JPH04267514A - Manufacture of electrolytic capacitor - Google Patents

Manufacture of electrolytic capacitor

Info

Publication number
JPH04267514A
JPH04267514A JP3028797A JP2879791A JPH04267514A JP H04267514 A JPH04267514 A JP H04267514A JP 3028797 A JP3028797 A JP 3028797A JP 2879791 A JP2879791 A JP 2879791A JP H04267514 A JPH04267514 A JP H04267514A
Authority
JP
Japan
Prior art keywords
intermediate element
short
circuit
electrolytic capacitor
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3028797A
Other languages
Japanese (ja)
Other versions
JPH0817144B2 (en
Inventor
Shiro Tanimoto
谷本 志郎
Tatsuya Yokoe
横江 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP3028797A priority Critical patent/JPH0817144B2/en
Publication of JPH04267514A publication Critical patent/JPH04267514A/en
Publication of JPH0817144B2 publication Critical patent/JPH0817144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To enhance the reliability on products by devising the manufacturing method capable of avoiding the shortcircuit of the title electrolytic capacitor during the application. CONSTITUTION:The shortcircuit inspection process P4 is interposed between the winding process P3 winding anode foil and cathode foil holding a separating paper and the electrolyte impregnating process P5 impregnating the intermediate element of the title electrolytic capacitor manufactured in the winding process P3 with an electrolyte so that the shortcircuit inspection process P4 may be performed before the performance of the impregnating process P5 with the electrolyte.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、陽極箔及び陰極箔を隔
離紙を間に挟んで巻取り、隔離紙に電解液を含浸させた
所謂箔形の電解コンデンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a so-called foil-type electrolytic capacitor in which an anode foil and a cathode foil are wound up with a separator paper in between, and the separator paper is impregnated with an electrolyte.

【0002】0002

【従来の技術】従来、この種の電解コンデンサは、アル
ミニウムからなる金属箔をエッチングして表面積を見か
け面積の10〜数十倍に拡面し、これを陽極酸化するこ
とにより、表面に酸化皮膜を有する陽極箔を作製し、次
にこの陽極箔と酸化皮膜を有しない陰極箔との間に隔離
紙を挟んで巻取った後、隔離紙に電解液を含浸させ、最
後にこの電解液を含浸させた素子をケース内に封入する
、といった手順で作製される。
[Prior Art] Conventionally, this type of electrolytic capacitor has been manufactured by etching a metal foil made of aluminum to increase the surface area to 10 to several tens of times the apparent area, and then anodizing it to form an oxide film on the surface. Next, a separator paper is sandwiched between this anode foil and a cathode foil that does not have an oxide film, and the separator paper is rolled up.The separator paper is then impregnated with an electrolyte solution.Finally, this electrolyte solution is It is manufactured by enclosing the impregnated element in a case.

【0003】また作製後の電解コンデンサは、素子の電
気的特性安定化のためにエージングにかけられ、その後
特性検査を行った後、製品として出荷される。
[0003] Further, the manufactured electrolytic capacitor is subjected to aging in order to stabilize the electrical characteristics of the element, and after that, the characteristics are inspected before being shipped as a product.

【0004】0004

【発明が解決しようとする課題】ところがこうして製造
・出荷される従来の電解コンデンサには、出荷前に特性
検査を行っているにもかかわらず、使用中に一時的に短
絡するものがあった。これは、巻取り工程時に、陽極或
は陰極から発生した金属粉が素子内に巻き込まれ、製品
完成後に機械的ショック等で金属粉が動くことにより生
ずるものである。
[Problems to be Solved by the Invention] However, among the conventional electrolytic capacitors manufactured and shipped in this manner, some may temporarily short circuit during use, even though characteristics are tested before shipping. This occurs because metal powder generated from the anode or cathode is rolled into the element during the winding process, and the metal powder moves due to mechanical shock or the like after the product is completed.

【0005】本発明はこうした問題に鑑みなされたもの
で、製品完成後に電解コンデンサが短絡するのを防止す
ることを目的としている。
The present invention was made in view of these problems, and its object is to prevent electrolytic capacitors from being short-circuited after the product is completed.

【0006】[0006]

【課題を解決するための手段】即ち上記目的を達成する
ためになされた本発明は、表面に酸化皮膜が形成された
陽極箔と表面に酸化皮膜を有しない陰極箔とを隔離紙を
間に挟んで巻取る巻取り工程と、該巻取り工程にて作製
された中間素子に電解液を含浸させる含浸工程と、該含
浸工程にて電解液を含浸させた中間素子をケース内に封
入する組立工程と、を有する電解コンデンサの製造方法
において、上記含浸工程の前に、上記中間素子に直流電
圧を印加して陽極箔と陰極箔との短絡状態を検査するこ
とを特徴としている。
[Means for Solving the Problems] That is, the present invention, which has been made to achieve the above object, consists of an anode foil having an oxide film formed on its surface and a cathode foil having no oxide film formed on its surface, with a separating paper placed between them. A winding process of sandwiching and winding, an impregnation process of impregnating the intermediate element produced in the winding process with an electrolyte, and an assembly of enclosing the intermediate element impregnated with the electrolyte in the impregnation process in a case. The method for manufacturing an electrolytic capacitor includes the step of applying a DC voltage to the intermediate element to inspect a short-circuit state between the anode foil and the cathode foil before the impregnation step.

【0007】[0007]

【作用】このように本発明では、陽極箔と陰極箔とを隔
離紙を間に挟んで巻取った後、その巻取り工程にて作製
された中間素子の短絡検査を行ない、その後中間素子に
電解液を含浸させてケース内に封入する。
[Operation] In this way, in the present invention, after winding up an anode foil and a cathode foil with a separator paper in between, a short circuit test is performed on the intermediate element produced in the winding process, and then the intermediate element is inspected for short circuits. Impregnated with electrolyte and sealed in a case.

【0008】[0008]

【実施例】以下に本発明の実施例を図面と共に説明する
。まず図1は実施例のアルミ電解コンデンサの製造工程
を表す説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. First, FIG. 1 is an explanatory diagram showing the manufacturing process of an aluminum electrolytic capacitor according to an embodiment.

【0009】図に示す如く、本実施例では、まず陽極加
工工程P1にて、エッチングにより表面積が拡大化され
、陽極酸化によりその表面に酸化皮膜(Al2O3)が
形成されたAl箔(陽極箔)に、陽極引き出し用の電極
片を加締め圧着すると共に、陰極加工工程P2にて、エ
ッチングにより表面積が拡大化された酸化皮膜を有しな
いAl箔(陰極箔)に、陰極引き出し用の電極片を加締
め圧着した後、巻取り工程P3にて、周知の巻取り装置
を用いて、上記各工程P1,P2にて得られた陽極箔と
陰極箔とを隔離紙を間に挟んで巻取り、中間素子を作製
する。
As shown in the figure, in this example, first, in the anode processing step P1, an Al foil (anode foil) whose surface area has been enlarged by etching and an oxide film (Al2O3) formed on the surface by anodization is used. At the same time, in the cathode processing step P2, the electrode piece for drawing out the anode is crimped and crimped, and the electrode piece for drawing out the cathode is attached to Al foil (cathode foil) that does not have an oxide film and whose surface area has been expanded by etching. After crimping and crimping, in a winding step P3, using a well-known winding device, the anode foil and cathode foil obtained in the above steps P1 and P2 are rolled up with a separator paper in between, Fabricate an intermediate element.

【0010】このように巻取り工程P3にて中間素子が
作製されると、今度は短絡検査工程P4にて、後述の検
査回路を用いて中間素子の短絡検査を行ない、巻取り工
程P3にて作製された中間素子を良品と不良品とに識別
する。そして次にこの短絡検査工程P4にて良品である
と識別された中間素子の隔離紙に電解液を含浸させる電
解液含浸工程P5を行ない、その後組立工程P6にて、
電解液を含浸させた中間素子を、上記各電極片を外部に
引き出した状態で円筒状のAlケース内に封入する。
[0010] After the intermediate element is manufactured in the winding process P3 in this way, the intermediate element is inspected for short circuits in a short-circuit inspection process P4 using a test circuit to be described later, and then in the winding process P3. The produced intermediate elements are classified into non-defective products and defective products. Next, an electrolyte impregnation step P5 is performed in which the isolation paper of the intermediate element identified as a good product in the short circuit inspection step P4 is impregnated with an electrolyte solution, and then in an assembly step P6,
The intermediate element impregnated with an electrolytic solution is enclosed in a cylindrical Al case with each of the electrode pieces pulled out.

【0011】こうして電解コンデンサが作製されると、
今度はエージング工程P7にて、電解コンデンサを恒温
層(例えば70〜85℃)中で定格電圧とサージ電圧の
中間の電圧印加により所定時間(例えば1〜2時間)以
上連続して動作させるエージングを行なう。このエージ
ング工程P7が完了すると、今度は製品検査工程P8に
て、電解コンデンサの短絡状態や容量等をチェックする
各種検査を行ない、所定の規格を満足している電解コン
デンサを選別する。そして最後に、テーピング工程P9
にて、製品検査工程P8にて選別された所定の規格を満
足している電解コンデンサのAlケースをテーピングし
、電解コンデンサの製品を完成する。
[0011] When the electrolytic capacitor is manufactured in this way,
Next, in the aging step P7, aging is performed in which the electrolytic capacitor is continuously operated for a predetermined period of time (for example, 1 to 2 hours) or more by applying a voltage between the rated voltage and the surge voltage in a constant temperature layer (for example, 70 to 85 ° C.). Let's do it. When this aging step P7 is completed, in a product inspection step P8, various tests are performed to check the short-circuit state, capacity, etc. of the electrolytic capacitor, and electrolytic capacitors that meet predetermined standards are selected. And finally, taping step P9
At step P8, the Al case of the electrolytic capacitor that satisfies the predetermined standards selected at the product inspection step P8 is taped to complete the product of the electrolytic capacitor.

【0012】次に図2は、上記短絡検査工程P4におい
て中間素子の短絡検査を行なうのに使用される検査回路
の構成を表す電気回路図である。図に示す如くこの検査
回路は、中間素子Cxに直流電圧を印加する電圧印加回
路3と、電圧印加時に中間素子Cxの陽極(図に示すy
点)及び陰極(図2示すx点)の電位から中間素子Cx
の短絡を検出する短絡検出回路5とから構成されている
Next, FIG. 2 is an electric circuit diagram showing the configuration of a test circuit used to test intermediate elements for short circuits in the short circuit test step P4. As shown in the figure, this test circuit includes a voltage application circuit 3 that applies a DC voltage to the intermediate element Cx, and an anode of the intermediate element Cx (y shown in the figure) when voltage is applied.
point) and the potential of the cathode (point x shown in Figure 2), the intermediate element Cx
and a short circuit detection circuit 5 for detecting a short circuit.

【0013】ここでまず電圧印加回路3は、外部からの
印加指令を受けて所定時間Tだけオン状態となるスイッ
チング回路7を備え、スイッチング回路7のオン時に、
直流電源9からの直流電圧を、中間素子Cxの陽極及び
陰極に夫々接続された充電抵抗器R2及び検出抵抗器R
3を介して、中間素子Cxに印加するようにされている
。また中間素子Cxの陽極には、スイッチング回路7が
オンからオフに切り替わったときに、中間素子Cxに蓄
積された電荷を放電させる放電抵抗器R1が設けられて
いる。
First, the voltage application circuit 3 includes a switching circuit 7 that is turned on for a predetermined time T in response to an external application command, and when the switching circuit 7 is turned on,
The DC voltage from the DC power source 9 is applied to a charging resistor R2 and a detection resistor R connected to the anode and cathode of the intermediate element Cx, respectively.
3 to the intermediate element Cx. Furthermore, a discharge resistor R1 is provided at the anode of the intermediate element Cx to discharge the charge accumulated in the intermediate element Cx when the switching circuit 7 is switched from on to off.

【0014】このように構成された電圧印加回路3にお
いては、中間素子Cxの状態に応じて、スイッチング回
路7がオン状態にあるとき(図3に示す時点t1から時
点t4までの期間T)の中間素子Cxの陽極及び陰極の
電位,即ちx点及びy点の電位が、図3に示す如く変化
する。
In the voltage application circuit 3 configured as described above, the switching circuit 7 is in the on state (period T from time t1 to time t4 shown in FIG. 3) depending on the state of the intermediate element Cx. The potentials of the anode and cathode of the intermediate element Cx, ie, the potentials at the x point and the y point, change as shown in FIG.

【0015】即ち、まず中間素子Cxが良品である場合
には、スイッチング回路7がオンされ、中間素子Cxに
直流電圧が印加された直後には、中間素子Cxに一時的
に電流が流れ、x点の電位は一瞬正電位になるものの、
その後は0電位となって安定し、逆にy点の電位は充電
抵抗器R2と放電抵抗器R1により分圧された所定電圧
で安定する。
That is, first, when the intermediate element Cx is a good product, the switching circuit 7 is turned on, and immediately after a DC voltage is applied to the intermediate element Cx, a current temporarily flows through the intermediate element Cx, and x Although the potential at the point momentarily becomes positive,
Thereafter, the potential becomes 0 and becomes stable, and conversely, the potential at point y becomes stable at a predetermined voltage divided by the charging resistor R2 and the discharging resistor R1.

【0016】一方中間素子Cxが完全に短絡している短
絡品である場合には、中間素子Cxには、充電抵抗器R
2と放電抵抗器R1と検出抵抗器R3との抵抗値で決定
される所定電流が流れるため、x点及びy点の電位は略
同電位となり、x点の電位は良品の場合に比べて非常に
高く、y点の電位は良品の場合に比べて非常に低くなる
On the other hand, if the intermediate element Cx is a completely short-circuited product, the intermediate element Cx has a charging resistor R.
Since a predetermined current determined by the resistance values of 2, the discharge resistor R1, and the detection resistor R3 flows, the potentials at points x and y are approximately the same potential, and the potential at point x is much lower than in the case of a good product. The potential at point y is much lower than that of a good product.

【0017】また中間素子Cxの短絡は、巻取り工程時
に、陽極或は陰極から発生した金属粉が素子内に巻き込
まれることにより発生するものでため、中間素子Cxの
短絡としては、上記のような完全な短絡の他、電圧印加
時には短絡状態となりその後良品状態に戻る疑似短絡や
、通常は正常に動作し振動等により一時的に短絡状態と
なる疑似短絡がある。
Furthermore, a short circuit in the intermediate element Cx is caused by metal powder generated from the anode or cathode being drawn into the element during the winding process. In addition to complete short-circuits, there are pseudo-short-circuits that become short-circuited when voltage is applied and then return to a non-defective state, and pseudo-short-circuits that normally operate normally but temporarily become short-circuited due to vibration or the like.

【0018】そして中間素子Cxが上記前者の疑似短絡
を生じる疑似短絡品1の場合には、スイッチング回路7
がオンされると、x点及びy点の電位は、夫々、最初は
短絡品と同様に変化し、短絡状態からの復帰(時点t2
)後良品の状態に移行する。
In the case where the intermediate element Cx is the former pseudo-short circuit product 1 that causes a pseudo short circuit, the switching circuit 7
When turned on, the potentials at point x and point y respectively initially change in the same way as for a short-circuited product, and then return from the short-circuited state (at time t2
) after which the product will be in good condition.

【0019】また中間素子Cxが上記後者の疑似短絡を
生じる疑似短絡品2の場合には、スイッチング回路7が
オンされると、x点及びy点の電位は、夫々、通常は良
品と同様に変化し、短絡時(時点t3)に、一時的にx
点の電位が上昇し、y点の電位が低下する。
Furthermore, in the case where the intermediate element Cx is a pseudo short circuit product 2 that causes the latter pseudo short circuit, when the switching circuit 7 is turned on, the potentials at the x point and the y point are normally the same as in a non-defective product. and at the time of short circuit (time t3), temporarily x
The potential at the point increases and the potential at the y point decreases.

【0020】短絡検出回路5は、こうした中間素子Cx
の短絡を、x点及びy点の電位に基づき検出するもので
あり、図2に示す如く、オペアンプからなる2つのコン
パレータIC1,IC2とRSフリップフロップ11と
を中心に構成されている。
[0020] The short circuit detection circuit 5
This detects short circuits based on the potentials at points x and y. As shown in FIG.

【0021】ここでこの2つのコンパレータIC1,I
C2の内、一方のコンパレータIC1は電圧印加回路3
のy点の電位から中間素子Cxの疑似短絡品2を検出す
るためのもので、その否反転入力端子+は、電源電圧+
Bを印加するための抵抗器R4が接続されると共に、抵
抗器R5及びR6を介して接地され、更に抵抗器R5と
抵抗器R6との接続点に接続されたコンデンサC1を介
して電圧印加回路3のy点に接続されており、その反転
入力端子−には、電源電圧+Bを分圧する可変抵抗器V
R1を介して基準電圧V10が印加されている。
[0021] Here, these two comparators IC1, I
Among C2, one comparator IC1 is connected to the voltage application circuit 3.
This is to detect the pseudo-short circuit product 2 of the intermediate element Cx from the potential at the y point of
A voltage application circuit is connected to a resistor R4 for applying B, and is grounded through resistors R5 and R6, and further connected to a connection point between resistors R5 and R6. 3, and its inverting input terminal - is connected to a variable resistor V that divides the power supply voltage +B.
A reference voltage V10 is applied via R1.

【0022】つまり短絡検出回路5においては、コンパ
レータIC1の否反転入力端子+の電圧が、y点の電位
が一定であれば電源電圧+Bを抵抗器R4と抵抗器R5
及びR6とにより分圧した一定電圧V11となり、y点
の電位の上昇時に一時的に上昇し、y点の電位の下降時
に一時的に下降するようにされており、可変抵抗器VR
1の抵抗値を調整して反転入力端子−への印加電圧(基
準電圧)V10をその一定電圧V11より若干低めの値
に設定することにより、y点の電位が下降したときにだ
け、換言すればスイッチング回路7のオン時に電圧印加
回路3に接続されている中間素子Cxが疑似短絡品2で
ある場合にだけ、コンパレータIC1の出力電位が一時
的にLow レベルとなるように構成されている。
That is, in the short circuit detection circuit 5, if the voltage at the non-inverting input terminal + of the comparator IC1 is constant, the power supply voltage +B is connected to the resistor R4 and the resistor R5.
and R6, resulting in a constant voltage V11, which temporarily increases when the potential at point y rises and temporarily decreases when the potential at point y falls, and is made to rise temporarily when the potential at point y falls.
By adjusting the resistance value of 1 and setting the voltage (reference voltage) V10 applied to the inverting input terminal - to a value slightly lower than the constant voltage V11, it is possible to For example, the output potential of the comparator IC1 is configured to temporarily become a Low level only when the intermediate element Cx connected to the voltage application circuit 3 is a pseudo-short circuit product 2 when the switching circuit 7 is turned on.

【0023】次にコンパレータIC2は、電圧印加回路
3のx点の電位から中間素子Cxの短絡品及び疑似短絡
品1を検出するためのもので、その否反転入力端子+に
は、電源電圧+Bを分圧する可変抵抗器VR2を介して
基準電圧V20が印加されており、その反転入力端子−
は、抵抗器R7を介して電圧印加回路3のx点に接続さ
れている。つまり、可変抵抗器VR2の抵抗値を調整し
てコンパレータIC2の否反転入力端子+への印加電圧
(基準電圧)V20を、電圧印加回路3のx点とy点と
が短絡したときのx点の電位より若干小さい値に設定す
ることにより、スイッチング回路7のオン時に電圧印加
回路3に接続されている中間素子Cxが短絡品或は疑似
短絡品1である場合にだけ、コンパレータIC2の出力
電位がLow レベルとなるように構成されている。
Next, the comparator IC2 is for detecting short-circuited products and pseudo-shorted products 1 of the intermediate element Cx from the potential at point x of the voltage application circuit 3, and its non-inverting input terminal + has the power supply voltage +B A reference voltage V20 is applied through a variable resistor VR2 that divides the voltage, and its inverting input terminal -
is connected to point x of the voltage application circuit 3 via a resistor R7. In other words, by adjusting the resistance value of the variable resistor VR2, the applied voltage (reference voltage) V20 to the non-inverting input terminal + of the comparator IC2 is set at the x point when the x point and the y point of the voltage application circuit 3 are short-circuited. By setting the potential to a value slightly smaller than the potential of the comparator IC2, the output potential of the comparator IC2 is set only when the intermediate element Cx connected to the voltage application circuit 3 is a short-circuited product or a pseudo-shorted product 1 when the switching circuit 7 is turned on. is configured to be at a low level.

【0024】また次にRSフリップフロップ11は、リ
セット端子RにLowレベルのリセット信号が入力され
たときにリセットされ、セット端子SにLow レベル
の信号が入力されたときにセットされて出力端子Qのレ
ベルがHighレベルとなる、所謂反転入力型のもので
、そのセット端子Sには、各コンパレータIC1,IC
2の出力端子が接続されると共に、抵抗器R8を介して
電源電圧+Bが印加されている。
Next, the RS flip-flop 11 is reset when a low-level reset signal is input to the reset terminal R, and is set when a low-level signal is input to the set terminal S, so that the RS flip-flop 11 outputs the output terminal Q. It is a so-called inverted input type in which the level of
The output terminals of No. 2 and 2 are connected, and power supply voltage +B is applied via resistor R8.

【0025】従って本実施例の検査回路においては、ま
ず電圧印加回路3のx点及びy点に検査対象となる中間
素子Cxを接続し、その後RSフリップフロップ11の
リセット端子RにLow レベルのリセット信号を入力
してRSフリップフロップ11をリセットし、スイッチ
ング回路7を起動することにより、中間素子Cxの短絡
及び疑似短絡を簡単に検査することができる。
Therefore, in the test circuit of this embodiment, first, the intermediate element Cx to be tested is connected to the x and y points of the voltage application circuit 3, and then a low level reset is applied to the reset terminal R of the RS flip-flop 11. By inputting a signal to reset the RS flip-flop 11 and activate the switching circuit 7, short circuits and pseudo short circuits in the intermediate element Cx can be easily inspected.

【0026】つまり電圧印加回路3に接続された中間素
子Cxが良品であれば、各コンパレータIC1,IC2
の出力はHighレベルのままであるので、RSフリッ
プフロップ11はセットされず、その出力はLow レ
ベルのままである。しかし中間素子Cxが疑似短絡品2
であればコンパレータIC1の出力がLow レベルと
なり、また中間素子Cxが短絡品又は疑似短絡品1であ
ればコンパレータIC2の出力がLow レベルとなる
ため、中間素子Cxに何らかの短絡異常があればRSフ
リップフロップ11が必ずセットされ、RSフリップフ
ロップ11からHighレベルの検出信号が出力される
こととなる。従ってこのRSフリップフロップ11から
出力された検出信号により、中間素子Cxの良・不良を
表示するようにすれば、中間素子Cxの巻取り後の短絡
検査を簡単に、しかも確実に行うことができる。
In other words, if the intermediate element Cx connected to the voltage application circuit 3 is of good quality, each comparator IC1, IC2
Since the output of the RS flip-flop 11 remains at High level, the RS flip-flop 11 is not set and its output remains at Low level. However, the intermediate element Cx is a pseudo short circuit product 2
If so, the output of comparator IC1 will be low level, and if intermediate element Cx is a short-circuited product or pseudo-shorted product 1, the output of comparator IC2 will be low level. Therefore, if there is any short-circuit abnormality in intermediate element Cx, the RS flip-flop The flip-flop 11 is always set, and the RS flip-flop 11 outputs a high level detection signal. Therefore, if the detection signal output from the RS flip-flop 11 is used to indicate whether the intermediate element Cx is good or bad, short-circuit inspection after winding the intermediate element Cx can be easily and reliably performed. .

【0027】以上説明したように、本実施例の電解コン
デンサの製造方法によれば、巻取り工程P3と電解液含
浸工程P5との間に短絡検査工程P4を入れ、電解液の
含浸前に中間素子の短絡検査を行うようにしているため
、製品完成後不良品となる或は不良品となる可能性の高
い中間素子が電解液含浸工程P5以降の工程に流れるの
を防止することができ、製品の信頼性を向上できると共
に、電解コンデンサ製造時の無駄を省くことができる。
As explained above, according to the method for manufacturing an electrolytic capacitor of this embodiment, a short circuit inspection step P4 is inserted between the winding step P3 and the electrolyte impregnation step P5, and an intermediate test is performed before the electrolyte impregnation. Since the element is inspected for short circuits, it is possible to prevent intermediate elements that become defective or are likely to become defective after the product is completed from flowing into the electrolyte impregnation step P5 and subsequent steps. Product reliability can be improved, and waste during manufacturing electrolytic capacitors can be eliminated.

【0028】また特に電解液の含浸前に、中間素子の段
階で短絡検査を行なうので、短絡品は勿論のこと、疑似
短絡品も容易に検出することができ、その検査工程を簡
素化することができる。つまり電解液が含浸された後に
短絡検査を行なう場合には、電解液によって素子のもれ
電流が大きくなっているため、疑似短絡品2のような瞬
時の短絡を検出することが難しく、このためには精度の
高い測定器が必要となるが、本実施例では、電解液の含
浸前に短絡検査を行うため、短絡検査を簡単な回路で行
うことができ、また検出精度も高くなる。
[0028] Furthermore, since the short-circuit test is performed at the stage of the intermediate element, especially before impregnation with the electrolytic solution, it is possible to easily detect not only short-circuited products but also pseudo-short-circuited products, thereby simplifying the inspection process. Can be done. In other words, when performing short-circuit inspection after being impregnated with electrolyte, it is difficult to detect instantaneous short-circuits like pseudo-short circuit product 2 because the leakage current of the element is increased by the electrolyte. Although a highly accurate measuring device is required, in this embodiment, the short circuit test is performed before impregnation with the electrolytic solution, so the short circuit test can be performed using a simple circuit, and the detection accuracy is also high.

【0029】また更に製品完成後の検査では、素子はケ
ース内に封入されているため、素子に直接外力を加える
ことができず、従って疑似短絡の検出は難しいが、本実
施例では中間素子の段階で短絡検査を行うため、この検
査時に素子に直接外力を加えることができ、疑似短絡品
をより確実に検出できる。
Furthermore, in the inspection after the product is completed, since the device is enclosed in a case, it is not possible to directly apply an external force to the device, and therefore it is difficult to detect a pseudo short circuit. Since short-circuit inspection is performed in stages, external force can be applied directly to the element during this inspection, and pseudo-short circuit products can be detected more reliably.

【0030】尚上記実施例では、アルミ電解コンデンサ
の製造方法について説明したが、本発明は、陽極箔と陰
極箔とを巻き込むことにより作製する箔形の電解コンデ
ンサであれば適用できる。
In the above embodiment, a method for manufacturing an aluminum electrolytic capacitor has been described, but the present invention can be applied to any foil-type electrolytic capacitor manufactured by rolling an anode foil and a cathode foil.

【0031】[0031]

【発明の効果】以上詳述したように本発明の電解コンデ
ンサの製造方法によれば、中間素子に電解液を含浸させ
る前に中間素子の短絡検査を行うため、製品完成後不良
品となる或は不良品となる可能性の高い中間素子が電解
液の含浸工程以降の工程に流れるのを防止することがで
き、製品の信頼性を向上できると共に、電解コンデンサ
製造時の無駄を省くことができる。また電解液の含浸前
に中間素子の短絡検査を行なうので、中間素子の短絡検
査を簡単な電気回路で行うことができ、しかも中間素子
の短絡及び疑似短絡を精度よく検出することが可能とな
る。
[Effects of the Invention] As described in detail above, according to the method of manufacturing an electrolytic capacitor of the present invention, since the intermediate element is inspected for short circuits before impregnating the intermediate element with an electrolytic solution, there is no possibility that the product will be defective or defective after the product is completed. can prevent intermediate elements that are likely to become defective from flowing into processes after the electrolyte impregnation process, improving product reliability and reducing waste during electrolytic capacitor manufacturing. . In addition, since the intermediate element is inspected for short circuits before being impregnated with the electrolytic solution, short circuit inspections on the intermediate element can be carried out using a simple electrical circuit, and short circuits and pseudo-short circuits in the intermediate elements can be detected with high accuracy. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例の電解コンデンサの製造工程を表す説明
図である。
FIG. 1 is an explanatory diagram showing the manufacturing process of an electrolytic capacitor according to an example.

【図2】実施例の短絡検査工程にて使用される検査回路
を表す電気回路図である。
FIG. 2 is an electric circuit diagram showing a test circuit used in the short circuit test process of the embodiment.

【図3】実施例の電圧印加回路におけるx点及びy点の
電位変化を説明するタイムチャートである。
FIG. 3 is a time chart illustrating potential changes at points x and y in the voltage application circuit of the embodiment.

【符号の説明】[Explanation of symbols]

P1…陽極加工工程      P2…陰極加工工程 
     P3…巻取り工程 P4…短絡検査工程      P5…電解液含浸工程
    P6…後組立工程 P7…エージング工程    P8…製品検査工程  
    P9…テーピング工程 3…電圧印加回路    5…短絡検出回路    7
…スイッチング回路 9…直流電源    11…RSフリップフロップ  
  C1…コンデンサ Cx…中間素子    IC1,IC2…コンパレータ
    R1〜R8…抵抗器 VR1,VR2…可変抵抗器
P1...Anode processing process P2...Cathode processing process
P3... Winding process P4... Short circuit inspection process P5... Electrolyte impregnation process P6... Post-assembly process P7... Aging process P8... Product inspection process
P9...Taping process 3...Voltage application circuit 5...Short circuit detection circuit 7
...Switching circuit 9...DC power supply 11...RS flip-flop
C1...Capacitor Cx...Intermediate element IC1, IC2...Comparator R1~R8...Resistor VR1, VR2...Variable resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  表面に酸化皮膜が形成された陽極箔と
表面に酸化皮膜を有しない陰極箔とを隔離紙を間に挟ん
で巻取る巻取り工程と、該巻取り工程にて作製された中
間素子に電解液を含浸させる含浸工程と、該含浸工程に
て電解液を含浸させた中間素子をケース内に封入する組
立工程と、を有する電解コンデンサの製造方法において
、上記含浸工程の前に、上記中間素子に直流電圧を印加
して陽極箔と陰極箔との短絡状態を検査することを特徴
とする電解コンデンサの製造方法。
[Claim 1] A winding process in which an anode foil with an oxide film formed on its surface and a cathode foil without an oxide film on its surface are rolled up with a separator paper in between, and the product produced in the winding process. In a method for manufacturing an electrolytic capacitor, the method includes an impregnation step of impregnating an intermediate element with an electrolytic solution, and an assembly step of enclosing the intermediate element impregnated with the electrolyte in the impregnation step in a case, in which, before the impregnation step, A method for manufacturing an electrolytic capacitor, characterized in that a DC voltage is applied to the intermediate element to test for a short circuit between an anode foil and a cathode foil.
JP3028797A 1991-02-22 1991-02-22 Method of manufacturing electrolytic capacitor Expired - Lifetime JPH0817144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3028797A JPH0817144B2 (en) 1991-02-22 1991-02-22 Method of manufacturing electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028797A JPH0817144B2 (en) 1991-02-22 1991-02-22 Method of manufacturing electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04267514A true JPH04267514A (en) 1992-09-24
JPH0817144B2 JPH0817144B2 (en) 1996-02-21

Family

ID=12258417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028797A Expired - Lifetime JPH0817144B2 (en) 1991-02-22 1991-02-22 Method of manufacturing electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0817144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295856A (en) * 2008-06-06 2009-12-17 Hioki Ee Corp Electrolytic capacitor examination method and electrolytic capacitor examination apparatus
JP2009302276A (en) * 2008-06-13 2009-12-24 Hioki Ee Corp Inspection method for electrolytic capacitor and inspection device for electrolytic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648609A (en) * 1987-06-30 1989-01-12 Jcc Eng Kk Conveyor of electrolytic capacitor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648609A (en) * 1987-06-30 1989-01-12 Jcc Eng Kk Conveyor of electrolytic capacitor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295856A (en) * 2008-06-06 2009-12-17 Hioki Ee Corp Electrolytic capacitor examination method and electrolytic capacitor examination apparatus
JP2009302276A (en) * 2008-06-13 2009-12-24 Hioki Ee Corp Inspection method for electrolytic capacitor and inspection device for electrolytic capacitor

Also Published As

Publication number Publication date
JPH0817144B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
EP0543316A1 (en) High frequency surge tester methods and apparatus
JP2760263B2 (en) Screening method for early failure products of ceramic capacitors
US20020060571A1 (en) Method for inspecting capacitors
JPH04267514A (en) Manufacture of electrolytic capacitor
JP2982236B2 (en) Test circuit for semiconductor integrated circuits
EP0096950B1 (en) Method of investigating electrical components as to structural flaws
JPH10115651A (en) Inspection method for leak current characteristic of capacitor
JP3325869B2 (en) Polarized electrolytic capacitor polarity judgment device
JP4738703B2 (en) Electrolytic capacitor manufacturing method
JPH08227826A (en) Method for screening laminated ceramic capacitor
JP3175654B2 (en) Capacitor measurement terminal contact detection method
JPH07244098A (en) In-circuit testing method for capacitor
CN115178501B (en) Screening method of high-reliability solid electrolyte tantalum capacitor
JP2000348990A (en) Inspection device for electrolytic capacitor and inspection method using the same
US20230318449A1 (en) Systems and methods for performing self-detection and pre-start processes for charge pumps
JP2003222651A (en) Judging method for insulation degradation of electric appliance
JP2002110217A (en) Battery inspection method
JP3761303B2 (en) Electrolytic capacitor inspection method
JP3144224B2 (en) Screening method for ceramic capacitors
JPH0228833B2 (en)
JP2001035758A (en) Method and apparatus for screening laminated ceramic electronic component
JPH0714742A (en) Screening method for ceramic electronic component
JPH0695120B2 (en) Electronic component measuring device
JP2001091554A (en) Device for measuring insulation resistance in capacitive electronic part
JPH11118891A (en) Deterioration of accumulator determining device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 16