JPH0671100B2 - Superconducting magnetoresistive device - Google Patents

Superconducting magnetoresistive device

Info

Publication number
JPH0671100B2
JPH0671100B2 JP62233369A JP23336987A JPH0671100B2 JP H0671100 B2 JPH0671100 B2 JP H0671100B2 JP 62233369 A JP62233369 A JP 62233369A JP 23336987 A JP23336987 A JP 23336987A JP H0671100 B2 JPH0671100 B2 JP H0671100B2
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
magnetoresistive device
resistance
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62233369A
Other languages
Japanese (ja)
Other versions
JPH01138770A (en
Inventor
照栄 片岡
修平 土本
秀雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62233369A priority Critical patent/JPH0671100B2/en
Priority to EP88307044A priority patent/EP0301902B1/en
Priority to US07/226,067 priority patent/US5011818A/en
Priority to AT88307044T priority patent/ATE95316T1/en
Priority to DE88307044T priority patent/DE3884514T2/en
Publication of JPH01138770A publication Critical patent/JPH01138770A/en
Publication of JPH0671100B2 publication Critical patent/JPH0671100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は従来に例を見ない優れた特性を示す磁気抵抗素
子を用いた磁気抵抗装置に関するものであり、更に詳細
には超電導材料を用いた磁気抵抗装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a magnetoresistive device using a magnetoresistive element exhibiting excellent characteristics unprecedented. More specifically, a superconducting material is used. The present invention relates to a magnetoresistive device.

<従来の技術及びその問題点> 従来、磁界を印加することにより電気抵抗の増加を示す
磁気抵抗素子としては、半導体を用いたもの及び磁性体
を用いたものがある。しかし、そのいずれの場合も第25
図に示すように磁界を印加しない場合にも、本来の大き
な抵抗R0を示し、また磁界に対する抵抗変化率は2乗曲
線に沿う特性であり、印加磁界により現われる抵抗増加
ΔRは、磁界の値の2乗に比例して増加するため、値の
小さい磁界、例えば数十ガウス程度の弱磁界に対して抵
抗増加ΔRは極めて微小であり、その性能を示す値、Δ
R/R0は高々1%程度であった。
<Prior Art and Problems Thereof> Conventionally, as a magnetoresistive element that exhibits an increase in electric resistance by applying a magnetic field, there are one using a semiconductor and one using a magnetic body. However, in each case the 25th
As shown in the figure, the original large resistance R 0 is exhibited even when no magnetic field is applied, and the rate of change in resistance with respect to the magnetic field is a characteristic along a square curve. The resistance increase ΔR is extremely small for a magnetic field having a small value, for example, a weak magnetic field of about several tens of gausses, because it increases in proportion to the square of
R / R 0 was at most about 1%.

一方、超電導現象を利用したSQUID(超電導量子干渉素
子)は、極めて高い感度(10−10ガウス)を示すことが
知られているが、極めてデリケートな構造を必要とし、
またその使用法も簡便ではなかった。
On the other hand, SQUID (superconducting quantum interference device) utilizing superconductivity is known to have extremely high sensitivity (10 −10 Gauss), but requires an extremely delicate structure,
Moreover, its usage was not simple.

したがって従来より、微弱な磁界に対して高性能に抵抗
変化を示す。しかも構造の簡単な磁気抵抗装置の開発が
望まれていた。
Therefore, conventionally, it exhibits a high resistance change with respect to a weak magnetic field. Moreover, it has been desired to develop a magnetoresistive device having a simple structure.

また、超電導材料の磁気特性について記載された文献と
して、C.W.ChuらによるPhys. Rev. Lett. 58[4](26
Jan. 1987)pp.405−407が知られている。この文献に
は、La−Ba−Cu−O化合物系における温度40K以下での
超電導現象に基づく磁気特性を評価したことを記載され
ている。La−Ba−Cu−O化合物の作製方法としては、酸
化ランタン(La2O3)と酸化銅(CuO)と炭酸バリウム
(BaCO3)との混合物を、減圧下の酸素雰囲気中にて加
熱保持した後、これを粉にし、これらの工程を繰り返し
て、完全に反応したこれらの混合物を加圧して円筒状と
し、先の工程と同様に減圧下の酸素雰囲気中にて焼結す
るものである。そして、上記のようにして作製したLa−
Ba−Cu−O化合物に対して、0、4.5、15、30、58.5kガ
ウスという非常に強い磁界を印加した場合において、40
K以下の温度に冷却したときの電気抵抗の変化を測定し
た結果が記載されている。
Also, as a document describing the magnetic properties of superconducting materials, Ph. Rev. Lett. 58 [4] (26) by CW Chu et al.
Jan. 1987) pp.405-407 are known. This document describes that the magnetic characteristics based on the superconducting phenomenon at a temperature of 40 K or less in the La-Ba-Cu-O compound system were evaluated. As the method of preparing a La-Ba-CuO compound, a mixture of lanthanum oxide (La 2 O 3) and copper oxide (CuO) and barium carbonate (BaCO 3), heated and held in an oxygen atmosphere at reduced pressure After that, this is pulverized, these steps are repeated, and the completely reacted mixture is pressurized into a cylindrical shape, and is sintered in an oxygen atmosphere under reduced pressure as in the previous step. . Then, the La- produced as described above
When a very strong magnetic field of 0, 4.5, 15, 30, 58.5k gauss was applied to the Ba-Cu-O compound, 40
The results of measuring the change in electric resistance when cooled to a temperature of K or less are described.

しかしながら、上記文献に示されたような化合物系では
多相(multiphase)を成し、磁界に対する抵抗変化の原
理としては、上記文献で筆者らの考察によると、混合さ
れた相(mixed phase)、あるいは多相の中の一種類の
相であるK2NiF4相による影響を示唆しているに過ぎず、
解明されていない。また、4.5kガウス以上という強い磁
界での電気抵抗の変化しか観察されていない。したがっ
て、上記文献に示された超電導材料では、微弱な磁界に
対して高性能に抵抗変化を示す磁気抵抗装置への応用を
期待することはできない。
However, the compound system as shown in the above-mentioned document forms a multiphase, and the principle of the resistance change with respect to the magnetic field is that, according to the consideration of the authors in the above-mentioned document, a mixed phase, Or it only suggests the effect of K 2 NiF 4 phase, which is one type of multiphase,
Not understood. Moreover, only the change of electric resistance was observed in a strong magnetic field of 4.5 k Gauss or more. Therefore, the superconducting material shown in the above-mentioned document cannot be expected to be applied to a magnetoresistive device which exhibits a high resistance change in a weak magnetic field.

本発明は上記の点に鑑みて創案されたものであり、従来
の磁気抵抗素子とは異なる新規な現象にもとずく作用を
なして、微弱な磁界に対しても高性能に抵抗変化を示す
超電導磁気抵抗装置を提供することを目的としている。
The present invention has been made in view of the above points, and acts based on a novel phenomenon different from the conventional magnetoresistive element, and exhibits high-performance resistance change even in a weak magnetic field. An object is to provide a superconducting magnetoresistive device.

<問題点を解決するための手段及びその原理> 上記の目的を達成するため、本発明の超電導磁気抵抗装
置は、多数の結晶粒界を有し、超電導を示す結晶粒が互
いに電気的に弱結合しているセラミック超電導材料より
なる素子と、この素子に磁界を印加する手段と、上記素
子に磁界を印加した場合に生ずる電気抵抗の変化を利用
する手段とを備えてなるように構成している。
<Means for Solving Problems and Principle Thereof> In order to achieve the above object, the superconducting magnetoresistive device of the present invention has a large number of crystal grain boundaries, and crystal grains exhibiting superconductivity are electrically weak to each other. An element composed of a ceramic superconducting material that is coupled, means for applying a magnetic field to this element, and means for utilizing a change in electrical resistance that occurs when a magnetic field is applied to the element are configured. There is.

本発明にあっては磁気抵抗素子として、多数の結晶粒界
を有し、超電導を示す結晶粒が互いに電気的に弱結合し
ているセラミック超電導材料よりなる素子を用いている
ので、第1図に示すように磁界が印加されない場合に、
素子の示す電気抵抗R0は完全に零の値を示すが、ある臨
界磁界Hcを加えると突然素子は電気抵抗を示し、印加磁
界の増大とともに、電気抵抗が急激に増大する新しい現
象を利用したものであり、初期抵抗R0に対する抵抗の変
化ΔRの比、ΔR/R0は無限大となって、従来の磁気抵抗
素子とは比較にならない高性能を示す素子を用いて磁気
抵抗装置を構成するように成している。
In the present invention, as the magnetoresistive element, an element made of a ceramic superconducting material having a large number of crystal grain boundaries and having superconducting crystal grains electrically weakly coupled to each other is used. When no magnetic field is applied as shown in
The electric resistance R 0 of the element shows a value of zero completely, but when a certain critical magnetic field Hc is applied, the element suddenly shows the electric resistance, and a new phenomenon that the electric resistance rapidly increases with the increase of the applied magnetic field was used. The ratio of the change in resistance ΔR to the initial resistance R 0 , ΔR / R 0, becomes infinite, and the magnetoresistive device is configured by using an element exhibiting high performance that is not comparable to the conventional magnetoresistive element. I am trying to do it.

即ち、最近多くの研究機関で進められているセラミック
超電導体の研究の方向は、臨界温度(T)、臨界磁界
(H)、臨界電流(i)の向上を図ることにある
が、本発明者等も上記セラミック超電導体について種々
研究したところ、この超電導材料のある種のもの(超電
導材料の粒子間に弱結合状態を持つもの)が上記第1図
に示すように極めて弱い磁界(数ガウス)で弱結合の超
電導状態が破れて電気抵抗を示し、印加磁界の強さとと
もに急激に増加することを見出し、この低い臨界磁界現
象を用いて新規な超電導磁気抵抗装置を創案したもので
ある。
That is, the direction of research on ceramic superconductors, which has been advanced by many research institutions in recent years, is to improve the critical temperature (T c ), the critical magnetic field (H c ), and the critical current (i c ). The present inventors also conducted various studies on the above-mentioned ceramic superconductor, and as a result, a certain kind of this superconducting material (having a weakly bonded state between particles of the superconducting material) has an extremely weak magnetic field ( We found that the superconducting state of weak coupling is broken at several Gauss) and the electric resistance is shown, and it rapidly increases with the strength of the applied magnetic field, and we created a new superconducting magnetoresistive device using this low critical magnetic field phenomenon. is there.

上記第1図に示したような磁界の印加に対する電気抵抗
の変化特性は、本発明において用いる超電導磁気抵抗素
子を構成する例えばセラミックス系の超電導材料が第2
図に示すように多くの超電導微粒子1より構成される結
晶体で、その粒子境界2に極めて薄い絶縁物あるいは抵
抗体が存在し、または、粒子1,1間の接触部分がポイン
ト状態になる、即ち、粒界と粒界が点状の接触をなして
いる等、超電導を示す結晶粒が電気的に弱結合してい
る、いわゆる超電導の弱結合状態にあり、超電導状態で
は、トンネル効果等により、電子が自由に移動して電気
抵抗零を示す。つまりセラミック系等の多結晶の弱結合
状態にある超電導材料は第3図に示すように等価的には
無数のジョセフソン結合3,3,…の集合体とみなすことが
出来る。
The change characteristic of the electric resistance with respect to the application of the magnetic field as shown in FIG. 1 is the same as that of the ceramic superconducting material constituting the superconducting magnetoresistive element used in the present invention.
As shown in the figure, a crystal body composed of many superconducting fine particles 1 has an extremely thin insulator or resistor at the grain boundary 2, or the contact portion between the particles 1 and 1 is in a point state. That is, the grain boundaries are in point contact with each other, and the crystal grains exhibiting superconductivity are electrically weakly coupled, that is, in the so-called superconducting weak coupling state, and in the superconducting state, due to the tunnel effect or the like. , The electrons move freely and show zero electric resistance. That is, a polycrystalline superconducting material in a weakly coupled state such as a ceramic system can be regarded equivalently as an assembly of innumerable Josephson couplings 3, 3, ... As shown in FIG.

このような材料に磁界を印加すると、磁界の影響によ
り、ジョセフソン結合3,3,…の超電導性が破れ、即ち、
弱磁界の印加によって超電導の弱結合状態が破れて、素
子は電気抵抗を示すようになり、磁界の強さの増大と共
に電気抵抗は増大する。
When a magnetic field is applied to such a material, the superconductivity of the Josephson couplings 3,3, ...
The weakly coupled state of superconductivity is broken by the application of a weak magnetic field, and the element comes to exhibit electric resistance, and the electric resistance increases as the strength of the magnetic field increases.

この性質は上記原理からも明らかなように、結晶粒界2
はランダムに配置されているため、印加する磁界の方向
には依存せずに、磁界の強さの絶体値によって定まるも
のである。
As is clear from the above principle, this property is
Are arranged randomly, so that they are determined by the absolute value of the magnetic field strength, without depending on the direction of the applied magnetic field.

<実施例> 以下、本発明を実施例を挙げて詳細に説明する。<Example> Hereinafter, the present invention will be described in detail with reference to Examples.

まず、本発明の実施例において用いる結晶粒界を有する
超電導材料よりなる素子の作製例について説明するが、
本発明の実施例において用いる超電導材料の作製方法は
以下に説明する作製方法に限定されるものではない。
First, a description will be given of a production example of an element made of a superconducting material having a crystal grain boundary used in the examples of the present invention.
The manufacturing method of the superconducting material used in the examples of the present invention is not limited to the manufacturing method described below.

最近セラミック系高温超電導材料として発表されたY1Ba
2Cu3O7−xの超電導体を得るように、酸化イットリウ
ムY2O3、炭酸バリウムBaCO3、酸化銅CuOを所定量秤量
し、充分に分散混合した微粒子を900℃、5時間空気中
で仮焼成を行ない、次に再び粉砕、分散させ、均一な微
粒子(1μmφ以下)からなる粉体を作り、加圧力1ton
/cm2にて円状のペレットを作製し、次に1000℃、3時間
空気中で本焼成し、200℃まで5時間で降温させて厚み1
mmの円状のペレットを作製した。
Y 1 Ba, which was recently announced as a ceramic high-temperature superconducting material
To obtain a 2 Cu 3 O 7-x superconductor, yttrium oxide Y 2 O 3 , barium carbonate BaCO 3 , and copper oxide CuO were weighed in a predetermined amount and sufficiently dispersed and mixed in the particles at 900 ° C. for 5 hours in air. Pre-baking is performed with, and then pulverized and dispersed again to make a powder consisting of uniform fine particles (1 μmφ or less), and a pressing force of 1 ton.
circular pellets were prepared at a temperature of 1 / cm 2 and then fired in air at 1000 ° C for 3 hours and then cooled to 200 ° C in 5 hours to obtain a thickness of 1
A circular pellet of mm was prepared.

上記のようにして作製した超電導材料は、X線回折によ
る巨視的な材料評価では斜方晶の単一相であり、また電
子顕微鏡による観察では第2図に示したように多くの超
電導体粒子1,1,…より構成され、粒子境界(粒界)2に
極めて薄い絶縁物あるいは抵抗体が存在した超電導体の
弱結合の集合体とみなすことが出来た。
The superconducting material produced as described above is an orthorhombic single phase in macroscopic material evaluation by X-ray diffraction, and many superconducting particles as shown in FIG. 2 are observed in an electron microscope. It can be regarded as a weakly-bonded aggregate of superconductors composed of 1, 1, ... And having extremely thin insulators or resistors at grain boundaries (grain boundaries) 2.

上記のようにして作製した超電導材料は、磁界を加えな
いときは、第4図に示すように絶対温度97度で電気抵抗
が低下し始め、絶対温度83度で電気抵抗が完全に零とな
った。
When no magnetic field is applied to the superconducting material produced as described above, the electric resistance begins to drop at an absolute temperature of 97 degrees and becomes completely zero at an absolute temperature of 83 degrees as shown in FIG. It was

上記のような材料から切り出した薄い長方形素子(1×
7×0.7mm)51に第5図に示すように、この超電導材料
と密着性の良いチタン(Ti)電極52,53をそれぞれ電子
ビーム蒸着等によって付設し、更にそれらの電極52,53
にそれぞれ銀ペーストによりリード線54,55を固定し
た。このような電極構造は超電導材料と非常に密着性が
良く、しかも極めて良好なオーミック特性を示した。
Thin rectangular element (1 x
As shown in FIG. 5, titanium (Ti) electrodes 52 and 53 having good adhesiveness to the superconducting material are attached to each of the electrodes 52 and 53 by electron beam vapor deposition or the like.
The lead wires 54 and 55 were fixed to each by silver paste. Such an electrode structure had very good adhesion to the superconducting material and exhibited extremely good ohmic characteristics.

次に、液体窒素(77K)中に上記素子51を入れ、電極52,
53を介して定電流源(図示せず)より所定の電流を供給
すると共に、電極52,53間の電圧を検出して電気抵抗の
測定を行なった。磁界56を印加しない場合には素子51の
抵抗は零であるが、磁界56を印加して電流を流すと、第
6図に示すように電流が50mAの場合に、約10ガウスの磁
界の印加で突然電気抵抗が現われ、磁界の増加と共に素
子51の抵抗は急激に増加した。また電流が10mAの場合に
は、約100ガウスの磁界の印加で突然電気抵抗が現わ
れ、電流が100mAの場合には、約5ガウスの磁界の印加
で突然電気抵抗が現われ、磁界の増加と共に、それぞれ
同様に電気抵抗が急激に増加した。
Next, the element 51 is placed in liquid nitrogen (77K), and the electrodes 52,
A predetermined current was supplied from a constant current source (not shown) via 53, and the voltage between the electrodes 52 and 53 was detected to measure the electric resistance. When the magnetic field 56 is not applied, the resistance of the element 51 is zero. However, when the magnetic field 56 is applied and a current is passed, as shown in FIG. 6, when the current is 50 mA, a magnetic field of about 10 Gauss is applied. The electric resistance suddenly appeared at, and the resistance of the element 51 rapidly increased as the magnetic field increased. When the current is 10 mA, the electric resistance suddenly appears when the magnetic field of about 100 Gauss is applied, and when the current is 100 mA, the electric resistance suddenly appears when the magnetic field of about 5 Gauss is applied, and as the magnetic field increases, The electric resistance increased sharply in the same manner.

しかもこの特性は、再現性を有し、また極めて安定なも
のであった。更にこれらの特性は印加する磁界の方向に
依存しないものであった。
Moreover, this characteristic was reproducible and extremely stable. Furthermore, these characteristics did not depend on the direction of the applied magnetic field.

上記のような素子を本明細書中においては超電導磁気抵
抗素子と称し、この素子を用いた磁気抵抗装置を超電導
磁気抵抗装置と称している。
In the present specification, an element as described above is called a superconducting magnetoresistive element, and a magnetoresistive device using this element is called a superconducting magnetoresistive device.

上記のような素子に定電流を供給し、電気抵抗の変化を
電圧変化として検出することによって、印加磁界の有無
及び大きさを知ることが出来るため、磁気センサとして
利用することが出来る。この場合、素子の電気抵抗は磁
界の方向に依存しないという大きな特徴を有しており、
従来の半導体や磁性体を用いた磁気抵抗素子、更には超
電導体を用いたSQUIDでは実現出来ない本発明の優れた
点である。
By supplying a constant current to the above element and detecting a change in electric resistance as a voltage change, it is possible to know the presence or absence and the magnitude of the applied magnetic field, and thus it can be used as a magnetic sensor. In this case, the electric resistance of the element has a great feature that it does not depend on the direction of the magnetic field.
This is an advantage of the present invention, which cannot be realized by a conventional magnetoresistive element using a semiconductor or a magnetic material, or SQUID using a superconductor.

更に、印加磁界が零からある値までは、素子の電気抵抗
が完全に零であり、印加磁界の大きさがある値以上では
電気抵抗が急激に増加し、デジタル的及びアナログ的な
特性を示すことも従来の素子には見られない特徴であ
り、デジタルあるいはアナログの磁気信号のピックアッ
プにも適しており、本発明の超電導磁気抵抗装置により
磁気ヘッドを構成することも可能である。
Furthermore, the electric resistance of the element is completely zero from zero to a certain value of the applied magnetic field, and when the magnitude of the applied magnetic field exceeds a certain value, the electric resistance rapidly increases, showing digital and analog characteristics. This is also a characteristic not found in conventional elements, is suitable for picking up digital or analog magnetic signals, and a magnetic head can be constructed by the superconducting magnetoresistive device of the present invention.

上記第5図に示した構成では、電流電極と電圧電極とを
共通にした実用的な2端子素子としたが、精密な測定を
行なう場合には第7図に示すように超電導体71に電流電
極72,72と電圧電極73,73とを別個に設けるように成すこ
とが好ましい。
In the configuration shown in FIG. 5, the current electrode and the voltage electrode are commonly used as a practical two-terminal element. However, in the case of performing a precise measurement, as shown in FIG. The electrodes 72, 72 and the voltage electrodes 73, 73 are preferably provided separately.

超電導磁気抵抗素子に磁界に印加する手段としては、永
久磁石を用いても良く、また電磁石を用いても良く、更
にまた、電磁波の磁界成分を用いるように成しても良
い。
As a means for applying a magnetic field to the superconducting magnetoresistive element, a permanent magnet may be used, an electromagnet may be used, or a magnetic field component of electromagnetic waves may be used.

また上記したセラミック超電導材料の作製時において
は、原料材料の分散、粉砕を充分に行ない、微粉(μm
φ以下)からペレットを作製したが、他の一作製例とし
て同一組成、同一熱処理条件にて、分散、粉砕時の粉体
粒子径を2〜5μmφ程度に制御してセラミック超電導
材料及び超電導磁気抵抗素子を作製した。
When the above-mentioned ceramic superconducting material is produced, the raw material is sufficiently dispersed and pulverized to obtain fine powder (μm
Pellets were produced from (φ or less), but as another production example, the ceramic superconducting material and the superconducting magnetoresistive material were prepared by controlling the powder particle size during dispersion and crushing to about 2 to 5 μmφ under the same composition and the same heat treatment conditions. A device was produced.

この場合、臨界温度は前述の方法で作製した超電導材料
とほぼ同様の特性を示すが、臨界電流は先の例の15A/cm
2に比べて2桁(0.05A/cm2)小さくなり、この素子に磁
界を印加して磁界に対する抵抗変化を測定したところ、
第8図に示すように非常に感度の優れた特性を示し、ま
た印加電流を制御することにより、その感度を敏感に制
御することが出来た。即ち、電気抵抗が突然現われる磁
界のしきい値は、第9図にも示すように、1mAの印加電
流では30ガウス、5mAでは5.5ガウス、10mAでは0.2ガウ
スであった。
In this case, the critical temperature shows almost the same characteristics as the superconducting material produced by the above method, but the critical current is 15 A / cm in the previous example.
2 orders of magnitude compared to 2 (0.05 A / cm 2) decreases, measurement of the resistance change to the magnetic field by applying a magnetic field to the device,
As shown in FIG. 8, the sensitivity was extremely excellent, and the sensitivity could be sensitively controlled by controlling the applied current. That is, the threshold value of the magnetic field at which electric resistance suddenly appears was 30 gauss at an applied current of 1 mA, 5.5 gauss at 5 mA, and 0.2 gauss at 10 mA, as shown in FIG.

この現象は、上記二例の方法で作製した超電導材料は同
一組成で同一熱処理過程を経ているが、粒子の大きさが
異なる出発原料を用いているため、セラミック粒子間の
結合状態、すなわち弱結合の状態が異なり、臨界電流が
異なると同時に、後者の場合の弱結合状態においては、
磁界に対してより敏感に超電導のトンネル効果が無くな
る結果、生じるものと推定される。
This phenomenon is because the superconducting materials prepared by the above two examples have the same composition and the same heat treatment process, but the starting materials with different particle sizes are used. And the critical current is different at the same time, in the latter case, in the weakly coupled state,
It is presumed that it occurs as a result of the superconducting tunnel effect becoming more sensitive to magnetic fields.

第10図は、超電導磁気抵抗素子に永久磁石を用いて磁界
を加える場合の実施例を示示す図であり、第10図におい
て、101は素子、102,103は端子、104は永久磁石であ
る。
FIG. 10 is a diagram showing an embodiment in which a magnetic field is applied to the superconducting magnetoresistive element using a permanent magnet. In FIG. 10, 101 is an element, 102 and 103 are terminals, and 104 is a permanent magnet.

上記第10図に示す実施例において、一定の強さの永久磁
石104を用い、永久磁石104を素子101に対して移動可能
に設けることにより、敏感な変位センサを構成すること
が出来る。即ち、磁石104と素子101との相対距離(dま
たはl)の変化によって、素子101の電気抵抗が例えば
第11図に示すように急激に変化するため、この電気抵抗
の変化により素子101に対する磁石104の変位を測定する
ことが出来る。
In the embodiment shown in FIG. 10 described above, a sensitive displacement sensor can be constructed by using the permanent magnet 104 having a constant strength and movably providing the permanent magnet 104 with respect to the element 101. That is, since the electric resistance of the element 101 changes abruptly as shown in FIG. 11 due to the change in the relative distance (d or l) between the magnet 104 and the element 101, the change in the electric resistance causes the magnet for the element 101 to move. 104 displacements can be measured.

第12図は本発明の他の実施例を示す図であり、同図にお
いては超電導磁気抵抗素子121の中央部にも電極123を設
けて、3端子とした素子の一部に磁界を加え、この磁界
を素子121に沿って移動させることにより、素子121内の
抵抗比率を変化させてポテンシオメータを構成したもの
であり、121は超電導磁気抵抗素子、122及び124は素子1
21の両端部に設けられた定電流入力用の第1及び第2の
電極、123は素子121の中央部に設けられた出力電圧検出
用の第3の電極、125は素子121の弱結合の超電導状態を
破る磁界(臨界磁界)よりも大きな磁界を印加する手段
(永久磁石)であり、素子121に沿って移動可能に設け
ている。
FIG. 12 is a diagram showing another embodiment of the present invention, in which the electrode 123 is also provided in the central portion of the superconducting magnetoresistive element 121, and a magnetic field is applied to a part of the element having three terminals, By moving this magnetic field along the element 121, the resistance ratio in the element 121 is changed to form a potentiometer, 121 is a superconducting magnetoresistive element, and 122 and 124 are elements 1.
Constant current input first and second electrodes provided at both ends of 21; 123, an output voltage detection third electrode provided at the center of the element 121; and 125, a weakly coupled element 121. Means (permanent magnet) for applying a magnetic field larger than the magnetic field (critical magnetic field) that breaks the superconducting state, and is provided so as to be movable along the element 121.

上記のような構成において、永久磁石125により臨界磁
界より大きい値が3端子素子121の電極122,123間に加わ
っている場合には、電極122,123間では超電導状態が破
れて、電極122,123間に現われる電気抵抗R23はある有限
の値をとる。この場合、電極123,124間の超電導体には
磁界が印加されておらず、従って、超電導状態を示し、
電極123,124間の抵抗R34は零である。
In the above configuration, when a value larger than the critical magnetic field is applied between the electrodes 122 and 123 of the three-terminal element 121 by the permanent magnet 125, the superconducting state is broken between the electrodes 122 and 123, and the electric resistance that appears between the electrodes 122 and 123 appears. R 23 has a finite value. In this case, the magnetic field is not applied to the superconductor between the electrodes 123 and 124, and therefore, the superconducting state is shown,
The resistance R 34 between the electrodes 123 and 124 is zero.

従って、入力電圧Vinを電極122,124間に印加しても、
電極123,124間の出力電圧Voutは零である。
Therefore, even if the input voltage V in is applied between the electrodes 122 and 124,
The output voltage V out between the electrodes 123 and 124 is zero.

次に、磁界125を電極123上の位置に移動させる。このと
き、電極122,123間と電極123,124間の超電導体に加わる
磁界の面積がほぼ等しい場合では、電極122,123間の抵
抗R23と、電極123,124間の抵抗R34は共にそれぞれの部
分の約半分は超電導状態が破れて、抵抗はR23=R34とな
る。
Next, the magnetic field 125 is moved to a position on the electrode 123. At this time, when the areas of the magnetic fields applied to the superconductor between the electrodes 122 and 123 and between the electrodes 123 and 124 are almost equal, the resistance R 23 between the electrodes 122 and 123 and the resistance R 34 between the electrodes 123 and 124 are both about half of the superconductivity. The state is broken and the resistance becomes R 23 = R 34 .

従って、電極123,124間に現われる電圧はVout=1/2Vin
となって入力電圧の半分となる。
Therefore, the voltage appearing between the electrodes 123 and 124 is V out = 1 / 2V in
Becomes half of the input voltage.

更に磁界125の位置を電極123,124間に移動させると、電
極123,124間にのみ磁界が加わり、電極122,123間の超電
導体は超電導状態にあるので、抵抗R23=0となり、電
極123,124間では超電導状態が破れて、電極123,124間に
現われる電気抵抗R34はある有限の値となる。
Further, when the position of the magnetic field 125 is moved between the electrodes 123 and 124, the magnetic field is applied only between the electrodes 123 and 124, and the superconductor between the electrodes 122 and 123 is in the superconducting state, so that the resistance R 23 = 0 and the superconducting state between the electrodes 123 and 124 becomes When broken, the electric resistance R 34 appearing between the electrodes 123 and 124 has a finite value.

従って、電極123,124間に現われる出力電圧はVout=V
inとなって入力電圧と等しくなる。
Therefore, the output voltage appearing between the electrodes 123 and 124 is V out = V
become in equal to the input voltage.

以上に説明した磁界の変位と出力電圧との関係は超電導
体の電極122側からの磁界125の変位置をlとすれば、第
13図に示すように磁界125の変位lに対応して、出力電
圧Voutは直線的)に零から入力電圧Vinの範囲に渡
って変化し、無接触ポテンシオメータの実現が図れる。
The relationship between the displacement of the magnetic field and the output voltage explained above is as follows if the displacement position of the magnetic field 125 from the electrode 122 side of the superconductor is l.
As shown in FIG. 13, the output voltage V out changes linearly (corresponding to the displacement 1 of the magnetic field 125) from zero to the input voltage V in , and a contactless potentiometer can be realized.

また、上記第13図に示した出力特性は、素子121の磁界
の変位方向における各断面形状を逐次変えた素子を用い
ることによって、対数あるいは紙数関数更には他の
任意の所望の特性を得ることが出来る。
Further, the output characteristics shown in FIG. 13 above obtain logarithmic or paper number functions and any other desired characteristics by using elements in which each cross-sectional shape in the displacement direction of the magnetic field of the element 121 is sequentially changed. You can

上記したポテンシオメータは磁石125と素子121とは非接
触であるため、雑音を発生せず、信頼性に優れたものが
得られる。
In the above potentiometer, since the magnet 125 and the element 121 are not in contact with each other, noise is not generated and an excellent reliability is obtained.

また上記の例においては、超電導素子121を直線状にし
たものであるが、超電導体を円周上に配置した素子形状
とし、磁界印加手段125を同心円状に移動させるように
構成することにより、通常の回転型ポテンシオメータと
同様な特性を得ることが出来る。
Further, in the above example, although the superconducting element 121 is linear, it has an element shape in which the superconductor is arranged on the circumference, and by arranging the magnetic field applying means 125 to move concentrically, It is possible to obtain characteristics similar to those of a normal rotary potentiometer.

第14図は、超電導磁気抵抗素子141に電磁石を用いて磁
界を印加する場合の実施例を示す図であり、第14図にお
いて141は素子、142,148は電極端子、144は電磁石であ
る。
FIG. 14 is a diagram showing an embodiment in which a magnetic field is applied to the superconducting magnetoresistive element 141 by using an electromagnet. In FIG. 14, 141 is an element, 142 and 148 are electrode terminals, and 144 is an electromagnet.

上記第14図に示す実施例において、電磁石144のコイル
に所定の電流を流すことにより、磁界Bが素子141に作
用し、素子141の電極端子142,143間の抵抗値が大きく変
化する。即ち電磁石144のコイルに電流が流れていない
場合には、素子141は超電導状態を保つため、素子141の
電極端子142,143間の抵抗は零であるが、電磁石144のコ
イルに電流を流して、発生した磁界Bを素子141に印加
した合には、素子141は大きな電気抵抗を示すことにな
る。
In the embodiment shown in FIG. 14, the magnetic field B acts on the element 141 by causing a predetermined current to flow through the coil of the electromagnet 144, and the resistance value between the electrode terminals 142 and 143 of the element 141 greatly changes. That is, when no current is flowing in the coil of the electromagnet 144, the element 141 maintains the superconducting state, so the resistance between the electrode terminals 142 and 143 of the element 141 is zero, but a current is caused to flow in the coil of the electromagnet 144 to generate it. When the magnetic field B is applied to the element 141, the element 141 exhibits a large electric resistance.

したがって上記の構造の磁気抵抗装置は、例えば負荷及
び電源と直列に接続し、またはMOSトランジスタ等の高
入力インピーダンス素子の制御端子に接続する等、一種
の電磁リレーとして用いることが出来る。
Therefore, the magnetoresistive device having the above structure can be used as a kind of electromagnetic relay, for example, by connecting it in series with a load and a power supply, or by connecting to a control terminal of a high input impedance element such as a MOS transistor.

上記の磁気抵抗装置は、例えば第15図に示すようにコイ
ルを巻いたソレノイド154の内部に電極端子152,153を備
えた超電導磁気抵抗素子151を配置するよように成して
も良く、また第16図に示すように、コイル165を巻いた
一部切欠いて空隙を設けた略ドーナツ状の電磁石164の
空隙部に電極端子162,163を有する超電導磁気抵抗素子1
61を配置するように成しても同様に一種の電磁リレーと
して用いることが出来る。
The above magnetoresistive device may be configured such that, for example, as shown in FIG. 15, a superconducting magnetoresistive element 151 having electrode terminals 152 and 153 is disposed inside a coiled solenoid 154, and a sixteenth As shown in the figure, a superconducting magnetoresistive element 1 having electrode terminals 162 and 163 in the void portion of a substantially donut-shaped electromagnet 164 in which a coil 165 is wound and a void is provided by partially cutting it out.
Even if 61 is arranged, it can be used as a kind of electromagnetic relay in the same manner.

上記のように電磁リレーを構成した場合、従来の電磁リ
レーの有する欠点であるチャタリングのような振動現象
が伴なわないため、精密な開閉を行なうことが出来、ま
たゴミや酸化等により接点不良を起こすこともなく、更
には作動時に雑音、機械音等を発生することもない。
When the electromagnetic relay is configured as described above, it does not cause a vibration phenomenon such as chattering, which is a drawback of conventional electromagnetic relays, so it can be opened and closed precisely, and contact failure due to dust, oxidation, etc. There is no occurrence of noise, and no noise or mechanical noise is generated during operation.

上記第14図に示した磁気抵抗装置は、電磁石144と素子1
41との相対変位によって素子141の電気抵抗が変化する
ため、第10図に示した素子システムと同様、変位セン
サ、位置センサとしても用いることが出来る。
The magnetoresistive device shown in FIG. 14 has the electromagnet 144 and the element 1
Since the electric resistance of the element 141 changes according to the relative displacement with respect to 41, it can be used as a displacement sensor or a position sensor as in the element system shown in FIG.

また、上記第10図、第14図〜第16図に示した磁気抵抗装
置は、永久磁石、電磁石と素子との相対変位あるいは電
磁石に流す電流の大きさによって、素子の抵抗値を任意
に変化させることが出来るため、上記各磁気抵抗装置は
無接触の可変抵抗器としても用いることが出来る。
Further, in the magnetoresistive device shown in FIGS. 10 and 14 to 16 described above, the resistance value of the element is arbitrarily changed by the relative displacement of the permanent magnet, the electromagnet and the element, or the magnitude of the current flowing in the electromagnet. Therefore, each of the magnetoresistive devices can be used as a contactless variable resistor.

第17図は本発明の他の実施例の構成を示す図であり、超
電導磁気抵抗素子をマイクロ波に応用した例を示してい
る。
FIG. 17 is a diagram showing the configuration of another embodiment of the present invention, showing an example in which a superconducting magnetoresistive element is applied to microwaves.

第17図において、171はマイクロ波導波管であり、該導
波管171内(の例えば内壁)に超電導磁気抵抗素子(超
電導膜)172を位置せしめ、該素子172に外部に設けた電
磁石173等により磁界Bを作用せしめるように構成して
いる。
In FIG. 17, reference numeral 171 is a microwave waveguide, and a superconducting magnetoresistive element (superconducting film) 172 is located in (for example, an inner wall of) the waveguide 171, and an electromagnet 173 or the like provided outside the element 172. The magnetic field B is made to act by the.

上記のような構成において、素子172に磁界Bが加わら
ない場合には、超電導磁気抵抗素子172の抵抗率が零で
あり、損失がないため、マイクロ波は何ら減衰しないで
伝搬する。
In the above structure, when the magnetic field B is not applied to the element 172, the superconducting magnetoresistive element 172 has a resistivity of zero and no loss, so that the microwave propagates without being attenuated at all.

次に導波管171内の超電導磁気抵抗素子172に外部から電
磁石153または永久磁石によって磁界Bを印加すると、
素子172の超電導状態が破れて素子172は電気抵抗を示す
ため、導波管171内を伝搬するマイクロ波は、素子172に
ある程度吸収されて減衰する。また素子172に印加する
磁界Bの強さを増大させると、第18図に示すようにマイ
クロ波の減衰も増大することになり、上記第17図に示し
た磁気抵抗装置は機械的な構造を伴わないマイクロ波の
可変減衰器としての作用をなす。
Next, when a magnetic field B is applied to the superconducting magnetoresistive element 172 in the waveguide 171 from the outside by an electromagnet 153 or a permanent magnet,
Since the superconducting state of the element 172 is broken and the element 172 exhibits electric resistance, the microwave propagating in the waveguide 171 is absorbed and attenuated to some extent by the element 172. When the strength of the magnetic field B applied to the element 172 is increased, the attenuation of microwaves is also increased as shown in FIG. 18, and the magnetoresistive device shown in FIG. 17 has a mechanical structure. It functions as a variable attenuator for microwaves that does not accompany it.

第19図(a)及び(b)はそれぞれ本発明をマイクロ波
に応用した場合の他の実施例を示す図である。
FIGS. 19 (a) and 19 (b) are diagrams showing other embodiments when the present invention is applied to microwaves.

第19図(a)及び(b)において、191はマイクロ波導
波管であり、該導波管91内の中央部に電極端子192,193
を備えた超電導磁気抵抗素子194がポスト状に取り付け
られ、電極端子192,193がそれぞれ導波管191の内壁に接
続されている。
In FIGS. 19A and 19B, reference numeral 191 is a microwave waveguide, and electrode terminals 192 and 193 are provided at the center of the waveguide 91.
A superconducting magnetoresistive element 194 having the above is attached in a post shape, and electrode terminals 192 and 193 are connected to the inner wall of the waveguide 191, respectively.

上記のような構成において、第19図(a)に示すよう
に、素子194に磁界Bを印加しない場合には、素子194は
超電導状態にあり、抵抗値が零の状態にあるため、導波
管191内に金属ポストを立てた場合と同様に、この素子1
94部分でマイクロ波電界が零となって、例えば導波管19
1の左側から入射したマイクロ波は反射されて導波管191
の右側には伝搬されない。
In the above structure, as shown in FIG. 19 (a), when the magnetic field B is not applied to the element 194, the element 194 is in the superconducting state and has a resistance value of zero. This element 1 as well as a metal post in tube 191
The microwave electric field becomes zero at the 94th part, and for example, the waveguide 19
Microwaves incident from the left side of 1 are reflected by the waveguide 191
Is not propagated to the right side of.

次に第19図(b)に示すように素子194に磁界Bを印加
すれば素子194の超電導状態が破られて素子194は抵抗体
となり、マイクロ波は一部吸収されるのみで、、右方向
に伝搬される。
Next, as shown in FIG. 19 (b), when a magnetic field B is applied to the element 194, the superconducting state of the element 194 is broken, the element 194 becomes a resistor, and the microwave is only partially absorbed. Is propagated in the direction.

したがって、この第19図(a)及び(b)に示した磁気
抵抗装置は、磁界によってマイクロ波スイッチとしての
作用をなす。
Therefore, the magnetoresistive device shown in FIGS. 19A and 19B acts as a microwave switch by the magnetic field.

また、第19図(b)に示す構成において、磁界Bの強さ
を変化させることによって、通過マイクロ波の量が変化
するため、マイクロ波の可変減衰器としても用いること
が出来る。
Further, in the configuration shown in FIG. 19 (b), the amount of passing microwaves changes by changing the strength of the magnetic field B, so that it can also be used as a variable attenuator of microwaves.

第20図は本発明の他の実施例の構成を示す斜視図であ
り、本発明の磁気抵抗装置を磁界検出装置に用いた場合
の例を示している。
FIG. 20 is a perspective view showing the configuration of another embodiment of the present invention, and shows an example in which the magnetoresistive device of the present invention is used in a magnetic field detection device.

第20図において、201は超電導磁気抵抗素子であり、該
素子201には電流電極202,202及び電圧電極203,203が設
けられている。
In FIG. 20, 201 is a superconducting magnetoresistive element, and the element 201 is provided with current electrodes 202, 202 and voltage electrodes 203, 203.

また上記素子201には永久磁石204等によって予め超電導
の弱結合状態が破られる磁界(臨界磁界)よりわずかに
大きな磁界がバイアス磁界B0として印加され、検出すべ
き微弱磁界信号源205の磁界Bが重畳して素子201に印
加される構成となっている。
A magnetic field slightly larger than the magnetic field (critical magnetic field) in which the weak coupling state of superconductivity is broken beforehand by the permanent magnet 204 or the like is applied to the element 201 as the bias magnetic field B 0 , and the magnetic field B of the weak magnetic field signal source 205 to be detected is detected. S is superimposed and applied to the element 201.

上記のような構成において、素子201を超電導状態を示
す臨界温度以下の温度に保ちながら、電流端子202,202
を介して100mAの電流を流した場合、前述したように第
6図に示す特性の素子にあっては磁界5ガウスまでは素
子201は超電導状態を保ち、磁界が5ガウス以上になる
と超電導の弱結合状態が破れて電気抵抗を示し、この特
性は、第21図に示すように急峻な傾斜を有する。
In the above configuration, while maintaining the element 201 at a temperature below the critical temperature indicating a superconducting state, the current terminals 202, 202
When a current of 100 mA is applied through the element, as described above, in the element having the characteristics shown in FIG. 6, the element 201 maintains the superconducting state up to the magnetic field of 5 gauss, and when the magnetic field exceeds 5 gauss, the superconductivity is weak. The binding state is broken to show electric resistance, and this characteristic has a steep slope as shown in FIG.

したがって、この特性の急峻な傾斜を示す領域の磁界、
例えば20ガウスの磁界をバイアス磁界B0として予め、素
子201に印加しておき、その上に微弱な信号磁界B
重畳することによって、この信号磁界Bを素子201の
抵抗変化ΔRとして、検出することが可能となり、信号
磁界Bの変化が電圧端子203,203より電圧変化として
検出される。
Therefore, the magnetic field in the region showing the steep slope of this characteristic,
For example, a magnetic field of 20 gauss is applied to the element 201 in advance as a bias magnetic field B 0 , and a weak signal magnetic field B S is superposed on the bias magnetic field B 0 , and this signal magnetic field B S is used as a resistance change ΔR of the element 201. It becomes possible to detect, and the change of the signal magnetic field B S is detected as a voltage change from the voltage terminals 203, 203.

上記の実施例において、素子201の弱結合の超電導状態
が破れた第21図の点線で示すように変化率の大きいバイ
アス磁界B0の位置を動作点として動作する。このため、
信号磁界の微少な変化に対して電気抵抗は大きく変化す
る。
In the above embodiment, the element 201 operates with the position of the bias magnetic field B 0 having a large rate of change as the operating point, as shown by the dotted line in FIG. 21, in which the weakly coupled superconducting state is broken. For this reason,
The electric resistance changes greatly with a slight change in the signal magnetic field.

また素子201の電気抵抗値は素子の形状によって制御す
ることが可能であり、例えば素子の超電導となる領域を
第22図に示すように微細加工等によってジグザグの形状
221にすることによって1KΩオーダとした。この場合、
素子201は1ガウスの信号磁界の変化に対して約270mΩ
変化し、100mAの電流に対して27mVの出力電圧を発生し
た。
Further, the electric resistance value of the element 201 can be controlled by the shape of the element. For example, as shown in FIG. 22, a region where the element becomes superconducting is formed in a zigzag shape by fine processing.
It was set to 1KΩ by setting 221. in this case,
Element 201 is approximately 270 mΩ for a change in the signal magnetic field of 1 Gauss
It changed and produced an output voltage of 27 mV for a current of 100 mA.

なお、第22図に示したジグザグ形状に加工することによ
って素子の高抵抗化を図る方法としては、例えば素子の
表面をイオン注入処理あるいはレーザ照射処理すること
によって、その部分の超電導特性を消去するように成し
てジグザグ形状にすることが可能であり、また上記の高
抵抗化は第20図に示した実施例に限定されず、前述の他
の実施例にも適用して、出力電圧値等を大きくしても良
いことは言うまでもない。
Incidentally, as a method for increasing the resistance of the element by processing it into the zigzag shape shown in FIG. 22, for example, the surface of the element is subjected to ion implantation treatment or laser irradiation treatment to erase the superconducting characteristic of that portion. It is possible to form a zigzag shape as described above, and the above-mentioned high resistance is not limited to the embodiment shown in FIG. It goes without saying that it is possible to increase the values such as.

また、上記第20図に示した実施例において、検出感度の
調整を容易に行なうためには、バイアス磁界を電磁石を
用いて発生させるように成し、励磁電流を制御すること
によってバイアス磁界値を制御するようにしても良い。
Further, in the embodiment shown in FIG. 20, in order to easily adjust the detection sensitivity, the bias magnetic field is generated by using an electromagnet, and the bias magnetic field value is controlled by controlling the exciting current. It may be controlled.

なお、上記した本発明の磁気抵抗装置の各実施例におい
ては、全て完全な超電導状態を示す材料よりなる素子を
用いて説明したが、本発明はこれに限定されるものでは
なく、例えば酸化物セラミックの組成により、第23図に
示すように印加磁界が零の状態では、ごくわずかな抵抗
値R0を示すが、印加磁界の増大と著に著るしく急峻な抵
抗を示すものがあるが、このような材料を用いた素子の
場合も原理は全く同じであり、このような素子を用いて
も、同様の磁気抵抗装置を構成して同様の効果が得られ
る。
In each of the embodiments of the magnetoresistive device of the present invention described above, all the elements made of a material exhibiting a complete superconducting state have been described, but the present invention is not limited to this, for example, an oxide. Due to the composition of the ceramic, as shown in FIG. 23, when the applied magnetic field is zero, there is a very small resistance value R 0 , but there are some which show a markedly sharp resistance with an increase in the applied magnetic field. The principle is exactly the same in the case of an element using such a material, and even if such an element is used, a similar magnetoresistive device can be configured and a similar effect can be obtained.

以下に、第23図に示した特性を有する素子の作製例を示
す。
An example of manufacturing an element having the characteristics shown in FIG. 23 is shown below.

1.2Ba1.8Cu3O7−xの超電導体を得るように、酸化イ
ットリウムY2O3、炭酸バリウムBaCO3、酸化銅CuOを所定
量秤量し、充分に分散混合した微粒子を900℃、5時間
空気中で仮焼成を得ない、次に再び粉砕、分散させ、均
一な微粒子(1μmφ以下)からなる粉体を作り、加圧
力1ton/cm2にて円状のペレットを作製し、次に1000℃、
3時間空気中で本焼成し、200℃まで5時間で降温させ
て厚み1mmの円状のペレットを作製した。
Y 1.2 Ba 1.8 Cu 3 O 7-x superconductor was obtained by weighing out a predetermined amount of yttrium oxide Y 2 O 3 , barium carbonate BaCO 3 , and copper oxide CuO to obtain fine particles sufficiently dispersed and mixed at 900 ° C. No calcination in air for a period of time, then pulverize and disperse again to make powder consisting of uniform fine particles (1 μmφ or less), and make circular pellets at a pressing force of 1 ton / cm 2 , then 1000 ℃,
It was calcined in air for 3 hours and cooled to 200 ° C. in 5 hours to prepare circular pellets having a thickness of 1 mm.

上記のようにして作製した超電導材料は、多くの超電導
体粒子より構成され、粒子境界に極めて薄い絶縁物ある
いは抵抗体が存在し、臨界温度が異なる弱結合のものが
混在しているものの、全体としては上記第2図に示した
構造と略同様、超電導体の弱結合の集合体とみなすこと
が出来た。
The superconducting material produced as described above is composed of many superconducting particles, and there is an extremely thin insulator or resistor at the grain boundary, and although there are weakly bonded ones with different critical temperatures, the whole Can be regarded as a weakly coupled aggregate of superconductors, similar to the structure shown in FIG.

上記のようにして作製した超電導材料は、磁界を加えな
いときは、第24図に示すように絶対温度82度で電気抵抗
が急激に低下し始、絶対温度78度で電気抵抗が極めて小
さい値(R0=12mΩ)を示し、絶対温度38度で電気抵抗
が完全に零になった。
When a magnetic field is not applied, the superconducting material produced as described above begins to sharply decrease its electric resistance at an absolute temperature of 82 degrees as shown in FIG. 24, and has an extremely small electric resistance at an absolute temperature of 78 degrees. (R 0 = 12 mΩ), and the electrical resistance became completely zero at an absolute temperature of 38 degrees.

上記のような材料から素子片を切り出して電極を取付け
た後、液体窒素(77K)中に素子を入れ、電極を介して
定電流(5mA)を流して素子の抵抗を測定したところ、
磁界を印加しない場合、素子の抵抗は極めて小さい値
(R0=12mΩ)として残留しているが、印加した場合、
磁界の増加と共に素子の抵抗が急激に増加し、第23図の
特性を示した。
After cutting out the element piece from the above material and attaching the electrode, put the element in liquid nitrogen (77K) and measure the resistance of the element by passing a constant current (5 mA) through the electrode,
When no magnetic field is applied, the resistance of the element remains as an extremely small value (R 0 = 12 mΩ), but when applied,
The resistance of the device increased rapidly with the increase of the magnetic field, and the characteristics shown in FIG. 23 were exhibited.

このような特性を示す素子を用いて前述の本発明の実施
例としての磁気抵抗装置を構成したが、磁界を印加しな
い場合に抵抗値が完全に零となる超電導材料より作製し
た素子を用いた場合と略同様の動作結果が得られ、実用
上何らの問題のないことが確認された。
Although the magnetoresistive device as the above-mentioned embodiment of the present invention was constructed using the element having such characteristics, the element made of the superconducting material having a resistance value of completely zero when no magnetic field was applied was used. It was confirmed that an operation result similar to that in the case was obtained, and that there was no problem in practical use.

また、このような素子を用いた場合、先に示した他の実
施例のものに比べて、高抵抗化が図られていることにな
り、特に抵抗変化を大きな電圧変化として必要なシステ
ム制御に本素子を用いてより好適である。
Further, when such an element is used, higher resistance is achieved as compared with those of the other examples shown above, and particularly in the system control required as a large voltage change due to resistance change. It is more preferable to use this element.

上記各実施例において用いている超電導磁気抵抗素子は
絶対温度80度付近で超電導状態、あるいはそれに近い状
態にあるため、液体窒素やペルチェ冷却素子等の電子冷
却素子を用いて冷却して使用するようにしているが、更
に室温で超電導あるいはそれに近い状態となる素子であ
れば冷却せずに実用化が図れることは言うまでもない。
Since the superconducting magnetoresistive element used in each of the above examples is in a superconducting state at or near an absolute temperature of 80 degrees, it should be cooled by using an electronic cooling element such as liquid nitrogen or a Peltier cooling element. However, it goes without saying that an element that becomes superconducting or close to it at room temperature can be put to practical use without cooling.

なお、上記実施例においては、超電導セラミックとして
Y−Ba−Cu−O系を例にして説明したが、本発明はこれ
に限定されるものではなく、例えばLa−Ba−Cu−O系、
Y−Sr−Ba−Cu−O系等のIIIa族元素、IIa族元素、銅
(Cu)元素及び酸素(O)元素または酸素(O)元素の
一部をフッ素(F)元素で置換したものを構成元素とし
た超電導セラミック、あるいは他の粒界の存在する多結
晶構造の超電導材料を用いても同様に実施し得ることが
出来る。
In addition, in the said Example, although Y-Ba-Cu-O type | system | group was demonstrated as an example as a superconducting ceramic, this invention is not limited to this, For example, La-Ba-Cu-O type | system | group,
Group IIIa element, group IIa element, copper (Cu) element and oxygen (O) element such as Y-Sr-Ba-Cu-O system, or part of oxygen (O) element substituted with fluorine (F) element The same operation can be performed by using a superconducting ceramic having a constituent element of or a polycrystalline superconducting material having other grain boundaries.

また、上記超電導材料の作製方法の例として焼結法を例
に説明したが、本発明はこれに限定されるものではな
く、溶融法、薄膜作製法(スパッタリング法、蒸着法
等)、厚膜作製法(スプレー法、スクリーン法、ドクタ
ブレード法等)等を用いて作製しても良いことは言うま
でもない。
Further, although the sintering method has been described as an example of the method for producing the superconducting material, the present invention is not limited to this, and a melting method, a thin film producing method (a sputtering method, a vapor deposition method, etc.), a thick film It goes without saying that it may be manufactured using a manufacturing method (spray method, screen method, doctor blade method, etc.).

要するに、本発明は多くの超電導体微粒子より構成され
る多結晶体で、その粒子境界に極めて薄い絶縁物あるい
は抵抗体が存在し、または粒子間の接触部分がポイント
状になる、即ち、粒界と粒界が点状の接触をなしている
等、いわゆる超電導の弱結合状態あるいはそれに近い状
態にあり、この状態が磁界の印加によって破られて上記
した第1図あるいは第23図に示すような特性を示す素子
材料であればいかなる材料でも用いることが出来ること
は言うまでもない。
In short, the present invention is a polycrystalline body composed of many superconductor fine particles, in which an extremely thin insulator or resistor is present at the grain boundary, or the contact portion between grains becomes point-like, that is, grain boundaries. And the grain boundaries are in a point-like contact with each other, or in a so-called weak superconducting state or in a state close thereto, and this state is broken by the application of a magnetic field, as shown in FIG. 1 or FIG. It goes without saying that any material can be used as long as it is an element material exhibiting characteristics.

<発明の効果> 以上のように本発明によれば、セラミック超電導体を構
成するの超電導粒子間の弱結合を利用することにより、
従来の磁気抵抗素子とは異なる新規な現象にもとづく作
用をなして、微弱な磁界に対しても高性能に抵抗変化を
示す超電導磁気抵抗装置を提供することができる。即
ち、従来の半導体を用いた磁気抵抗素子では、例えば数
十ガウス程度の弱磁界に対する抵抗増加ΔRは極めて微
弱であり、磁界を印加しないときの抵抗R0に対して、Δ
R/R0の値は高々1%程度であったが、本発明の超電導磁
気抵抗装置では、数〜数十ガウスの非常に微弱な磁界に
対しても、R0が完全に零なので、ΔR/R0の値は無限大と
なり、従来の磁気抵抗素子とは比較にならない高性能な
磁気抵抗装置を実現することが可能となる。
<Effects of the Invention> As described above, according to the present invention, by utilizing the weak coupling between the superconducting particles constituting the ceramic superconductor,
It is possible to provide a superconducting magnetoresistive device that exhibits a high-performance resistance change even with a weak magnetic field by performing an action based on a novel phenomenon different from the conventional magnetoresistive element. That is, in the conventional magnetoresistive element using a semiconductor, the resistance increase ΔR with respect to a weak magnetic field of, for example, several tens of gauss is extremely weak, and the resistance increase ΔR with respect to the resistance R 0 when no magnetic field is applied is
The value of R / R 0 was at most about 1%, but in the superconducting magnetoresistive device of the present invention, R 0 is completely zero even for a very weak magnetic field of several to several tens Gauss, and therefore ΔR The value of / R 0 becomes infinite, and it is possible to realize a high-performance magnetoresistive device that is not comparable to conventional magnetoresistive elements.

さらに、本発明によれば、セラミック超電導体を構成す
るのは超電導粒子間の弱結合を利用しているので、C.W.
Chuらによるphys. Rev. Lett.58[4](26 Jan. 198
7)pp.405−407の文献に示されたようなK2NiF4相を含む
多相のLa−Ba−Cu−O化合物系超電導材料とは材料自体
の構造も異なり、従って、磁界による電気抵抗の変化を
生じる原理も異なるものである。よって、上記文献で
は、4.5kガウス以上という非常に強い磁界を印加した状
態でしか超電導現象による電気抵抗の変化を観察されて
いないが、本発明では数〜数十ガウスという非常に微弱
な磁界に対して高性能に抵抗変化を示すことができ、上
記文献からは到底予想もできないような高性能の超電導
磁気抵抗装置を実現することが可能となる。
Furthermore, according to the present invention, since the ceramic superconductor is composed of the weak coupling between the superconducting particles, the CW
Chu et al. Phys. Rev. Lett. 58 [4] (26 Jan. 198
7) The structure of the material itself is different from that of the multiphase La-Ba-Cu-O compound-based superconducting material containing the K 2 NiF 4 phase as shown in the document of pp.405-407. The principle of changing the resistance is also different. Therefore, in the above-mentioned document, the change in the electric resistance due to the superconducting phenomenon is observed only in the state where a very strong magnetic field of 4.5 k Gauss or more is applied, but in the present invention, a very weak magnetic field of several to several tens Gauss is observed. On the other hand, it is possible to realize a high-performance superconducting magnetoresistive device that can exhibit a resistance change with high performance and cannot be predicted from the above literature.

このように本発明によれば、例えば微弱な磁界を高感度
に検出する磁気センサ、磁気ヘッド、無接触ポテンシオ
メータ、可変抵抗器、マイク波波減衰器等の装置を構成
することができ、また超電導を利用したエネルギーシス
テム、交通システム等における制御装置への応用として
幅広く利用することができる。
As described above, according to the present invention, it is possible to configure devices such as a magnetic sensor for detecting a weak magnetic field with high sensitivity, a magnetic head, a non-contact potentiometer, a variable resistor, and a microphone wave attenuator, and It can be widely used as an application to control devices in energy systems, transportation systems, etc. using superconductivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるセラミック超電導磁
気抵抗素子の特性を示す図、第2図はセラミック超電導
材料の構造を模式的に示す図、第3図はセラミック超電
導体の等価回路を示す図、第4図は超電導材料の温度に
対する電気抵抗特性を示す図、第5図は本発明の一実施
例における磁気抵抗装置の一構成例を示す図、第6図は
本発明の実施例において用いる素子の磁界に対する抵抗
変化を素子に流す電流をパラメータとして示した特性の
一例を示す図、第7図は本発明の実施例において用いら
れる超電導磁気抵抗素子の基本構成を示す図、第8図は
本発明の実施例において用いる素子の磁界に対する抵抗
変化を素子に流す電流をパラメータとして示した特性の
他の例を示す図、第9図は本発明の実施例において用い
られる素子の抵抗値の現れる磁界のしきい値を示す図、
第10図は素子に永久磁石を用いて磁界を加える場合の実
施例を示す図、第11図は第10図に示す磁気抵抗装置の特
性を示す図、第12図は本発明の一実施例としての超電導
無接触ポテンシオメータの基本構成を示す図、第13図は
第12図に示す磁気抵抗装置の磁界変化に対する出力電圧
の関係を示す特性図、第14図乃至第16図はそれぞれ素子
に電磁石を用いて磁界を印加する場合の実施例を示す
図、第17図はマイクロ波に応用した場合の本発明の他の
実施例の構成を示す図、第18図は第17図に示す磁気抵抗
装置の特性を示す図、第19図(a)及び(b)はそれぞ
れマイクロ波に応用した場合の他の実施例の構成を示す
図、第20図は本発明の磁気抵抗装置を磁界検出装置に用
いた場合の一実施例を示す図、第21図は第20図に示した
磁気抵抗装置の動作を説明するための特性図、第22図は
本発明の実施例において用いられる素子形状をジグザグ
形状にした場合の例を示す図、第23図は本発明の実施例
において用いられる素子の特性の他の例を示す図、第24
図は超電導材料の温度に対する電気抵抗特性の他の例を
示す図、第25図は従来の磁気抵抗素子の特性を示す図で
ある。 1……超電導体微粒子、2……粒子境界、3……ジョセ
フソン接合、51,71……超電導磁気抵抗素子、52,53……
電極、56……磁界、72……電流電極、73……電圧電極。
FIG. 1 is a diagram showing characteristics of a ceramic superconducting magnetoresistive element in one embodiment of the present invention, FIG. 2 is a diagram schematically showing a structure of a ceramic superconducting material, and FIG. 3 is an equivalent circuit of a ceramic superconductor. 4 and FIG. 4 are diagrams showing electric resistance characteristics with respect to temperature of a superconducting material, FIG. 5 is a diagram showing one structural example of a magnetoresistive device in one embodiment of the present invention, and FIG. The figure which shows an example of the characteristic which showed the resistance change with respect to the magnetic field of the element used as the parameter which made the electric current flow into an element, FIG. 7 is a figure which shows the basic composition of the superconducting magnetoresistive element used in the Example of this invention, FIG. FIG. 9 is a diagram showing another example of the characteristics in which the resistance change with respect to the magnetic field of the element used in the embodiment of the present invention is shown as a parameter, and FIG. 9 is the resistance of the element used in the embodiment of the present invention. Shows a magnetic field threshold of appearance of,
FIG. 10 is a diagram showing an embodiment in which a magnetic field is applied to the element by using a permanent magnet, FIG. 11 is a diagram showing characteristics of the magnetoresistive device shown in FIG. 10, and FIG. 12 is an embodiment of the present invention. As a diagram showing the basic structure of a superconducting contactless potentiometer, FIG. 13 is a characteristic diagram showing the relationship of the output voltage with respect to the magnetic field change of the magnetoresistive device shown in FIG. 12, and FIGS. FIG. 17 is a diagram showing an embodiment in the case of applying a magnetic field using an electromagnet, FIG. 17 is a diagram showing the configuration of another embodiment of the present invention when applied to a microwave, and FIG. 18 is a magnetic diagram shown in FIG. FIG. 19 is a diagram showing the characteristics of the resistance device, FIGS. 19 (a) and 19 (b) are diagrams showing the configuration of another embodiment when applied to microwaves, and FIG. 20 is a magnetic field detection of the magnetoresistance device of the present invention. FIG. 21 is a diagram showing an embodiment when used in a device, and FIG. 21 explains the operation of the magnetoresistive device shown in FIG. FIG. 22 is a diagram showing an example when the element shape used in the embodiment of the present invention is a zigzag shape, and FIG. 23 is another example of characteristics of the element used in the embodiment of the present invention. Showing the 24th
FIG. 25 is a diagram showing another example of the electric resistance characteristic of the superconducting material with respect to temperature, and FIG. 25 is a diagram showing the characteristic of the conventional magnetoresistive element. 1 ... Superconducting fine particles, 2 ... Particle boundaries, 3 ... Josephson junction, 51,71 ... Superconducting magnetoresistive element, 52, 53 ...
Electrodes, 56 ... magnetic field, 72 ... current electrode, 73 ... voltage electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−17175(JP,A) 特公 昭48−28598(JP,B1) Phys.Rev.Lett.58[4 ](26 Jan.1987)PP.405−407 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-17175 (JP, A) JP-B-48-28598 (JP, B1) Phys. Rev. Lett. 58 [4] (26 Jan. 1987) PP. 405-407

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】多数の結晶粒界を有し、超電導を示す結晶
粒が互いに電気的に弱結合しているセラミック超電導材
料よりなる素子と、 該素子に磁界を印加する手段と、 上記素子に磁界を印加した場合に生ずる電気抵抗の変化
を利用する手段と を備えてなることを特徴とする超電導磁気抵抗装置。
1. An element made of a ceramic superconducting material having a large number of crystal grain boundaries, in which crystal grains exhibiting superconductivity are electrically weakly coupled to each other, a means for applying a magnetic field to the element, and A means for utilizing a change in electric resistance that occurs when a magnetic field is applied, and a superconducting magnetoresistive device.
【請求項2】前記超電導材料よりなる素子は、2端子素
子であることを特徴とする特許請求の範囲第1項記載の
超電導磁気抵抗装置。
2. The superconducting magnetoresistive device according to claim 1, wherein the element made of the superconducting material is a two-terminal element.
【請求項3】前記超電導材料よりなる素子は、3端子素
子であることを特徴とする特許請求の範囲第1項記載の
超電導磁気抵抗装置。
3. The superconducting magnetoresistive device according to claim 1, wherein the element made of the superconducting material is a three-terminal element.
【請求項4】前記超電導材料よりなる素子は、4端子素
子であることを特徴とする特許請求の範囲第1項記載の
超電導磁気抵抗装置。
4. The superconducting magnetoresistive device according to claim 1, wherein the element made of the superconducting material is a four-terminal element.
【請求項5】前記磁界を印加する手段は永久磁石である
ことを特徴とする特許請求の範囲第1項記載の超電導磁
気抵抗装置。
5. The superconducting magnetoresistive device according to claim 1, wherein the means for applying the magnetic field is a permanent magnet.
【請求項6】前記磁界を印加する手段は電磁石であるこ
とを特徴とする特許請求の範囲第1項記載の超電導磁気
抵抗装置。
6. The superconducting magnetoresistive device according to claim 1, wherein the means for applying the magnetic field is an electromagnet.
【請求項7】前記永久磁石は前記素子に対して相対的に
移動可能に設けられてなることを特徴とする特許請求の
範囲第5項記載の超電導磁気抵抗装置。
7. The superconducting magnetoresistive device according to claim 5, wherein the permanent magnet is provided so as to be movable relative to the element.
【請求項8】前記電磁石は前記素子に対して相対的に移
動可能に設けられてなることを特徴とする特許請求の範
囲第6項記載の超電導磁気抵抗装置。
8. The superconducting magnetoresistive device according to claim 6, wherein the electromagnet is provided so as to be movable relative to the element.
【請求項9】前記磁界を印加する手段はバイアス磁界及
び信号磁界を印加する手段であることを特徴とする特許
請求の範囲第1項記載の超電導磁気抵抗装置。
9. The superconducting magnetoresistive device according to claim 1, wherein the means for applying the magnetic field is means for applying a bias magnetic field and a signal magnetic field.
【請求項10】前記電気抵抗の変化を利用する手段は前
記素子にマイクロ波を作用させる手段を含んでなること
を特徴とする特許請求の範囲第1項記載の超電導磁気抵
抗装置。
10. The superconducting magnetoresistive device according to claim 1, wherein the means for utilizing the change in the electric resistance includes means for applying a microwave to the element.
【請求項11】前記電気抵抗の変化を利用する手段は該
電気抵抗の変化を電圧変化として検出する手段を含んで
なることを特徴とする特許請求の範囲第1項記載の超電
導磁気抵抗装置。
11. The superconducting magnetoresistive device according to claim 1, wherein the means for utilizing the change in the electric resistance includes means for detecting the change in the electric resistance as a voltage change.
JP62233369A 1987-07-29 1987-09-17 Superconducting magnetoresistive device Expired - Lifetime JPH0671100B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62233369A JPH0671100B2 (en) 1987-07-29 1987-09-17 Superconducting magnetoresistive device
EP88307044A EP0301902B1 (en) 1987-07-29 1988-07-29 Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material
US07/226,067 US5011818A (en) 1987-07-29 1988-07-29 Sensing a magnetic field with a super conductive material that exhibits magneto resistive properties
AT88307044T ATE95316T1 (en) 1987-07-29 1988-07-29 METHOD AND ARRANGEMENT FOR DETECTING A MAGNETIC FIELD BY MEANS OF MAGNETORESISTANCE PROPERTIES OF A SUPERCONDUCTING MATERIAL.
DE88307044T DE3884514T2 (en) 1987-07-29 1988-07-29 Method and arrangement for detecting a magnetic field using the magnetoresistance properties of a superconducting material.

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP62-189347 1987-07-29
JP18934787 1987-07-29
JP19301487 1987-08-01
JP62-193016 1987-08-01
JP62-193014 1987-08-01
JP19301687 1987-08-01
JP62233369A JPH0671100B2 (en) 1987-07-29 1987-09-17 Superconducting magnetoresistive device

Publications (2)

Publication Number Publication Date
JPH01138770A JPH01138770A (en) 1989-05-31
JPH0671100B2 true JPH0671100B2 (en) 1994-09-07

Family

ID=27475435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62233369A Expired - Lifetime JPH0671100B2 (en) 1987-07-29 1987-09-17 Superconducting magnetoresistive device

Country Status (1)

Country Link
JP (1) JPH0671100B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2742691B2 (en) * 1988-09-19 1998-04-22 株式会社半導体エネルギー研究所 Superconducting magnetic sensor
JPH0814614B2 (en) * 1989-06-30 1996-02-14 シャープ株式会社 Superconducting magnetic field measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787545A (en) * 1971-08-16 1973-02-14 Union Carbide Corp CYCLOALIPHATIC POLYOLS AND THEIR APPLICATIONS
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature
JPS6237951U (en) * 1985-08-23 1987-03-06

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Phys.Rev.Lett.58[4(26Jan.1987)PP.405−407

Also Published As

Publication number Publication date
JPH01138770A (en) 1989-05-31

Similar Documents

Publication Publication Date Title
Ekin et al. Double-step behavior of critical current vs. magnetic field in Y-, Bi-and Tl-based bulk high-Tc superconductors
EP0864538B1 (en) Manganese oxide material having Mn03 as a matrix
Tsai et al. Josephson effects in the Ba-Y-Cu-O compounds
EP0301902B1 (en) Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material
Mandal et al. High-field magnetotransport properties of La 2/3 Sr 1/3 MnO 3 and Nd 2/3 Sr 1/3 MnO 3 systems
JPH0671100B2 (en) Superconducting magnetoresistive device
JPS63281481A (en) Superconducting switching element
Liu et al. A new high-Tc superconducting Tl-Pb-Ca-Sr-Cu-O system
WO2002039509A2 (en) Hybrid oxide heterostructures and devices
JPH07113663B2 (en) Characteristic control circuit for superconducting magnetic sensor
Nam et al. Low field magnetoresistance in intrinsic granular system La1− xBaxMnO3
Wu et al. Synthesis, transport, magnetization and structural characterizations of Tl-Ca-Ba-Cu-O specimens with T0= 123 K and Tonset= 155 K
Dawoud et al. Curie points and direct current electrical conductivity for inverse Li-spinel ferrite replaced by Zn2+ ion
JP2785299B2 (en) Method for producing superconducting metal oxide material
SU1034548A1 (en) Device for many josephson junctions and method of manufacturing same
Paterno et al. DC critical currents in superconducting ceramic samples of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7
Nojima et al. Anisotropy and hysteresis behavior of galvanomagnetic effect in super magneto-resistor
JPH0671101B2 (en) Superconductor Magnetoresistive element
US5122503A (en) Superconducting material and method of producing same
WO2001077024A1 (en) CHEMICAL-PRESSURE TAILORING OF LOW-FIELD, ROOM TEMPERATURE MAGNETORESISTANCE IN (Ca, Sr, Ba) Fe0.5Mo0.5O¿3?
JPH0577345B2 (en)
Leea A Study on the Electrical Characteristics of Renewable Electrical Energy Superconducting Precursor using
JPH0799386B2 (en) Digital magnetic field detector
Lee A Study on the Electrical Characteristics of Renewable Electrical Energy Superconducting Precursor using Organic Metal Salts Method for Electrical Power Transmission
Cockburn et al. Microwave potentialities of high temperature superconductors