JPH04270197A - Production of single crystal of oxide superconductor - Google Patents

Production of single crystal of oxide superconductor

Info

Publication number
JPH04270197A
JPH04270197A JP3053926A JP5392691A JPH04270197A JP H04270197 A JPH04270197 A JP H04270197A JP 3053926 A JP3053926 A JP 3053926A JP 5392691 A JP5392691 A JP 5392691A JP H04270197 A JPH04270197 A JP H04270197A
Authority
JP
Japan
Prior art keywords
single crystal
flux
oxide superconductor
1cuno4
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3053926A
Other languages
Japanese (ja)
Other versions
JP2697334B2 (en
Inventor
Takashi Masako
隆志 眞子
Yuichi Shimakawa
祐一 島川
Yoshimi Kubo
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3053926A priority Critical patent/JP2697334B2/en
Publication of JPH04270197A publication Critical patent/JPH04270197A/en
Application granted granted Critical
Publication of JP2697334B2 publication Critical patent/JP2697334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To suppress the evaporation of a flux in the production of single crystal of a T1-based superconductor by using KC1/NaC1 or PbCl2 as the flux. CONSTITUTION:When a single crystal of oxide superconductor expressed by the formula T12Ba2Can-1CunO4+2n ((n) is 1, 2 or 3) is produced by using KC1 or KC1 and NaC1 or PbC12 as the flux, boron oxide (B2O3) is added to mixed powder. Thereby evaporation amount of the flux is suppressed to provide a good-quality T12Ba2Can-1CunO4+2n single crystal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種の超伝導応用装置
や超伝導素子に使用される酸化物超伝導体単結晶の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing oxide superconductor single crystals used in various superconducting application devices and superconducting elements.

【0002】0002

【従来の技術】金属・合金系超伝導材料,化合物超伝導
材料は、ジョセフソン素子や超伝導マグネットの線材と
して既に広く利用されている。ジョセフソン接合はその
磁場に対する高い感度のためSQUIDを初めとする精
密計測に応用されているほか、その高速性から電子計算
機への応用が期待されている。また、通常導体では得ら
れないような高磁場を発生できる超伝導マグネットは、
NMR−CTなどの医療機器や浮上型リニアモーターカ
ー等にも応用されている。
2. Description of the Related Art Metal/alloy superconducting materials and compound superconducting materials are already widely used as wire materials for Josephson elements and superconducting magnets. Josephson junctions are used in precision measurements such as SQUIDs due to their high sensitivity to magnetic fields, and are expected to be used in electronic computers due to their high speed. In addition, superconducting magnets can generate high magnetic fields that cannot be obtained with ordinary conductors.
It is also applied to medical equipment such as NMR-CT and floating linear motor cars.

【0003】超伝導体の応用を考えた場合、超伝導転移
温度Tcはできる限り高いことが望まれる。金属・合金
系超伝導体や化合物系超伝導体は、冷媒として高価で希
少な液体ヘリウムを用いなければならず、このことがこ
れらの超伝導体の広い分野への応用を妨げる一因となっ
ている。この点では銅酸化物系超伝導体は、従来の超伝
導体よりもはるかに優れており、1987年にBa−Y
−Cu−O系超伝導体が発見されて以来、Bi−Sr−
Ca−Cu−O系,Tl−Ba−Ca−Cu−O系など
の液体窒素温度を越えるTcをもつ超伝導体が相次いで
発見されている。これらの酸化物超伝導体が実用化され
れば、今まで考えられなかったような分野にまでその応
用の可能性が広がるとして、現在も研究開発が盛んに行
われている。
When considering the application of superconductors, it is desired that the superconducting transition temperature Tc be as high as possible. Metal/alloy-based superconductors and compound-based superconductors require the use of expensive and rare liquid helium as a coolant, and this is one of the factors that prevents the application of these superconductors in a wide range of fields. ing. In this respect, cuprate-based superconductors are far superior to conventional superconductors, and in 1987 Ba-Y
Since the discovery of -Cu-O superconductors, Bi-Sr-
Superconductors having Tc exceeding the liquid nitrogen temperature have been discovered one after another, such as Ca-Cu-O and Tl-Ba-Ca-Cu-O. If these oxide superconductors are put into practical use, their potential applications will expand to fields that were previously unimaginable, and research and development efforts are currently underway.

【0004】0004

【発明が解決しようとする課題】現在研究されている酸
化物超伝導体試料のほとんどは多結晶体である。超伝導
体の多結晶試料では、その結晶粒界に無数の超伝導の弱
結合が存在するため、望む特性を持つジョセフソン接合
を制御性良く作ることが困難である。また、多結晶体が
含んでいる各種の欠陥や不均質性が超伝導特性の安定性
に悪い影響を与えることも考えられるため、デバイスな
どへの応用には単結晶体を用いることが望ましい。
[Problems to be Solved by the Invention] Most of the oxide superconductor samples currently being studied are polycrystalline. In polycrystalline superconductor samples, there are countless superconducting weak bonds at the grain boundaries, making it difficult to controllably create Josephson junctions with desired properties. Furthermore, since various defects and inhomogeneities contained in polycrystals may have a negative effect on the stability of superconducting properties, it is desirable to use single crystals for applications such as devices.

【0005】Tl系超伝導体単結晶を得る方法の1つと
して、KCl/NaClやPbCl2フラックスを用い
る方法がある。これらのフラックスは、水溶性のため出
来上がった結晶を容易に取り出すことができるという利
点があるが、同時に結晶成長を行う900℃程度の温度
域での蒸気圧が高いため、成長中にどんどん蒸発してい
くという問題点がある。
One of the methods for obtaining a Tl-based superconductor single crystal is to use KCl/NaCl or PbCl2 flux. These fluxes have the advantage that the formed crystals can be easily taken out because they are water-soluble, but at the same time, their vapor pressure is high in the temperature range of about 900°C where crystal growth occurs, so they evaporate rapidly during growth. There is a problem with how to proceed.

【0006】そこで本発明の目的は、KCl/NaCl
やPbCl2フラックスを用いたTl系超伝導体単結晶
の製造時におけるフラックスの蒸発を押える方法を提供
することにある。
[0006] Therefore, the object of the present invention is to
An object of the present invention is to provide a method for suppressing flux evaporation during the production of a Tl-based superconductor single crystal using PbCl2 flux.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
、本発明に係る酸化物超伝導体単結晶の製造方法におい
ては、Tl2Ba2Can−1CunO4+2n(n=
1,2,3)と表される酸化物超伝導体単結晶を、KC
l又はKCl+NaCl又はPbCl2をフラックスと
して用いて製造する製造方法において、酸化物超伝導体
材料をなす混合粉末に、酸化ほう素(B2O3)を添加
するものである。
[Means for Solving the Problems] In order to achieve the above object, in the method for manufacturing an oxide superconductor single crystal according to the present invention, Tl2Ba2Can-1CunO4+2n (n=
KC
In a manufacturing method using 1 or KCl+NaCl or PbCl2 as a flux, boron oxide (B2O3) is added to a mixed powder constituting an oxide superconductor material.

【0008】[0008]

【作用】本発明は、Tl2Ba2Can−1CunO4
+2nをKCl又はKCl+NaCl又はPbCl2フ
ラックスで合成する際にB2O3を添加することにより
、フラックスの蒸発量が押えられ、良質のTl2Ba2
Can−1CunO4+2n単結晶が得られることを見
いだしたものである。この原理に基づき、Tl2Ba2
CuO6+20KCl+5B2O3組成の混合粉から、
最高温度920℃,徐冷速度5℃/hourで作製した
単結晶は数mm角で厚み0.1mm程度の大きさで、8
5Kで超伝導に転移した。単体のKClの蒸発量が特に
多い920℃から850℃の温度範囲を10時間以上か
けて徐冷したにもかかわらず実際のKClの蒸発はほと
んどなかった。
[Operation] The present invention provides Tl2Ba2Can-1CunO4
By adding B2O3 when synthesizing +2n with KCl or KCl+NaCl or PbCl2 flux, the amount of evaporation of the flux is suppressed and high quality Tl2Ba2 is produced.
It was discovered that a Can-1CunO4+2n single crystal could be obtained. Based on this principle, Tl2Ba2
From the mixed powder of CuO6 + 20KCl + 5B2O3 composition,
The single crystal produced at a maximum temperature of 920°C and a slow cooling rate of 5°C/hour has a size of several mm square and a thickness of about 0.1 mm.
It transitioned to superconductivity at 5K. Although the temperature range from 920° C. to 850° C., where the amount of evaporation of simple KCl is especially large, was slowly cooled for more than 10 hours, there was almost no actual evaporation of KCl.

【0009】[0009]

【実施例】以下実施例により、本発明を具体的に説明す
る。
[Examples] The present invention will be explained in detail with reference to Examples below.

【0010】(実施例1)出発原料として純度99.9
%以上の酸化タリウム(Tl2O3),酸化バリウム(
BaO),酸化カルシウム(CaO),酸化第二銅(C
uO)を使用した。これらの原料をTl2Ba2Can
−1CunO4+2nの比になるように混合し、プレス
した後、金箔で包んだ860℃〜900℃で3〜5時間
焼結した。 得られた焼結体を粉砕しTl2Ba2Can−1Cun
O4+2n+10(KCl+NaCl)+xB2O3な
る一般式でn,xについては表1に示す配合比になるよ
うに混合した。混合粉を直径20mm,深さ25mmの
金坩堝中で700℃〜900℃で1〜10時間融解させ
たのち、1時間に10℃以下の速度で600℃まで徐冷
した。600℃から室温までは1時間100℃の割合で
冷却した。 単結晶試料はKCl,NaClおよびB2O3を水で洗
い流すことによって取り出した。
(Example 1) Purity 99.9 as starting material
% or more of thallium oxide (Tl2O3), barium oxide (
BaO), calcium oxide (CaO), cupric oxide (C
uO) was used. These raw materials are Tl2Ba2Can
The mixture was mixed to a ratio of -1CunO4+2n, pressed, and then sintered at 860°C to 900°C for 3 to 5 hours while wrapped in gold foil. The obtained sintered body was crushed to form Tl2Ba2Can-1Cun.
They were mixed in a general formula of O4+2n+10(KCl+NaCl)+xB2O3, with n and x in the compounding ratio shown in Table 1. The mixed powder was melted in a metal crucible with a diameter of 20 mm and a depth of 25 mm at 700°C to 900°C for 1 to 10 hours, and then gradually cooled to 600°C at a rate of 10°C or less per hour. Cooling was performed at a rate of 100°C for 1 hour from 600°C to room temperature. Single crystal samples were removed by washing away KCl, NaCl and B2O3 with water.

【0011】[0011]

【表1】[Table 1]

【0012】(実施例2)実施例1と同様の試薬を出発
原料としTl2Ba2Can−1CunO4+2n焼結
体を合成した。得られた焼結体を粉砕しTl2Ba2C
an−1CunO4+2n+20PbCl2+xB2O
3なる一般式でn,xについては表2に示す配合比にな
るように混合した。融解,固化,単結晶の取り出しは実
施例1と同様の条件で行った。
(Example 2) Using the same reagent as in Example 1 as a starting material, a Tl2Ba2Can-1CunO4+2n sintered body was synthesized. The obtained sintered body is crushed and Tl2Ba2C
an-1CunO4+2n+20PbCl2+xB2O
In the general formula 3, n and x were mixed so as to have the compounding ratio shown in Table 2. Melting, solidification, and single crystal extraction were performed under the same conditions as in Example 1.

【0013】得られた単結晶の抵抗率,反磁性磁化率の
測定、及び組成分析を行った。抵抗率は金線をリードと
する4端子法で、反磁性磁化率はSQUIDマグネトメ
ーターでそれぞれ測定した。組成分析はEPMAを用い
て行った。
The resistivity and diamagnetic susceptibility of the obtained single crystal were measured, and the composition was analyzed. Resistivity was measured using a four-terminal method using a gold wire as a lead, and diamagnetic susceptibility was measured using a SQUID magnetometer. Compositional analysis was performed using EPMA.

【0014】[0014]

【表2】[Table 2]

【0015】表1,表2に得られた単結晶の典型的な大
きさとTcを示す。B2O2量が少なすぎると蒸発を押
える効果があまりないため、900℃以上の温度で単結
晶育成が難しい。またB2O3が多すぎると原料,フラ
ックスチャージ量が減ってしまうので実用的ではない。
Tables 1 and 2 show typical sizes and Tc of the single crystals obtained. If the amount of B2O2 is too small, there will be little effect in suppressing evaporation, making it difficult to grow single crystals at temperatures above 900°C. Moreover, if B2O3 is too large, the amount of raw materials and flux charge will be reduced, which is not practical.

【0016】[0016]

【発明の効果】本発明の製造方法によれば、フラックス
の蒸発を押えてTl2Ba2Can−1CunO4+2
nの良質な単結晶を得ることができるため、超伝導材料
の工業利用にとって極めて有用なものである。
Effects of the Invention According to the production method of the present invention, evaporation of flux is suppressed and Tl2Ba2Can-1CunO4+2
Since it is possible to obtain a high quality single crystal of n, it is extremely useful for industrial use of superconducting materials.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Tl2Ba2Can−1CunO4+
2n(n=1,2,3)と表される酸化物超伝導体単結
晶を、KCl又はKCl+NaCl又はPbCl2をフ
ラックスとして用いて製造する製造方法において、酸化
物超伝導体材料をなす混合粉末に、酸化ほう素(B2O
3)を添加することを特徴とする酸化物超伝導体単結晶
の製造方法。
[Claim 1] Tl2Ba2Can-1CunO4+
In a manufacturing method for manufacturing an oxide superconductor single crystal expressed as 2n (n = 1, 2, 3) using KCl or KCl + NaCl or PbCl2 as a flux, a mixed powder constituting the oxide superconductor material is , boron oxide (B2O
3) A method for producing an oxide superconductor single crystal, characterized by adding the following.
JP3053926A 1991-02-26 1991-02-26 Method for producing oxide superconductor single crystal Expired - Fee Related JP2697334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053926A JP2697334B2 (en) 1991-02-26 1991-02-26 Method for producing oxide superconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053926A JP2697334B2 (en) 1991-02-26 1991-02-26 Method for producing oxide superconductor single crystal

Publications (2)

Publication Number Publication Date
JPH04270197A true JPH04270197A (en) 1992-09-25
JP2697334B2 JP2697334B2 (en) 1998-01-14

Family

ID=12956330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053926A Expired - Fee Related JP2697334B2 (en) 1991-02-26 1991-02-26 Method for producing oxide superconductor single crystal

Country Status (1)

Country Link
JP (1) JP2697334B2 (en)

Also Published As

Publication number Publication date
JP2697334B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JPH0567571B2 (en)
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
US8193122B2 (en) Superconductor fabrication
JPH04270197A (en) Production of single crystal of oxide superconductor
JPH05279191A (en) Production of oxide superconductor single crystal
Hajdová et al. Growth, microstructure, and properties of GdBCO–Ag superconductor
JPH04202093A (en) Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature
US20020004461A1 (en) High temperature superconductor
JP3123893B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JPH02275799A (en) Oxide superconductor and its production
JPH04130093A (en) Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
JPH04130092A (en) Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
JP2000053419A (en) Superconductor having high electromagnetic force and its production
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JPH0769626A (en) Metal oxide and production thereof
JPH0710734B2 (en) Method for producing oxide superconductor thin film
US5059560A (en) Bi-Ca-Sr-Cu-Zn-O superconducting glass-ceramics
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JPH02243519A (en) Oxide superconductor and production thereof
JPH06219896A (en) Oxide superconductor single crystal and production thereof
JPH01179790A (en) Production of single crystal of high temperature superconductor
JPH03187902A (en) Manufacture of high temperature, superconducting substance
Barilo et al. Crystal growth of YBaCuO and BaKBiO systems from half-melt flux
JPH02229787A (en) Production of oxide superconductor
JPH05124819A (en) Bismuth-containing oxide superconductor and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees