JPH04269878A - Formation method of electrode of superconducting magnetic sensor element - Google Patents

Formation method of electrode of superconducting magnetic sensor element

Info

Publication number
JPH04269878A
JPH04269878A JP3053242A JP5324291A JPH04269878A JP H04269878 A JPH04269878 A JP H04269878A JP 3053242 A JP3053242 A JP 3053242A JP 5324291 A JP5324291 A JP 5324291A JP H04269878 A JPH04269878 A JP H04269878A
Authority
JP
Japan
Prior art keywords
electrode
film
superconducting
noble metal
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3053242A
Other languages
Japanese (ja)
Inventor
Hiromasa Shimojima
浩正 下嶋
Mamoru Ishii
守 石井
Keizo Tsukamoto
塚本 惠三
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP3053242A priority Critical patent/JPH04269878A/en
Publication of JPH04269878A publication Critical patent/JPH04269878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To improve the junction of an electrode to a lead wire at a filmlike superconducting magnetic sensor element which utilizes a magnetoresistance effect and to reduce the noise in an output voltage. CONSTITUTION:A part to be used as a four-pole electrode of an oxide superconducting film is coated with a noble metal such as Ag, Au, Pt or the like by a sputtering method or the like; a lead wire is joined to the noble metal by an ultrasonic soldering method; the electrode is formed. A contact resistance at the electrode part is reduced; the generation of Joule heat is suppressed even by an impressed current which is larger than a critical current density, the thermal fluctuation of a cooling medium at a superconductor is eliminated, the noise in an output voltage is reduced and the detection ability of a magnetic field is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超伝導磁気感応素子の
電極形成方法に関し、特に超伝導薄膜のストリップに電
流電極と電圧電極を設ける四端子法の電極形成方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming electrodes of a superconducting magnetic sensing element, and more particularly to a method for forming electrodes using a four-terminal method in which current electrodes and voltage electrodes are provided on a strip of superconducting thin film.

【0002】0002

【従来の技術】超伝導体の特性、主に電気抵抗を測定す
る場合、酸化物のバルク又は超伝導膜に、Ag又はAu
のペーストを用いてリード線を接着していた。
[Prior Art] When measuring the properties of superconductors, mainly electrical resistance, Ag or Au is used in the bulk of oxides or superconducting films.
The lead wires were glued using paste.

【0003】0003

【発明が解決しようとする課題】前記の方法を用いて超
伝導体上に形成された電極は、超伝導体の臨界温度を求
める場合には特に問題はないが、超伝導膜を磁気感応素
子などとして利用する場合、臨界電流の10倍以上の電
流が超伝導体に印加される場合には、リード線との接着
が弱く、その接触抵抗により電極部分にジュール熱が発
生する。その結果、超伝導体の周りが熱的に揺らぎ、超
伝導体の特性が不安定となる。
[Problems to be Solved by the Invention] Electrodes formed on a superconductor using the above method pose no particular problem when determining the critical temperature of a superconductor, but it is difficult to use a superconducting film as a magnetically sensitive element. When used as a superconductor, if a current ten times or more than the critical current is applied to the superconductor, the adhesion with the lead wire is weak and Joule heat is generated in the electrode portion due to the contact resistance. As a result, the area around the superconductor undergoes thermal fluctuations, making the properties of the superconductor unstable.

【0004】すなわち、磁気抵抗効果による超伝導磁気
感応素子の出力電圧が揺らぎ、素子の出力電圧ノイズが
増加する。
That is, the output voltage of the superconducting magnetic sensing element fluctuates due to the magnetoresistive effect, and the output voltage noise of the element increases.

【0005】[0005]

【課題を解決するための手段】本発明者らは、超伝導磁
気感応素子上に種々の方法で電極を作製し、その出力電
圧ノイズを測定した結果、上記の問題点のない方法を見
出して本発明を完成するに至った。
[Means for Solving the Problems] The present inventors fabricated electrodes on a superconducting magnetically sensitive element using various methods and measured the output voltage noise, and as a result, discovered a method that does not have the above problems. The present invention has now been completed.

【0006】すなわち、本発明の要旨は、磁気抵抗効果
を利用した膜状超伝導磁気感応素子の四端子電極とする
部分に、Ag、Au、Pt等の貴金属を物理的方法によ
り被覆し、その貴金属にリード線を超音波ハンダで接着
することを特徴とする超伝導磁気感応素子の電極形成方
法にある。
That is, the gist of the present invention is to coat a portion of a film-like superconducting magnetic sensing element that utilizes a magnetoresistive effect, which is to be a four-terminal electrode, with a noble metal such as Ag, Au, or Pt by a physical method. A method for forming electrodes of a superconducting magnetic sensing element, characterized by bonding a lead wire to a noble metal using ultrasonic solder.

【0007】[0007]

【発明の具体的説明】酸化物超伝導体は、セラミックス
であるがゆえに、絶縁相である結晶粒界を有し、このた
めに磁界が印加されると臨界電流密度が急激に低下する
。つまり、臨界電流を印加した状態で外部から磁場を印
加すると、抵抗が生じる。この性質を利用することによ
り、磁界の測定が可能になる。
DETAILED DESCRIPTION OF THE INVENTION Since oxide superconductors are ceramics, they have crystal grain boundaries that are insulating phases, and for this reason, when a magnetic field is applied, the critical current density decreases rapidly. In other words, when a magnetic field is applied from the outside while a critical current is applied, resistance occurs. By utilizing this property, it becomes possible to measure magnetic fields.

【0008】超伝導磁気感応素子として利用できる酸化
物超伝導体としては、Bi(Pb)−Sr−Ca−Cu
−O 系、Y−Ba−Cu−O 系、Tl−Ba−Ca
−Cu−O 系、Tl−Sr−V−O 系等の高Tc超
伝導体が挙げられる。
Oxide superconductors that can be used as superconducting magnetic sensing elements include Bi(Pb)-Sr-Ca-Cu.
-O system, Y-Ba-Cu-O system, Tl-Ba-Ca
Examples include high Tc superconductors such as -Cu-O and Tl-Sr-V-O.

【0009】臨界温度が液体窒素温度(77.3K) 
以下の超伝導体は、安価な液体窒素のような適当な冷却
溶媒が無いため、実用的でない。
[0009] Critical temperature is liquid nitrogen temperature (77.3K)
The following superconductors are impractical due to the lack of suitable cooling solvents, such as inexpensive liquid nitrogen.

【0010】臨界温度が液体窒素温度以上の酸化物超伝
導体は、その結晶を構成している元素の種類が多いため
、膜の作製は、膜中の組成の不均一があまりない物理的
手法により作製することが望ましい。
[0010] Oxide superconductors whose critical temperature is higher than the temperature of liquid nitrogen have many types of elements constituting their crystals, so the film can be fabricated using a physical method that does not cause much non-uniformity of composition within the film. It is preferable to make it by

【0011】物理的手法としては、スパッタリング法、
蒸着法、MBE 法およびレーザーアブレイション法が
挙げられる。
[0011] As physical methods, sputtering method,
Examples include vapor deposition method, MBE method and laser ablation method.

【0012】膜を支持する基板としては、MgO 、S
rTiO3、LaGaO3、LaAlO3等の酸化物単
結晶、絶縁物の緩衝層を設けたAg、Au、Pt、Cu
等の金属、Si、GaAs等の半導体などが使用される
[0012] As the substrate supporting the film, MgO, S
rTiO3, LaGaO3, LaAlO3, etc. oxide single crystal, Ag, Au, Pt, Cu with an insulating buffer layer
metals such as, semiconductors such as Si, GaAs, etc. are used.

【0013】酸化物超伝導体の原料としては、目的とす
る膜の組成を有する酸化物セラミックスや構成成分の各
酸化物を用いたり、金属や合金などが用いられる。
[0013] As raw materials for the oxide superconductor, oxide ceramics having the desired composition of the film, various oxides of the constituent components, metals, alloys, etc. are used.

【0014】膜を作製する際に、基板を加熱しておいて
直接超伝導膜としても、基板を加熱しないで非結晶質膜
を作製し、熱処理して超伝導膜としてもよい。その際、
非結晶質膜の組成は、熱処理した後に超伝導体になる組
成であればよい。
[0014] When producing the film, the superconducting film may be produced directly by heating the substrate, or by producing an amorphous film without heating the substrate and heat-treating it to produce the superconducting film. that time,
The composition of the amorphous film may be one that becomes a superconductor after heat treatment.

【0015】非結晶質膜の熱処理は、それぞれの系で超
伝導体化合物が生成する下記の温度で、所定の時間熱処
理して結晶化させる。
[0015] The amorphous film is heat-treated for a predetermined period of time at the following temperature at which a superconducting compound is formed in each system to crystallize it.

【0016】 Bi−Pb−Sr−Ca−Cu−O系: 820〜85
0 ℃Bi−Sr−Ca−Cu−O 系  : 850
〜880 ℃V−Ba−Cu−O 系      : 
900〜1000℃Tl−Ba−Ca−Cu−O 系 
 : 900〜1000℃Tl−Sr−V−O 系  
    : 800〜1000℃
Bi-Pb-Sr-Ca-Cu-O system: 820-85
0°C Bi-Sr-Ca-Cu-O system: 850
~880℃V-Ba-Cu-O system:
900-1000℃ Tl-Ba-Ca-Cu-O system
: 900~1000℃ Tl-Sr-V-O system
: 800~1000℃

【0017】また、こ
れらの温度で熱処理する前に、 700〜800 ℃で
 2〜10時間あらかじめ仮焼すると特性が安定する。 熱処理後は炉内で徐冷する。
[0017] Furthermore, before heat treatment at these temperatures, the properties can be stabilized by pre-calcining at 700 to 800°C for 2 to 10 hours. After heat treatment, it is slowly cooled in a furnace.

【0018】上記方法により作製した酸化物超伝導膜に
、印加電流用電極及び電圧測定用電極の四端子電極を形
成する。
Four-terminal electrodes, an electrode for applying current and an electrode for measuring voltage, are formed on the oxide superconducting film produced by the above method.

【0019】まず初めに、酸化物超伝導膜の四端子電極
とする部分に、酸化しにくいAg、Au、Pt等の貴金
属をスパタリング法、蒸着法、MBE 法、レーザーア
ブレイション法等の物理的方法により被覆する。被着貴
金属の厚さは、特に限定しないが、工業的製造の観点か
らは、酸化物超伝導膜の厚さよりも薄い方が好ましい。
First, a noble metal such as Ag, Au, or Pt, which is difficult to oxidize, is applied to the portion of the oxide superconducting film that will become the four-terminal electrode using a physical method such as sputtering, vapor deposition, MBE, or laser ablation. Coating method. The thickness of the deposited noble metal is not particularly limited, but from the viewpoint of industrial production, it is preferably thinner than the thickness of the oxide superconducting film.

【0020】被覆した貴金属膜へのリード線の接合には
、超音波ハンダが用いられる。ハンダ材料としては、P
b−Sn 系合金にZn、Al、Ti、Si、Cu等を
添加したものが用いられる。ハンダ付けに際しては、ハ
ンダごてを 100〜500 ℃に加熱し、10〜10
0kHzの超音波を加える。
Ultrasonic solder is used to join the lead wire to the coated noble metal film. As a solder material, P
A b-Sn alloy to which Zn, Al, Ti, Si, Cu, etc. are added is used. When soldering, heat the soldering iron to 100-500℃,
Apply 0kHz ultrasound.

【0021】[0021]

【作用】端子電極は物理的方法により電極に必要な面積
にわたって被覆されるので、その接触抵抗は極めて小さ
い。また、リード線の接合は超音波処理のもとでハンダ
付けされるので、その接合は緊密で接触抵抗の発生が抑
制される。
[Operation] Since the terminal electrode is coated over the necessary area by a physical method, its contact resistance is extremely small. Furthermore, since the lead wires are soldered under ultrasonic treatment, the joints are tight and the generation of contact resistance is suppressed.

【0022】[0022]

【実施例】実施例 薄膜の作製は、基板にMgO 単結晶を加熱しないでス
パッタリング法により行なった。スパッタリングターゲ
ットとしては、以下の 3種類を用いた。
EXAMPLE A thin film of the example was prepared by sputtering a MgO 2 single crystal onto a substrate without heating it. The following three types of sputtering targets were used.

【0023】 ■Bi0.5Pb0.5Ox  (Bi2O3とPbO
 の混合粉末)■CaCu0.75Ox  (CaCO
3とCuO の950 ℃焼成粉末)■SrCu0.7
5Ox  (SrCO3とCuO の950 ℃焼結粉
末)
■Bi0.5Pb0.5Ox (Bi2O3 and PbO
Mixed powder of) ■CaCu0.75Ox (CaCO
3 and CuO sintered powder at 950 °C)■SrCu0.7
5Ox (950℃ sintered powder of SrCO3 and CuO)

【0024】薄膜組成は、各ターゲットの堆積時間
を以下のようにして調整した。
The thin film composition was adjusted by adjusting the deposition time of each target as follows.

【0025】■Bi0.5Pb0.5Ox: 6秒■C
aCu0.75Ox:58秒 ■SrCu0.75Ox:34秒
■Bi0.5Pb0.5Ox: 6 seconds ■C
aCu0.75Ox: 58 seconds ■SrCu0.75Ox: 34 seconds

【0026】この一巡堆積を 1層として 400回積
層し、 2μm の薄膜を得た、得られた薄膜の組成を
EPMAにより分析した結果、(Bi+Pb)1.00
Sr1.00Ca0.96Cu1.95Ox であった
[0026] This single layer was stacked 400 times to obtain a 2 μm thin film. The composition of the obtained thin film was analyzed by EPMA, and the result was (Bi+Pb) 1.00.
Sr1.00Ca0.96Cu1.95Ox.

【0027】この膜を、780 ℃で 2時間熱処理し
て仮焼した後、844 ℃で65時間熱処理して超伝導
膜を得た。
This film was calcined by heat treatment at 780° C. for 2 hours, and then heat treated at 844° C. for 65 hours to obtain a superconducting film.

【0028】熱処理後、この膜の四端子電極とする部分
にスパッタリング法により 1μm のAg膜を被覆し
、その被膜にリード線を超音波で接着して、電極を作製
した。 超音波ハンダ付けは、旭硝子(株)製USM−III 
を用いた。ハンダ接着時の温度は、約300℃で、加え
た超音波は56Hzを用いた。
After heat treatment, a 1 μm thick Ag film was coated on the portion of this film to be used as a four-terminal electrode by sputtering, and a lead wire was bonded to the film using ultrasonic waves to produce an electrode. For ultrasonic soldering, use USM-III manufactured by Asahi Glass Co., Ltd.
was used. The temperature during solder bonding was approximately 300° C., and the applied ultrasonic wave was 56 Hz.

【0029】得られた磁気感応素子の感度を液体窒素中
で測定した結果、1mAの印加電流で15364.3μ
V/ガウスの磁気感度を得た。
As a result of measuring the sensitivity of the obtained magnetic sensing element in liquid nitrogen, the sensitivity was 15364.3μ with an applied current of 1mA.
A magnetic sensitivity of V/Gauss was obtained.

【0030】この磁気感応素子の 1mAの印加電流時
の出力電圧ノイズをスペクトラムアナライザを用いて測
定したところ、100Hz で 5×10−8V/√H
zであった。
[0030] When the output voltage noise of this magnetic sensing element was measured using a spectrum analyzer when an applied current of 1 mA was applied, it was found to be 5 × 10-8 V/√H at 100 Hz.
It was z.

【0031】比較例 リード線の接合を、超音波ハンダによらず、電極のAg
膜上にAgペーストを用いて行ない、出力ノイズを測定
したところ、100Hz で 2×10−6V/√Hz
であった。
[0031] Comparative example lead wires were joined without using ultrasonic solder, but with Ag electrodes.
When the output noise was measured using Ag paste on the film, it was 2×10-6V/√Hz at 100Hz.
Met.

【0032】[0032]

【発明の効果】本発明の方法によって作製した超伝導磁
気感応素子を使用すれば、高い印加電流を加えても電極
部のジュール熱の発生が抑えられ、冷却媒体の熱的揺ら
ぎが無くなるので、出力電圧ノイズが低減でき、磁界検
出能力が向上する。
[Effects of the Invention] By using the superconducting magnetic sensing element produced by the method of the present invention, the generation of Joule heat in the electrode portion is suppressed even when a high applied current is applied, and thermal fluctuations of the cooling medium are eliminated. Output voltage noise can be reduced and magnetic field detection ability improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁気抵抗効果を利用した膜状超伝導磁
気感応素子の四端子電極とする部分に、Ag、Au、P
t等の貴金属を物理的方法により被覆し、その貴金属に
リード線を超音波ハンダで接着することを特徴とする超
伝導磁気感応素子の電極形成方法。
Claim 1: A film-like superconducting magnetic sensing element that utilizes magnetoresistive effect has four-terminal electrodes containing Ag, Au, and P.
1. A method for forming electrodes of a superconducting magnetically sensitive element, which comprises coating a noble metal such as T by a physical method, and bonding a lead wire to the noble metal using ultrasonic solder.
JP3053242A 1991-02-26 1991-02-26 Formation method of electrode of superconducting magnetic sensor element Pending JPH04269878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053242A JPH04269878A (en) 1991-02-26 1991-02-26 Formation method of electrode of superconducting magnetic sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053242A JPH04269878A (en) 1991-02-26 1991-02-26 Formation method of electrode of superconducting magnetic sensor element

Publications (1)

Publication Number Publication Date
JPH04269878A true JPH04269878A (en) 1992-09-25

Family

ID=12937327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053242A Pending JPH04269878A (en) 1991-02-26 1991-02-26 Formation method of electrode of superconducting magnetic sensor element

Country Status (1)

Country Link
JP (1) JPH04269878A (en)

Similar Documents

Publication Publication Date Title
US7722918B2 (en) Process for the preparation of high temperature superconducting bulk current leads with improved properties and superconducting bulk current leads made thereby
US6440904B1 (en) High-temperature superconductor arrangement
US5015620A (en) High-Tc superconductor contact unit having low interface resistivity, and method of making
JPH04269878A (en) Formation method of electrode of superconducting magnetic sensor element
JP2968557B2 (en) Substrate for oxide superconducting conductor
AU595142B2 (en) Method of making a body, and article comprising the body
JP2904998B2 (en) Solid object made of ceramic high-temperature superconducting material connected to metal conductor and method of manufacturing the same
US5179071A (en) High Tc superconductor contact unit having low interface resistivity
JPH04269877A (en) Superconducting magnetic sensor element
JPH0298979A (en) Superconduction apparatus
JP3061634B2 (en) Oxide superconducting tape conductor
JPS63244526A (en) Manufacture of compound superconductive wire
JPH04274379A (en) Magnetic sensitive element
JP4092393B2 (en) High temperature superconducting Josephson junction forming method and high temperature superconducting Josephson device comprising Josephson junction formed thereby
JPS63239740A (en) Manufacture for superconductive compound thin film
JPH0567812A (en) High sensitive magneto sensitive element
JPH0645046A (en) Method for forming electrode in oxide superconductor
JP2595670B2 (en) Method for manufacturing superconducting film-formed substrate
JPH0543341A (en) Method for joining oxide superconducting bulk to metal
JPS63237314A (en) Manufacture of superconductive compound material
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same
JP2905493B2 (en) Method for producing oxide high-temperature superconductor
JP2936125B2 (en) Magnetic bearing detection method
JPH0567817A (en) Magneto-sensitive element
Garfield Superconducting contacts for use in niobium thin film applications