902B1 (en) 1987-07-29 1988-07-29 Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material
AT88307044T ATE95316T1 (en) 1987-07-29 1988-07-29 METHOD AND ARRANGEMENT FOR DETECTING A MAGNETIC FIELD BY MEANS OF MAGNETORESISTANCE PROPERTIES OF A SUPERCONDUCTING MATERIAL.
US07/226,067 US5011818A (en) 1987-07-29 1988-07-29 Sensing a magnetic field with a super conductive material that exhibits magneto resistive properties
DE88307044T DE3884514T2 (en) 1987-07-29 1988-07-29 Method and arrangement for detecting a magnetic field using the magnetoresistance properties of a superconducting material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62189346A JPH0799385B2 (en) 1987-07-29 1987-07-29 Superconducting magnetic field detector

Publications (2)

Publication Number Publication Date
JPS6432183A JPS6432183A (en) 1989-02-02
JPH0799385B2 true JPH0799385B2 (en) 1995-10-25

Family

ID=16239793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62189346A Expired - Lifetime JPH0799385B2 (en) 1987-07-29 1987-07-29 Superconducting magnetic field detector

Country Status (1)

Country Link
JP (1) JPH0799385B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.W.Chu,etal.:Phys.Rev.Lett.Vol.58No.4,26January1987PP.405−407

Also Published As

Publication number Publication date
JPS6432183A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
Tomoichi et al. Introduction of pinning centers into Tl‐(1223) phase of Tl–Sr–Ca–Cu–O systems
Jung et al. Flux motion, proximity effect, and critical current density in YBa 2 Cu 3 O 7− δ/silver composites
Early et al. Sm1. 85Th0. 15CuO4− y: A new electron-doped copper oxide superconductor
US5011818A (en) Sensing a magnetic field with a super conductive material that exhibits magneto resistive properties
US5219828A (en) Method for fabricating oxide superconducting coatings
Nojima et al. Galvanomagnetic effect of an Y–Ba–Cu–O ceramic superconductor and its application to magnetic sensors
JPH0799385B2 (en) Superconducting magnetic field detector
JPH07113663B2 (en) Characteristic control circuit for superconducting magnetic sensor
US5126668A (en) Method of eliminating the effect of hysteresis in a superconductive magneto-resistive device
US5491410A (en) Superconducting magnetic sensor having a ferromagnetic element for converging an external magnetic field
Yokoyama et al. Low resistivity contacts to YBa2Cu3O7− y superconductors using Ag2O powder
JPH07113662B2 (en) Superconducting magnetic property control method
EP0425308A2 (en) Method of manufacturing a device having a superconducting film
Wu et al. Synthesis, transport, magnetization and structural characterizations of Tl-Ca-Ba-Cu-O specimens with T0= 123 K and Tonset= 155 K
US5098885A (en) Superconductive substance Y0.294 Ba0.336 Cu01.77
JPH0799386B2 (en) Digital magnetic field detector
JPH0799387B2 (en) Driving method of ceramics superconducting magnetic sensor
JP2933681B2 (en) Magnetic field measurement method
Paterno et al. DC critical currents in superconducting ceramic samples of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7
JPH01175781A (en) Magnetoresistive device system
JP2936125B2 (en) Magnetic bearing detection method
US5238912A (en) Y-Ba-Cu-O superconductive substance
Cardwell et al. Dependence of critical current density on grain morphology in BiCaSrCu2Ox ceramic
Nojima et al. Anisotropy and hysteresis behavior of galvanomagnetic effect in super magneto-resistor
JPH0671100B2 (en) Superconducting magnetoresistive device